

ffirs.indd  09/14/2016  Page i

LPIC-2
Study Guide

Second Edition

ffirs.indd  09/14/2016  Page iii

LPIC-2:
Linux Professional Institute

Certification
Study Guide

Exam 201 and Exam 202
Second Edition

Christine Bresnahan

Richard Blum

ffirs.indd  09/14/2016  Page iv

Senior Acquisitions Editor: Kenyon Brown
Development Editor: Gary Schwartz
Technical Editor: Kevin Ryan
Production Editor: Christine O’Connor
Copy Editor: Linda Rectenwald
Editorial Manager: Mary Beth Wakefield
Production Manager: Kathleen Wisor
Executive Publisher: Jim Minatel
Book Designers: Judy Fung and Bill Gibson
Proofreader: Rebecca Rider
Indexer: John Sleeva
Project Coordinator, Cover: Brent Savage
Cover Designer: Wiley
Cover Image: Getty Images Inc./Jeremy Woodhouse

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-15079-4

ISBN: 978-1-119-15081-7 (ebk.)

ISBN: 978-1-119-15080-0 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hobo-
ken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent pro-
fessional person should be sought. Neither the publisher nor the author shall be liable for damages arising here-
from. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or
Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites
listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016952321

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is
not associated with any product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffirs.indd  09/14/2016  Page v

To those looking to further their knowledge of Linux. “A wise man is full of

strength, and a man of knowledge enhances his might.” Prov 24:5 (ESV)

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sybex for their outstanding work on
this project. Thanks to Kenyon Brown, the senior acquisitions editor, for offering us the
opportunity to work on this book. Also thanks to Gary Schwartz, the development editor,
for keeping things on track and making the book more presentable. Thanks, Gary, for all
your hard work and diligence. The technical editor, Kevin E. Ryan, did a wonderful job of
double-checking all of the work in the book in addition to making suggestions to improve
the content. Thanks also goes to the young and talented Daniel Anez (theanez.com) for his
illustration work. We would like to thank Carole Jelen at Waterside Productions, Inc., for
arranging this opportunity for us and for helping us out in our writing careers.

Christine would particularly like to thank her husband, Timothy, for his encouragement,
patience, and willingness to listen, even when he has no idea what she is talking about.

Rich would particularly like to thank his wife, Barbara, for enduring his grouchy attitude
during this project and helping to keep up his spirits with baked goods.

About the Authors
Christine Bresnahan   started working with computers more than 25 years ago in the
IT industry as a systems administrator. Christine is an adjunct professor at Ivy Tech
Community College, where she teaches Linux certification and Python programming
classes. She also writes books and produces instructional resources for the classroom.

Richard Blum   has worked in the IT industry for more than 25 years as both a system
and network administrator, and he has published numerous Linux and open source books.
Rich is an online instructor for Linux and web programming courses that are used by col-
leges and universities across the United States. When he is not being a computer nerd, Rich
enjoys spending time with his wife, Barbara, and his two daughters, Katie and Jessica.

ffirs.indd  09/14/2016  Page x

Contents at a Glance
Introduction	 xxiii

Assessment Test	 xliii

Part I	 The LPI 201 Exam	 1

Chapter 1	 Starting a System	 3

Chapter 2	 Maintaining the System	 37

Chapter 3	 Mastering the Kernel	 93

Chapter 4	 Managing the Filesystem 	 139

Chapter 5	 Administering Advanced Storage Devices	 199

Chapter 6	 Navigating Network Services	 271

Part II	 The LPI 202 Exam	 315

Chapter 7	 Organizing Email Services	 317

Chapter 8	 Directing DNS	 371

Chapter 9	 Offering Web Services	 451

Chapter 10	 Sharing Files	 497

Chapter 11	 Managing Network Clients	 581

Chapter 12	 Setting Up System Security	 619

Appendix 	 Answers to Review Questions� 655

Index	 691

ftoc.indd  09/14/2016  Page xiii

Contents
Introduction	 xxiii

Assessment Test	 xliii

Part I	 The LPI 201 Exam	 1

Chapter 1	 Starting a System	 3

The Linux Boot Process	 4
Following the Boot Process	 4
Viewing the Boot Process	 5

The Firmware Startup	 6
The BIOS Startup	 6
The UEFI Startup	 7

Linux Bootloaders	 8
GRUB Legacy	 9
GRUB 2	 12
Alternative Bootloaders	 14
Secure Bootloaders	 15

Process Initialization	 16
The SysV Method	 17
The systemd Method	 21
The Upstart Method	 26

System Recovery	 27
Kernel Failures	 27
Root Drive Failure	 29

Summary	 31
Exam Essentials	 31
Review Questions	 33

Chapter 2	 Maintaining the System	 37

Keeping Users Informed	 38
Looking at Fluid Messaging	 39
Looking at Static Messaging	 47

Backing Up the System	 51
Developing a Backup Strategy	 51
Performing Backups	 61

Installing Programs from Source	 72
Obtaining the Installation Files	 73
Unpacking the Installation Files	 73
Reading Installation Documentation	 74
Compiling Preparation	 75

xiv  Contents

ftoc.indd  09/14/2016  Page xiv ftoc.indd  09/14/2016  Page xv

Compiling the Program	 76
Completing the Installation	 76

Managing Resource Usage	 79
Measuring Resource Usage	 79
Predicting Resource Usage	 83
Troubleshooting Resource Usage	 85

Summary	 87
Exam Essentials	 87
Review Questions	 89

Chapter 3	 Mastering the Kernel	 93

What Is the Kernel?	 94
The Kernel Features	 94
Parts of the Kernel	 104
Kernel Versions	 107

Compiling a Kernel	 108
Obtaining Source Code	 109
Creating the Configuration File	 110
Compiling and Installing the Kernel	 114
Compiling and Installing Modules	 116
Creating an Initial RAM Disk	 116
Booting the New Kernel	 118
Creating a Kernel Package	 119

Maintaining the Kernel	 120
Working with Module Files	 120
Module Commands	 120
Working with Hardware	 125
Automatically Detecting Hardware	 128
Troubleshooting the Kernel	 129

Summary	 132
Exam Essentials	 133
Review Questions	 135

Chapter 4	 Managing the Filesystem 	 139

Operating the Linux Filesystem	 140
Understanding Filesystem Structures	 140
Understanding Filesystem Types	 141
Making a Filesystem	 144
Attaching a Filesystem	 146

Exploring Additional Filesystem Topics	 162
Looking at Memory-Based Linux Filesystems	 162
Looking at the Btrfs Filesystem	 163
Exploring Btrfs Subvolumes	 165
Exploring Btrfs Snapshots	 169

Contents  xv

ftoc.indd  09/14/2016  Page xiv ftoc.indd  09/14/2016  Page xv

Looking at Optical Filesystems	 171
Looking at Swap Filesystems	 177
Looking at Network-Based Filesystems	 180
Understanding Auto-Mounting	 180
Looking at Encrypted Filesystems	 183

Maintaining Linux Filesystems	 185
Adjusting a Filesystem	 185
Checking and Repairing a Filesystem	 187
Using SMART	 189

Summary	 192
Exam Essentials	 192
Review Questions	 195

Chapter 5	 Administering Advanced Storage Devices	 199

Configuring RAID	 200
Understanding RAID	 200
Implementing RAID on Linux	 204
Managing a RAID Array	 216

Adjusting Storage Devices	 221
Looking at Drive Interface Concepts	 221
Testing and Tuning Drives	 223
Implementing iSCSI	 234

Managing Logical Volumes	 245
Understanding LVM	 245
Creating Logical Volumes	 246
Supporting Logical Volumes	 254
Understanding the Device Mapper	 263

Summary	 264
Exam Essentials	 264
Review Questions	 267

Chapter 6	 Navigating Network Services	 271

Networking Basics	 272
The Physical Layer	 272
The Network Layer	 274
The Transport Layer	 278
The Application Layer	 279

Configuring Network Features	 279
Network Configuration Files	 280
Graphical Tools	 282
Command-Line Tools	 284

Basic Network Troubleshooting	 288
Checking the Log Files	 288
Viewing the ARP Cache	 289

xvi  Contents

ftoc.indd  09/14/2016  Page xvi ftoc.indd  09/14/2016  Page xvii

Sending Test Packets	 290
Testing Network Routes	 291
Testing Client/Server Connectivity	 293
Finding Host Information	 295
Network Security	 297

Advanced Network Troubleshooting	 297
Viewing Open Network Connections	 297
Viewing Network Statistics	 300
Scanning the Network	 302
Capturing Network Traffic	 303

Summary	 308
Exam Essentials	 308
Review Questions	 310

Part II	 The LPI 202 Exam	 315

Chapter 7	 Organizing Email Services	 317

The Linux Mail System	 318
Mail Transfer Agent	 319
Mail Delivery Agent	 321
Mail User Agent	 323

Email Protocols	 325
Simple Mail Transfer Protocol	 326
Post Office Protocol	 332
Internet Message Access Protocol	 334

Using Email Servers	 338
Using Sendmail	 338
Using Postfix	 342

Local Email Delivery	 351
Procmail Basics	 351
Sieve	 356

Remote Email Delivery	 359
Using Courier	 359
Using Dovecot	 360

Summary	 363
Exam Essentials	 364
Review Questions	 366

Chapter 8	 Directing DNS	 371

Configuring a DNS Server	 372
Understanding DNS and BIND	 372
Configuring DNS on Linux	 379
Starting, Stopping, and Reloading BIND	 395
Configuring BIND Logging	 398

Contents  xvii

ftoc.indd  09/14/2016  Page xvi ftoc.indd  09/14/2016  Page xvii

Creating and Maintaining DNS Zones	 403
Exploring BIND Zone Files	 403
Managing BIND Zones on Linux	 417

Securing a DNS Server	 427
Setting Up Basic Security	 427
Jailing BIND	 431
Using DNSSEC	 434
Connecting via TSIG	 440
Employing DANE	 442

Summary	 445
Exam Essentials	 445
Review Questions	 447

Chapter 9	 Offering Web Services	 451

What Is a Web Server?	 452
Web Server Basics	 452
The HTTP Standard	 453
Linux Web Servers	 459

The Apache Web Server	 461
Installing an Apache Server	 462
Configuring the Apache Server	 464
Hosting Dynamic Web Applications	 472
Creating a Secure Web Server	 474

Using a Proxy Server	 482
Installing Squid	 482
Configuring Squid	 483
Configuring Clients	 486

The Nginx Server	 487
Installing Nginx	 487
Configuring Nginx	 488

Summary	 490
Exam Essentials	 491
Review Questions	 493

Chapter 10	 Sharing Files	 497

Looking at Samba	 498
Understanding Samba	 498
Configuring Samba	 500
Troubleshooting Samba	 527

Looking at NFS	 530
Understanding NFS	 530
Configuring NFS	 533
Securing NFS	 549
Troubleshooting NFS	 552

xviii  Contents

ftoc.indd  09/14/2016  Page xviii ftoc.indd  09/14/2016  Page xix

Looking at FTP Servers	 553
Understanding FTP	 554
Configuring vsftpd	 556
Configuring Pure-FTPd	 568

Summary	 575
Exam Essentials	 575
Review Questions	 577

Chapter 11	 Managing Network Clients	 581

Assigning Network Addresses	 582
The DHCP Standard	 583
Linux DHCP Software	 584
Installing a Linux DHCP Server	 585
Configuring a DHCP Server	 585
Configuring Clients	 590

Authentication Service	 591
PAM Basics	 591
Configuring PAM	 594
Using PAM Application Files	 595

Network Directories	 597
LDAP Basics	 597
The OpenLDAP Server	 601
Implementing LDAP Clients	 607

Summary	 613
Exam Essentials	 613
Review Questions	 615

Chapter 12	 Setting Up System Security	 619

Server Network Security	 620
Port Scanning	 620
Intrusion Detection Systems	 628
External Network Security	 631
Using iptables	 634
Routing in Linux	 639

Connecting Securely to a Server	 639
OpenSSH	 640
OpenVPN	 643

Security Resources	 646
US-CERT	 646
SANS Institute	 647
Bugtraq	 647

Summary	 648
Exam Essentials	 649
Review Questions	 651

Contents  xix

ftoc.indd  09/14/2016  Page xviii ftoc.indd  09/14/2016  Page xix

Appendix 	 Answers to Review Questions� 655

Chapter 1: Starting a System	 656
Chapter 2: Maintaining the System	 659
Chapter 3: Mastering the Kernel	 662
Chapter 4: Managing the Filesystem	 664
Chapter 5: Administering Advanced Storage Devices	 667
Chapter 6: Navigating Network Services	 670
Chapter 7: Organizing Email Services	 673
Chapter 8: Directing DNS	 676
Chapter 9: Offering Web Services	 678
Chapter 10: Sharing Files	 681
Chapter 11: Managing Network Clients	 684
Chapter 12: Setting Up System Security	 687

Index	 691

ftoc.indd  09/14/2016  Page xxi

Table of Exercises
Exercise 1.1	 Using Rescue Mode . . 30

Exercise 2.1	 Installing the Geany IDE from Source Code . 77

Exercise 3.1	 Creating a Kernel Configuration File . 113

Exercise 4.1	 Manually Mount a USB Flash Drive . 152

Exercise 5.1	 Adding and Removing Logical Volumes . 262

Exercise 6.1	 Determining the Network Environment . 307

Exercise 7.1	 Setting Up and Testing an Email Server . 362

Exercise 8.1	 Trying Out Troubleshooting Tools . 426

Exercise 9.1	 Testing a Web Server . 489

Exercise 11.1	 Setting Up and Testing a DHCP Server . 612

Exercise 12.1	 Setting Up and Testing a Firewall . 647

flast.indd  09/14/2016  Page xxiii

Introduction
Welcome to the LPIC-2: Linux Professional Institute Certification Study Guide. If you
used our LPIC-1: Linux Professional Institute Certification Study Guide to study for your
LPIC-1 exam, welcome back! We’re glad that you decided to stay with us for your LPIC-2
study resources.

Just like our LPIC-1 Study Guide, this book contains detailed explanations for all of
the LPIC-2 exam objectives, along with example questions, flashcards for self-study, and
practice questions. The purpose of this book is to help you pass both of the LPIC-2 exams,
201 and 202. These exams cover more advanced topics than the LPIC-1 exam, such as the
Linux kernel, system startup, filesystems, network operations, DNS servers, web servers,
file servers, email servers, network client management, and security. This book will walk
you through all of these topics, helping prepare you for the LPIC-2 exam questions.

LPI’s Certification Program
The purpose of the Linux Professional Institute’s (LPI) LPIC-2 program is to define the
basic knowledge required to administer small to medium-sized mixed (Microsoft and
Linux) networks, focusing on the Linux operating system. The program guides profession-
als wishing to build on knowledge gained from the LPIC-1 program.

It is expected that you have already passed the LPI Linux Essentials (optional) exam and
the LPIC-1 (or CompTIA Linux+) exam and have at least five years’ experience in adminis-
tering a Linux server(s) in a mixed network environment.

The successful LPIC-2 candidate should have at a minimum knowledge and experience
concerning the following topics:

■■ Administering multiple Linux servers

■■ Advising management on computerization and purchasing

■■ Planning and managing a small, mixed-network environment, which includes the
following:

■■ LAN server:

■■ Client management

■■ DHCP

■■ DNS

■■ NFS

■■ Samba

■■ Internet gateway:

■■ Firewall

■■ Mail

xxiv  Introduction

flast.indd  09/14/2016  Page xxiv flast.indd  09/14/2016  Page xxv

■■ OpenSSH

■■ VPN

■■ Web cache/proxy

■■ Internet server:

■■ FTP server

■■ Web server

■■ Web server with a reverse proxy

■■ Team supervision skills

If you’ve already passed the LPIC-1 exam, you’ve proven to the world that you’re profi-
cient with the basic operation of Linux, along with the basic Linux commands. But don’t
stop there. When you pass the LPIC-2 exam, that will demonstrate that you have the skills
that companies look for when hiring Linux administrators. Having the LPIC-2 certification
validates your skills, and it helps prepare you for working with Linux servers in a commer-
cial environment.

How to Become Certified
The LPIC-2 certification is available to anyone who has an active LPIC-1 certification and
who passes the two required exams: 201 and 202.

To take an LPI exam, you must first register with LPI to obtain an LPI ID number (if you
already did this for the LPIC-1 exam, you must use your existing LPI ID number for the
LPIC-2 exam). If you need to register, you can do this online at https://cs.lpi.org/caf/
Xamman/register. LPI will email your LPI ID number to you. With that you can log into
the LPI Marketplace to purchase an exam voucher.

The exams are administered by Pearson VUE. The exam can be taken at any Pearson
VUE testing center. If you pass, you will get a certificate in the mail saying that you have
passed. Call (877) 619-2096 for Pearson VUE contact information.

To register for the exam with Pearson VUE, go to http://www.vue.com. Enter the exam
voucher number that you received from the LPI Marketplace, and schedule the time and place
to take the exam.

Who Should Buy This Book
Anyone who wants to pass the LPIC-2 certification exams may benefit from this book. You
should already have a basic knowledge of Linux, as covered by the LPIC-1 exam material.
If not, you should start with our LPIC-1: Linux Professional Institute Study Guide book
and then move on to this book. This book focuses on the more advanced Linux topics
covered by the LPIC-2 201 and 202 exams. Once you obtain your certification, this book

https://cs.lpi.org/caf/Xamman/register
http://www.vue.com

Introduction  xxv

flast.indd  09/14/2016  Page xxiv flast.indd  09/14/2016  Page xxv

will continue to be useful by serving as a handy resource for information on installing and
maintaining Linux servers.

Even if you don’t plan to take the LPIC-2 exams, this book makes an excellent resource
for understanding advanced Linux server topics. It covers topics such as creating your own
web server, email server, and file server. These skills are required by Linux administrators
in small and medium-sized network environments.

This book is written with the assumption that you have a basic knowledge of Linux. You
should be familiar with how Linux works and be able to work in the Linux command line,
including the core commands such as ls, cp, mv, cat, less, ps, free, and uptime. You
should also already know how to install a default Linux distribution environment, because
that is not covered in this book.

You’ll need a Linux system with which to practice and perform the chapter
activities. Any Linux desktop or server distribution will work for the activi-
ties in this book; however, we focus on the Ubuntu and CentOS Linux desk-
top distributions for our examples.

How This Book Is Organized
This book consists of 12 chapters plus supplementary information: an online glossary, this
introduction, and the assessment test after the introduction.

Part I of the book, Chapters 1 through 6, covers the LPIC-2 201 exam topics. Part II,
Chapters 7 through 12, covers the 202 exam topics. Each chapter begins with a list of
the exam objectives that are covered in that chapter. However, the book doesn’t cover the
objectives in order.

Part I: The LPI 201 Exam

Chapter 1: Starting a System    This chapter covers how Linux boots from the system
BIOS. It discusses the Linux bootloader program and how to create a dual-boot Linux
environment.

Chapter 2: Maintaining the System    This chapter describes how to install and manage
resources on a Linux system. It also covers how to back up Linux systems and communi-
cate with system users to warn of system issues or downtime.

Chapter 3: Mastering the Kernel    This chapter focuses on the core of the Linux system—
the kernel. It walks you through how to install a custom kernel, as well as how to create
and maintain kernel modules required to support the hardware on your Linux system.

Chapter 4: Managing the Filesystem    This chapter explores the different Linux filesystems
and how to manage and maintain them, as well as how to troubleshoot them when prob-
lems occur.

xxvi  Introduction

flast.indd  09/14/2016  Page xxvi flast.indd  09/14/2016  Page xxvii

Chapter 5: Administering Advanced Storage Devices    This chapter takes a look at two of
the more advanced storage methods used in Linux environments. It focuses on how to use
RAID devices in Linux, either as hardware devices or using a software RAID emulator. It
also demonstrates how to implement a Logical Volume Manager in a Linux environment.

Chapter 6: Navigating Network Services    This chapter takes a deeper look at how Linux
interacts in a network environment. It covers how to use the Linux command-line com-
mands to set up a network interface and how to troubleshoot basic network problems.

Part II: The LPI 202 Exam

Chapter 7: Organizing Email Services    This chapter examines how to run an Internet
email server using Linux. It covers the two most popular email servers—sendmail and
Postfix, as well as walking you through how to use the most popular Linux email client
packages—Courier and Dovecot.

Chapter 8: Directing DNS    This chapter covers the basics of the DNS system and how to
configure your Linux server to offer DNS services on your network.

Chapter 9: Offering Web Services    This chapter covers how to run your own web server
using a Linux server. It discusses how to install and manage the Apache web server—the
most popular web server on the Internet. It also covers the nginx web server, a newer up-
and-coming web server that’s quickly gaining in popularity. Also, this chapter dives into
the basics of Squid, a popular web proxy server used by many companies as a web firewall
to block users from accessing inappropriate websites.

Chapter 10: Sharing Files    This chapter discusses how to use your Linux server as a file
server in a local network. It covers using both FTP and NFS to serve files, as well as the
popular Samba package to serve files to Microsoft Windows clients on a network.

Chapter 11: Managing Network Clients    This chapter explores how to use a Linux server
to provide basic network services to clients on a local network. It shows how to create a
DHCP server for serving dynamic IP addresses, how to create an LDAP server for providing
simple network directory services, and how to use PAM to provide authentication services
to local applications.

Chapter 12: Setting Up System Security    This chapter explores some ways to use your
Linux server security in a network environment. It covers using the iptables program as
a firewall, OpenSSH for remote communication with clients, and OpenVPN to provide a
secure tunnel for remote clients to get to your network.

At the end of each chapter, you’ll find a couple of elements that you can use to prepare
for the exam:

Exam Essentials    This section summarizes important information that was covered in
the chapter. You should be able to perform each of the tasks or convey the information
requested.

Review Questions    Each chapter concludes with 20 review questions. You should answer
these questions and check your answers against the ones provided after the questions. If

Introduction  xxvii

flast.indd  09/14/2016  Page xxvi flast.indd  09/14/2016  Page xxvii

you can’t answer at least 80 percent of these questions correctly, go back and review the
chapter, or at least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing elements included
with this book are not derived from the actual exam questions, so don’t
memorize the answers to these questions and assume that doing so will
enable you to pass the exam. You should learn the underlying topic, as
described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification.

To get the most out of this book, you should read each chapter from start to finish and
then check your memory and understanding with the end-of-chapter elements. Even if
you’re already familiar with a topic, you should skim the chapter; Linux is complex enough
that there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

Interactive Online Learning Environment
and Test Bank
The authors have worked hard to provide some really great tools to help you with your
certification process. The interactive online learning environment that accompanies the
LPIC-2: Linux Professional Institute Certification Study Guide: Exam 201 and Exam 202
provides a test bank with study tools to help you prepare for the certification exams—and
increase your chances of passing them the first time! The test bank includes the following:

Sample Tests    All of the questions in this book are included, including the assessment test
at the end of this introduction and the 240 questions from the review sections at the end of
each chapter. In addition, there are two 72-question practice exams. Use these questions
to test your knowledge of the study guide material. The online test bank runs on multiple
devices.

Electronic Flashcards    The online text bank includes over 300 flashcards specifically written
to hit you hard, so don’t get discouraged if you don’t ace your way through them at first.
They’re there to ensure that you’re really ready for the exams. And no worries—armed with
the review questions, practice exams, and flashcards, you’ll be more than prepared when
exam day comes. Questions are provided in digital flashcard format (a question followed by
a single correct answer). You can use the flashcards to reinforce your learning and provide
last-minute test prep before the exam.

Glossary    In addition, a glossary of key terms from this book is available as a fully search-
able PDF.

xxviii  Introduction

flast.indd  09/14/2016  Page xxviii flast.indd  09/14/2016  Page xxix

Readers can access these tools by visiting http://www.wiley.com/go/
sybextestprep.

Conventions Used in This Book
This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as on-screen prompts.
In particular, look for the following styles:

■■ Italicized text indicates key terms that are described at length the first time they are
used in a chapter. (Italics are also used for emphasis.)

■■ A monospaced font indicates the contents of configuration files, messages displayed
at a text-mode Linux shell prompt, filenames, text-mode command names, and Inter-
net URLs.

■■ Italicized monospaced text indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

■■ Bold monospaced text is information that you’re to type into the computer, usually
at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting but that’s somewhat
peripheral to the main text. A note might be relevant to a small number of
networks, for instance, or it may refer to an outdated feature.

A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a
limitation or how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a warning,
you may end up spending a lot of time recovering from a bug, or you may
even end up restoring your entire system from scratch.

http://www.wiley.com/go/sybextestprep

Introduction  xxix

flast.indd  09/14/2016  Page xxviii flast.indd  09/14/2016  Page xxix

Sidebar

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

Real World Scenario

A real world scenario is a type of sidebar that describes a task or example that’s par-
ticularly grounded in the real world. This may be a situation the authors or someone the
authors know has encountered, or it may be advice on how to work around problems that
are common in real, working Linux environments.

E x er c i se

An exercise is a procedure that you should try on your own computer to help you learn
about the material in the chapter. Don’t limit yourself to the procedures described in the
exercises, though! Try other commands and procedures to really learn about Linux.

The Exam Objectives
Behind every computer industry exam, you can be sure to find exam objectives—the broad
topics in which exam developers want to ensure your competency. The official exam objec-
tives are listed here. (They’re also printed at the start of the chapters in which they’re
covered.)

Exam objectives are subject to change at any time without prior notice and
at LPI’s sole discretion. Please visit LPI’s website (http://www.lpi.org) for
the most current listing of exam objectives.

http://www.lpi.org

xxx  Introduction

flast.indd  09/14/2016  Page xxx flast.indd  09/14/2016  Page xxxi

Exam 201 Objectives
The following are the areas in which you must be proficient in order to pass the 201 exam.
This exam is broken into seven topics (200–206), each of which has two or three objec-
tives. Each objective has an associated weight that reflects its importance to the exam as a
whole. The seven main topics are listed here:

Subject Area

200 Capacity Planning

201 Linux Kernel

202 System Startup

203 Filesystem and Devices

204 Advanced Storage Device Administration

205 Networking Configuration

206 System Maintenance

200 Capacity Planning

200.1 Measure and Troubleshoot Resource Usage

■■ Measure CPU usage.

■■ Measure memory usage.

■■ Measure disk I/O.

■■ Measure network I/O.

■■ Measure firewalling and routing throughput.

■■ Map client bandwidth usage.

■■ Match/correlate system symptoms with likely problems.

■■ Estimate throughput and identify bottlenecks in a system including networking.

200.2 Predict Future Resource Needs

■■ Use monitoring and measurement tools to monitor IT infrastructure usage.

■■ Predict capacity break point of a configuration.

■■ Observe growth rate of capacity usage.

Introduction  xxxi

flast.indd  09/14/2016  Page xxx flast.indd  09/14/2016  Page xxxi

■■ Graph the trend of capacity usage.

■■ Awareness of monitoring solutions such as Icinga2, Nagios, collectd, MRTG, and Cacti

201 Linux Kernel

201.1 Kernel Components

■■ Kernel 2.6.x, 3.x and 4.x documentation

■■ The /usr/src/linux/ kernel directory

■■ Creating a kernel using zImage

■■ Creating a kernel using bzImage

■■ Using xz compression to compress the kernel

201.2 Compiling a Linux Kernel

■■ The /usr/src/linux/ directory

■■ Kernel Makefiles

■■ Kernel 2.6.x, 3.x, and 4.x make targets

■■ Customize the current kernel configuration.

■■ Build a new kernel and appropriate kernel modules.

■■ Install a new kernel and any modules.

■■ Ensure that the boot manager can locate the new kernel and associated files.

■■ Module configuration files

■■ Use DKMS to compile kernel modules.

■■ Awareness of dracut

201.3 Kernel Runtime Management and Troubleshooting

■■ Use command-line utilities to get information about the currently running kernel and
kernel modules.

■■ Manually load and unload kernel modules.

■■ Determine when modules can be unloaded.

■■ Determine what parameters a module accepts.

■■ Configure the system to load modules by names other than their file name.

■■ /proc filesystem

■■ Content of /, /boot/, and /lib/modules/
■■ Tools and utilities to analyze information about the available hardware

■■ udev rules

xxxii  Introduction

flast.indd  09/14/2016  Page xxxii flast.indd  09/14/2016  Page xxxiii

202 System Startup

202.1 Customizing System Startup

■■ Systemd

■■ SysV init

■■ Linux Standard Base Specification (LSB)

202.2 System Recovery

■■ BIOS and UEFI

■■ NVMe booting

■■ GRUB version 2 and Legacy

■■ Grub shell

■■ Boot loader start and handoff to kernel

■■ Kernel loading

■■ Hardware initialization and setup

■■ Daemon/service initialization and setup

■■ Know the different bootloader install locations on a hard disk or removable device.

■■ Overwrite standard bootloader options and using boot loader shells.

■■ Use systemd rescue and emergency modes.

202.3 Alternate Bootloaders

■■ SYSLINUX, ISOLINUX, PXELINUX

■■ Understanding of PXE for both BIOS and UEFI

■■ Awareness of systemd-boot and U-Boot

203 Filesystem and Devices

203.1 Operating the Linux Filesystem

■■ The concept of the fstab configuration

■■ Tools and utilities for handling swap partitions and files

■■ Use of UUIDs for identifying and mounting file systems

■■ Understanding of systemd mount units

203.2 Maintaining a Linux Filesystem

■■ Tools and utilities to manipulate an ext2, ext3, and ext4 filesystem

■■ Tools and utilities to perform basic Btrfs operations, including subvolumes and snapshots

Introduction  xxxiii

flast.indd  09/14/2016  Page xxxii flast.indd  09/14/2016  Page xxxiii

■■ Tools and utilities to manipulate XFS

■■ Awareness of ZFS

203.3 Creating and Configuring Filesystem Options

■■ autofs configuration files

■■ Understanding of automount units

■■ UDF and ISO9660 tools and utilities

■■ Awareness of other CD-ROM filesystems (HFS)

■■ Awareness of CD-ROM filesystem extensions (Joliet, Rock Ridge, El Torito)

■■ Basic feature knowledge of data encryption (dm-crypt / LUKS)

204 Advanced Storage Device Administration

204.1 Configuring RAID

■■ Software RAID configuration files and utilities

■■ The mdadm program

■■ The mdadm.conf configuration file

■■ The /proc/mdstat file

■■ Using partition type 0xFD

204.2 Adjusting Storage Device Access

■■ Tools and utilities to configure DMA for IDE devices including ATAPI and SATA

■■ Tools and utilities to configure Solid State Drives including AHCI and NVMe

■■ Tools and utilities to manipulate or analyze system resources (e.g., interrupts)

■■ Awareness of sdparm command and its uses

■■ Tools and utilities for iSCSI

■■ Awareness of SAN, including relevant protocols (AoE, FCoE)

204.3 Logical Volume Manager

■■ Tools in the LVM suite

■■ Resizing, renaming, creating, and removing logical volumes, volume groups, and
physical volumes

■■ Creating and maintaining snapshots

■■ Activating volume groups

xxxiv  Introduction

flast.indd  09/14/2016  Page xxxiv flast.indd  09/14/2016  Page xxxv

205 Networking Configuration

205.1 Basic Networking Configuration

■■ Utilities to configure and manipulate ethernet network interfaces

■■ Configuring basic access to wireless networks

205.2 Advanced Network Configuration

■■ Utilities to manipulate routing tables

■■ Utilities to configure and manipulate ethernet network interfaces

■■ Utilities to analyze the status of the network devices

■■ Utilities to monitor and analyze the TCP/IP traffic

205.3 Troubleshooting Network Issues

■■ Location and content of access restriction files

■■ Utilities to configure and manipulate ethernet network interfaces

■■ Utilities to manage routing tables

■■ Utilities to list network states

■■ Utilities to gain information about the network configuration

■■ Methods of information about the recognized and used hardware devices

■■ System initialization files and their contents (Systemd and SysV init)

■■ Awareness of NetworkManager and its impact on network configuration

206 System Maintenance

206.1 Make and Install Programs from Source

■■ Unpack source code using common compression and archive utilities.

■■ Understand basics of invoking make to compile programs.

■■ Apply parameters to a configure script.

■■ Know where sources are stored by default.

206.2 Backup Operations

■■ Knowledge about directories that have to be include in backups

■■ Awareness of network backup solutions such as Amanda, Bacula, Bareos, and BackupPC

■■ Knowledge of the benefits and drawbacks of tapes, CDR, disk, or other backup media

■■ Perform partial and manual backups.

Introduction  xxxv

flast.indd  09/14/2016  Page xxxiv flast.indd  09/14/2016  Page xxxv

■■ Verify the integrity of backup files.

■■ Partially or fully restore backups.

206.3 Notify Users on System-Related Issues

■■ Automate communication with users through logon messages.

■■ Inform active users of system maintenance.

Exam 202 Objectives
The 202 exam comprises six topics (207–212), each of which contains two to five objectives.
The six major topics are these:

Subject Area

207 Domain Name Server

208 HTTP Services

209 File Sharing

210 Network Client Management

211 E-Mail Services

212 System Security

207 Domain Name Server

207.1 Basic DNS Server Configuration

■■ BIND 9.x configuration files, terms and utilities

■■ Defining the location of the BIND zone files in BIND configuration files

■■ Reloading modified configuration and zone files

■■ Awareness of dnsmasq, djbdns, and PowerDNS as alternate name servers

207.2 Create and Maintain DNS Zones

■■ BIND 9 configuration files, terms, and utilities

■■ Utilities to request information from the DNS server

xxxvi  Introduction

flast.indd  09/14/2016  Page xxxvi flast.indd  09/14/2016  Page xxxvii

■■ Layout, content and file location of the BIND zone files

■■ Various methods to add a new host in the zone files, including reverse zones

207.3 Securing a DNS Server

■■ BIND 9 configuration files

■■ Configuring BIND to run in a chroot jail

■■ Split configuration of BIND using the forwarders statement

■■ Configuring and using transaction signatures (TSIG)

■■ Awareness of DNSSEC and basic tools

■■ Awareness of DANE and related records

208 HTTP Services

208.1 Basic Apache Configuration

■■ Apache 2.4 configuration files, terms, and utilities

■■ Apache log files configuration and content

■■ Access restriction methods and files

■■ mod_perl and PHP configuration

■■ Client user authentication files and utilities

■■ Configuration of maximum requests, minimum and maximum servers and clients

■■ Apache 2.4 virtual host implementation (with and without dedicated IP addresses)

■■ Using redirect statements in Apache’s configuration files to customize file access

208.2 Apache Configuration for HTTPS

■■ SSL configuration files, tools, and utilities

■■ Generate a server private key and CSR for a commercial CA

■■ Generate a self-signed certificate

■■ Install the key and certificate, including intermediate CAs

■■ Configure Virtual Hosting using SNI

■■ Awareness of the issues with Virtual Hosting and use of SSL

■■ Security issues in SSL use, disable insecure protocols and ciphers

208.3 Implementing Squid as a Caching Proxy

■■ Squid 3.x configuration files, terms, and utilities

■■ Access restriction methods

Introduction  xxxvii

flast.indd  09/14/2016  Page xxxvi flast.indd  09/14/2016  Page xxxvii

■■ Client user authentication methods

■■ Layout and content of ACL in the Squid configuration files

208.4 Implementing Nginx as a Web Server and a Reverse Proxy

■■ Nginx installation and configuration

■■ Using Nginx as a reverse proxy

■■ Basic Web server

209 File Sharing

209.1 Samba Server Configuration

■■ Samba 4 documentation

■■ Samba 4 configuration files

■■ Samba 4 tools and utilities and daemons

■■ Mounting CIFS shares on Linux

■■ Mapping Windows usernames to Linux usernames

■■ User-Level Share-Level and AD security

209.2 NFS Server Configuration

■■ NFS version 3 configuration files

■■ NFS tools and utilities

■■ Access restrictions to certain hosts and/or subnets

■■ Mount options on server and client

■■ TCP Wrappers

■■ Awareness of NFSv4

210 Network Client Management

210.1 DHCP Configuration

■■ DHCP configuration files, terms, and utilities

■■ Subnet and dynamically-allocated range setup

210.2 PAM authentication

■■ PAM configuration files, terms, and utilities

■■ passwd and shadow passwords

xxxviii  Introduction

flast.indd  09/14/2016  Page xxxviii flast.indd  09/14/2016  Page xxxix

210.3 LDAP Client Usage

■■ LDAP utilities for data management and queries

■■ Change user passwords

■■ Querying the LDAP directory

210.4 Configuring an OpenLDAP Server

■■ OpenLDAP

■■ Directory based configuration

■■ Access Control

■■ Distinguished Names

■■ Changetype Operations

■■ Schemas and Whitepages

■■ Directories

■■ Object IDs, Attributes and Classes

211 E-mail Services

211.1 Using E-mail Servers

■■ Configuration files for postfix

■■ Basic TLS configuration for postfix

■■ Basic knowledge of the SMTP protocol

■■ Awareness of sendmail and exim

211.2 Managing E-Mail Delivery

■■ Understanding of Sieve functionality, syntax, and operators

■■ Use Sieve to filter and sort mail with respect to sender, recipient(s), headers, and size

■■ Awareness of procmail

211.3 Managing Mailbox Access

■■ Dovecot IMAP and POP3 configuration and administration

■■ Basic TLS configuration for Dovecot

■■ Awareness of Courier

Introduction  xxxix

flast.indd  09/14/2016  Page xxxviii flast.indd  09/14/2016  Page xxxix

212 System Security

212.1 Configuring a Router

■■ iptables and ip6tables configuration files, tools, and utilities

■■ Tools, commands, and utilities to manage routing tables

■■ Private address ranges (IPv4) and Unique Local Addresses as well as Link Local
Addresses (IPv6)

■■ Port redirection and IP forwarding

■■ List and write filtering and rules that accept or block IP packets based on source or
destination protocol, port and address.

■■ Save and reload filtering configurations.

212.2 Managing FTP Servers

■■ Configuration files, tools, and utilities for Pure-FTPd and vsftpd

■■ Awareness of ProFTPd

■■ Understanding of passive vs. active FTP connections

212.3 Secure Shell (SSH)

■■ OpenSSH configuration files, tools, and utilities

■■ Login restrictions for the superuser and the normal users

■■ Managing and using server and client keys to login with and without password

■■ Usage of multiple connections from multiple hosts to guard against loss of connection
to remote host following configuration changes

212.4 Security Tasks

■■ Tools and utilities to scan and test ports on a server

■■ Locations and organizations that report security alerts as Bugtraq, CERT, or other
sources

■■ Tools and utilities to implement an intrusion detection system (IDS)

■■ Awareness of OpenVAS and Snort

212.5 OpenVPN

■■ OpenVPN installation and configuration

■■ Connecting to OpenVPN with network clients

xl  Introduction

flast.indd  09/14/2016  Page xl flast.indd  09/14/2016  Page xli

Certification Objectives Map
Table OM.1 and Table OM.2 provide objective mappings for the LPIC-2 certification
exams. They identify the chapters where the exam objectives are primarily covered.

Ta b le O M .1     LPI LPIC-2 Exam 201 Objectives Map

Objectives Chapter

Topic 200: Capacity Planning

200.1 Measure and Troubleshoot Resource Usage 2

200.2 Predict Future Resource Needs 2

Topic 201: Linux Kernel

201.1 Kernel Components 3

201.2 Compiling a Linux Kernel 3

201.3 Kernel Runtime Management and Troubleshooting 3

Topic 202: System Startup

202.1 Customizing System Startup 1

202.2 System Recovery 1

202.3 Alternate Bootloaders 1

Topic 203: Filesystem and Devices

203.1 Operating the Linux Filesystem 4

203.2 Maintaining a Linux Filesystem 4

203.3 Creating and Configuring Filesystem Options 4

Topic 204: Advanced Storage Device Administration

204.1 Configuring RAID 5

204.2 Adjusting Storage Device Access 5

204.3 Logical Volume Manager 5

Introduction  xli

flast.indd  09/14/2016  Page xl flast.indd  09/14/2016  Page xli

Objectives Chapter

Topic 205: Networking Configuration

205.1 Basic Networking Configuration 6

205.2 Advanced Network Configuration 6

205.3 Troubleshooting Network Issues 6

Topic 206: System Maintenance

206.1 Make and Install Programs from Source 2

206.2 Backup Operations 2

206.3 Notify Users on System-Related Issues 2

Ta b le O M . 2     LPI LPIC-2 Exam 202 Objectives Map

Objectives Chapter

Topic 207: Domain Name Server

207.1 Basic DNS Server Configuration 8

207.2 Create and Maintain DNS Zones 8

207.3 Securing a DNS Server 8

Topic 208: Web Services

208.1 Basic Apache Configuration 9

208.2 Apache Configuration for HTTPS 9

208.3 Implementing Squid as a Caching Proxy 9

208.4 Implementing Nginx as a Web Server and a Reverse Proxy 9

Topic 209: File Sharing

209.1 Samba Server Configuration 10

209.2 NFS Server Configuration 10

xlii  Introduction

flast.indd  09/14/2016  Page xlii flast.indd  09/14/2016  Page xliii

Objectives Chapter

Topic 210: Network Client Management

210.1 DHCP Configuration 11

210.2 PAM Authentication 11

210.3 LDAP Client Usage 11

210.4 Configuring an OpenLDAP Server 11

Topic 211: E-Mail Services

211.1 Using E-mail Servers 7

211.2 Managing E-Mail Delivery 7

211.3 Managing Mailbox Access 7

Topic 212: System Security

212.1 Configuring a Router 12

212.2 Managing FTP Servers 10

212.3 Secure Shell (SSH) 12

212.4 Security Tasks 12

212.5 OpenVPN 12

flast.indd  09/14/2016  Page xlii flast.indd  09/14/2016  Page xliii

Assessment Test
1.	 Which of the following commands will display process information? (Choose all that apply.)

A.	 lsof

B.	 iostat

C.	 pstree

D.	 netstat

E.	 pmap

2.	 Programmers developed the concept of kernel to allow you to
insert device driver code into a running kernel without having to recompile the kernel. (Fill
in the best answer.)

3.	 The Linux kernel configuration file is which file? (Choose the best answer.)

A.	 /usr/src/linux/arch/x86/boot

B.	 /usr/src/linux/kernel.config

C.	 /boot/grub/grub.conf

D.	 /etc/modules.conf

E.	 /usr/src/linux/.config

4.	 Which of the following contains a file or is a file that you can view to see Linux kernel version
information? (Choose the best answer.)

A.	 /proc/kernel

B.	 /proc/sys/kernel

C.	 /proc/ioports

D.	 /proc/dma

E.	 /etc/sysctl.d

5.	 Which command(s) could be considered chkconfig equivalents? (Choose all that apply.)

A.	 inittab

B.	 rc

C.	 update-rc.d

D.	 init

E.	 telinit

6.	 Which of the following are true statements concerning GRUB Legacy? (Choose all that apply.)

A.	 GRUB Legacy was written to replace LILO due to UEFI.

B.	 GRUB Legacy uses a menu interface.

C.	 GRUB Legacy uses an interactive shell.

D.	 GRUB Legacy uses the initrd command.

E.	 GRUB Legacy uses the /boot/grub/grub.cfg configuration file.

xliv  Assessment Test

flast.indd  09/14/2016  Page xliv flast.indd  09/14/2016  Page xlv

7.	 Which of the following are Linux boot loaders? (Choose all that apply.)

A.	 SYSLINUX

B.	 EXTLINUX

C.	 ISOLINUX

D.	 PXELINUX

E.	 TFTP

8.	 When used with no options or parameters, which file does the mount command pull data
from? (Choose all that apply.)

A.	 /etc/fstab

B.	 /etc/mtab

C.	 /proc/mounts

D.	 /proc/filesystems

E.	 blkid

9.	 The smartd daemon is configured via its configuration file, which is named
. (Fill in the filename only with no directory references.)

10.	 Which of the following will allow you to check a software-controlled RAID array, /dev/
md1, on a Linux system? (Choose all that apply.)

A.	 mdadm --misc --detail /dev/md1

B.	 mdadm --detail /dev/md1

C.	 cat /etc/mdadm.conf

D.	 cat /proc/mdstat

E.	 mdadm --show /dev/md1

11.	 To create or increase the size of a logical volume storage pool, which command should you
use? (Choose all that apply.)

A.	 mdadm

B.	 vgextend

C.	 pvcreate

D.	 vgcreate

E.	 lvcreate

12.	 To view the ARP table, use which of the following commands? (Choose all that apply.)

A.	 ifconfig -arp

B.	 ip arp show

C.	 arp

D.	 route -n

E.	 iwlist arp scan

Assessment Test  xlv

flast.indd  09/14/2016  Page xliv flast.indd  09/14/2016  Page xlv

13.	 To apply a simulated data transfer across a network using both a server and a client, use the
 utility. (Choose the best answer.)

A.	 tcpdump

B.	 ping or ping6

C.	 traceroute or traceroute6

D.	 nmap

E.	 nc

14.	 You just installed a new NIC and set up a wired network interface (eth2) on your server.
However, it has no network connectivity (no packets are being sent or received through the
interface). What should you do? (Choose all that apply.)

A.	 Check the interface settings via the ifconfig eth2 command.

B.	 Check the interface from another system using the ping or ping6 command.

C.	 Check the packets coming to and from the interface by using the tcpdump utility.

D.	 Check the kernel ring buffer using the dmesg utility.

E.	 Check kernel messages in either of the /var/log/ directory’s dmesg, messages, or
syslog files.

15.	 You need to use a rewinding tape device to create an archive. Which device could you use
on your Linux system? (Choose all that apply.)

A.	 /dev/st0

B.	 /dev/ht1

C.	 /dev/sdt1

D.	 /dev/nst0

E.	 /dev/nht0

16.	 Which of the following statements are true about the rndc utility? (Choose all that apply.)

A.	 You can start the BIND daemon using it.

B.	 You can stop the BIND daemon using it.

C.	 You can reload BIND configuration files with it.

D.	 You can reload BIND zone files with it.

E.	 The rndc utility does not deal with BIND.

17.	 The type directive in a BIND zone configuration file can be set to which of the following?
(Choose all that apply.)

A.	 hint

B.	 primary

C.	 secondary

D.	 forward

E.	 stub

xlvi  Assessment Test

flast.indd  09/14/2016  Page xlvi flast.indd  09/14/2016  Page xlvii

18.	 Which of the following are commands used with the apache2ctl utility? (Choose all that
apply.)

A.	 force-stop

B.	 restart

C.	 graceful

D.	 fullstatus

E.	 status

19.	 Which of the following statements are true concerning Nginx? (Choose all that apply.)

A.	 Nginx uses separate program threads to handle each client.

B.	 Nginx uses an asynchronous architecture that allows it to spawn client threads within
the main program as needed.

C.	 Nginx uses TCP port 80.

D.	 Nginx is deprecated and is being replaced by Apache.

E.	 Nginx can have multiple backend web servers to implement reverse proxy features.

20.	 Samba user account records can be stored in the database. (Choose
all that apply.)

A.	 smbpasswd

B.	 tdbsam

C.	 net

D.	 smbclient

E.	 ldapsam

21.	 Which of the following commands can display all current NFS exports and also reads the
NFS export table when the NFS service starts? (Choose the best answer.)

A.	 rpcinfo

B.	 nfsstat

C.	 showmount

D.	 exportfs

E.	 mountstats

22.	 Where does DHCPd typically log DHCP events? (Choose all that apply.)

A.	 pump log file

B.	 messages log file

C.	 BOOTP journal

D.	 dhcpd.log file

E.	 systemd journal

Assessment Test  xlvii

flast.indd  09/14/2016  Page xlvi flast.indd  09/14/2016  Page xlvii

23.	 Which PAM authentication module uses the Security Services Daemon for authenticating
users? (Choose the best answer.)

A.	 pam_sss.so

B.	 pam_unix.so

C.	 pam_nis.so

D.	 pam_krb5.so

E.	 pam_ldap.so

24.	 Which of the following OpenLDAP client utilities will allow you to add objects, such as
user objects, to an LDAP database? (Choose all that apply.)

A.	 ldappasswd

B.	 ldapmodify

C.	 ldapadd

D.	 ldapsearch

E.	 ldapobject

25.	 Which methods, supported by OpenLDAP, will allow you to configure an LDAP environ-
ment, using a single text configuration file? (Choose all that apply.)

A.	 /etc/ldap.conf

B.	 slapd-conf

C.	 LDIF

D.	 slapd.conf

E.	 /etc/ldap

26.	 When using Postfix as your email server, which of the following sendmail emulation com-
mands are available? (Choose all that apply.)

A.	 sendmail

B.	 procmail

C.	 mailq

D.	 mbox

E.	 newaliases

27.	 Which of the following directories contains pseudo-files, which control router functions?
(Choose the best answer.)

A.	 /proc/sys/vm/

B.	 /proc/sys/net/

C.	 /proc/sys/dev/

D.	 /srv/

E.	 /proc/sys/iptables/

xlviii  Assessment Test

flast.indd  09/14/2016  Page xlviii flast.indd  09/14/2016  Page xlix

28.	 The Very Secure FTP package’s primary configuration file is the
file. (Fill in the filename only with no directory references.)

29.	 Which of the following OpenSSH configuration options sets the supported level? (Choose
the best answer.)

A.	 PermitRootLogin

B.	 PubKeyAuthentication

C.	 AllowUsers

D.	 PasswordAuthentication

E.	 Protocol

30.	 Which of the following utilities, by default, will update firewall rules when it perceives a
threat? (Choose all that apply.)

A.	 fail2ban

B.	 Snort

C.	 Bugtraq

D.	 nmap

E.	 nc

flast.indd  09/14/2016  Page xlviii flast.indd  09/14/2016  Page xlix

Answers to Assessment Test
1.	 A, C, D, E.  Option A is correct, because lsof shows open files and network connections

by process. The pstree command shows current processes in a tree format, so it also is a
correct choice. While its focus is primarily on network and routing information, you can
determine which process (via its PID) is listening on a particular port using the netstat
utility. Thus option D is also a correct answer. Option E is correct, because the pmap com-
mand shows a processes map for the designated PID. The iostat utility displays device
I/O loading summary broken down per device, so option B is the only incorrect choice.

2.	 modules.  Programmers developed the concept of kernel modules to allow you to insert
device driver code into a running kernel without having to recompile the kernel. A module
is a self-contained driver library file that can be dynamically linked and unlinked with the
kernel. This means that a kernel module can be removed from the kernel when the device is
finished being used, something that can’t be done with compiled kernel drivers.

3.	 E.  Option E is correct, because the Linux kernel configuration is stored in the /usr/src/
linux/.config file. Option A is a directory that holds the final kernel binary, bzImage,
after a compilation process, so it is an incorrect choice. Option B is a made-up filename,
so it is wrong. The /boot/grub/grub.conf file is a GRUB Legacy configuration file, so
option C is an incorrect choice. Option D’s /etc/modules.conf file is a configuration file
for kernel modules, so it is also a wrong choice.

4.	 B.  The /proc/sys/kernel is a directory that contains the version file. This file contains
Linux kernel version information, so option B is the correct choice. Option A is made up,
so it is an incorrect choice. Option C’s /proc/ioports is a file containing hardware I/O
port information, so it is also an incorrect choice. The /proc/dma file contains Direct
Memory Access (DMA) channel information, so option C is a wrong choice. Finally, /etc/
sysctl.d is a directory that contains multiple kernel parameter setting files, so it also is an
incorrect choice.

5.	 C.  There is only one correct answer and that is option C. The update-rc.d command
is an equivalent command to the chkconfig command. However, it is typically available
on Debian-based distributions, while chkconfig is available on Red Hat–based distros.
Option A’s inittab (/etc/inittab) does define which applications start at which run
level; however, it is a file and not a command, so it is a wrong choice. The rc in option B
is a script (/etc/rc.d/rc) that runs all the scripts with a specified run level, so it is an
incorrect choice. The init (option D) and telinit (option E) commands are essentially
equivalent commands but to each other (you can change the current run level of your Linux
system using either of them), so they are incorrect choices.

6.	 B, C, D.  GRUB Legacy uses both a menu interface and an interactive shell (grub shell), so
options B and C are correct. Option D is also correct, because within the GRUB Legacy
configuration file, the initrd command is employed to define a file that’s mounted by the
kernel at boot time as a RAM disk. Option A is incorrect, because although LILO does not
work with UEFI systems, GRUB Legacy was created in 1999 to provide a more robust and
configurable bootloader than LILO, not due to UEFI. Also, option E is incorrect, because
the /boot/grub/grub.cfg is a GRUB2 configuration file, not a GRUB Legacy file.

l  Answers to Assessment Test

flast.indd  09/14/2016  Page l flast.indd  09/14/2016  Page li

7.	 A, B, C, D.  Options A, B, C, and D are all alternative Linux bootloaders, so they are cor-
rect answers. Option E is Trivial File Transfer Protocol (TFTP), which is employed by the
PXELINUX bootloader to transfer the boot image file to the workstation over the network.
However, TFTP is not a bootloader, so option E is incorrect.

8.	 B.  There is only one correct choice. When used with no options or parameters, the mount
command pulls data from the /etc/mtab file, which has a list of all currently mounted
filesystems, and displays it. Thus, option B is correct. Option A is incorrect, because the
/etc/fstab is the Filesystem Table, and it has a record for each filesystem to be mounted
at either system boot time or when the mount -a command is issued. While the data in the
/etc/mtab and /proc/mounts files is nearly identical, the mount command does not pull
its data from the /proc/mounts file, so option C is wrong. Option D’s /proc/filesystems
file is incorrect, because this file contains filesystems support by the system’s Linux kernel.
Option E is also wrong, because blkid is not a file but a command, which displays various
block devices and their attributes.

9.	 smartd.conf.  The smartd daemon’s configuration file is either /etc/smartd.conf or
/etc/smartmontools/smartd.conf (depending on your distribution).

10.	 A, B, D.  Options A and B are the same command (the --misc option does not need to be
included in the command) and they both show details on the specified RAID array, so those
options are correct. Option D is also correct, because the /proc/mdstat file contains
any running RAID array’s current status. Option C is an incorrect choice, because /etc/
mdadm.conf is the mdadm configuration file (though it may be located in /etc/mdadm/,
depending on your distribution). Option E is a wrong choice, because there is no –show
option for the mdadm command.

11.	 B, D.  A logical volume storage pool (volume group) can be created using the vgcreate com-
mand, so option D is correct. The volume group can be increased in size via the vgextend
command, so option B is also correct. The mdadm utility is used for managing RAID arrays
and not logical volumes (though logical volumes can be RAID array members), so option A is
a wrong choice. Option C’s pvcreate command is used for designating filesystem partitions
as physical volumes that can be placed into a volume group, but it does not increase a volume
group’s size or create it, so it is also an incorrect choice. The lvcreate command takes stor-
age (logical extents) from a volume group and creates a logical volume, not a volume group,
so option E is a wrong choice as well.

12.	 C.  There is only one correct choice. The arp command will display ARP table information,
so option C is the right choice. Option A is an incorrect choice, because this ifconfig
command allows you to toggle on/off ARP for the designated network interface, not view
the ARP table. The command in option B is made up, though close to a real command (ip
addr show) that will display network interface information. Since it does not display ARP
table information, option B is wrong. Option D’s command will display the routing table
but not the ARP table, so it is an incorrect choice. Finally, option E is also wrong, because
the iwlist command in this option allows you to scan and find a local wireless connec-
tion’s name, but you must specify the wireless device’s name (e.g., wlan0) and not arp.

13.	 E.  The nc utility allows you to simulate a server and a client, sending and receiving data on
the network, by specifying command-line options. Therefore, option E is the best answer.

Answers to Assessment Test  li

flast.indd  09/14/2016  Page l flast.indd  09/14/2016  Page li

Option A’s tcpdump command captures all packets that it sees on the network interface
and displays a rough packet description, but it does not simulate data transfers, so it is an
incorrect choice. The ping or ping6 utility allows you to send ICMP packets and test con-
nectivity between a server and client system, but it doesn’t provide a true data transfer sim-
ulation, so option B is not the best answer. Also, option C’s traceroute or traceroute6
utility attempts to send ICMP packets to a specified destination and list the router “hops”
that the packets traverse to get to the destination. However, they don’t provide a true data
transfer simulation (and may be blocked by many routers), so this option is also not the best
choice. Finally, option D is not the best answer, because the nmap utility can determine
what applications are listening to which network ports on your Linux system but not simu-
late data transfers to another system.

14.	 A, D, E.  Option A is a correct choice, because you can double-check all of the various
wired network interface settings and view such things as whether an IP address has been
assigned. Options D and E are also correct choices, because it’s possible that the appropri-
ate network card hardware module was not loaded. You can find this information in either
the kernel ring buffer or, if the buffer has been flushed to disk, in one of option E’s files
(depending on your distribution). Option B is not a correct choice, because if you already
know that packets are not being sent or received through the interface, using ping or
ping6 will not give you any additional information. The same is true with option C, so it
also is an incorrect choice.

15.	 A, B.  Options A and B are correct, because the /dev/st* (SCSI) and /dev/ht* (PATA)
tape devices automatically rewind. Option C is incorrect, because the /dev/sdt1 device
file does not represent a tape device but a filesystem partition. Options D and E are wrong,
because the /dev/nst* (SCSI) and /dev/nht* (PATA) tape devices do not automatically
rewind.

16.	 B, C, D.  Options B, C, and D are true and therefore correct choices. You cannot start the
BIND daemon using the rndc utility, so option A is an incorrect answer. Also, the rndc
utility does deal with BIND, so option E is also a wrong choice.

17.	 A, D, E.  A type hint directive specifies the Hint Zone, which is a list of current root name
servers, so option A is a correct choice. The type forward directive indicates that this is a
forwarding server for the zone, so option D is also a correct choice. A type stub directive
is used to set a stub zone, so option E is a correct choice. There is no type primary
directive. You would use type master to indicate a zone’s primary name server, so
option B is a wrong choice. Also, there is no type secondary directive. You would use
type slave to set a zone’s secondary name server. Therefore, option C is also an incorrect
answer.

18.	 B, C, D, E.  The apache2ctl restart command will send a SIGHUP signal to the
Apache server, causing it to close any existing connections and restart. Therefore, option B
is a correct answer. The apache2ctl graceful command restarts the Apache server,
but existing connections are not closed, so option C is also a correct choice. Option D’s
apache2ctl command, fullstatus, will display a full Apache server status report, so it
is a correct answer. Also, option E is a correct choice, because apache2ctl status will
display a short Apache server status report. Option A is a made-up apache2ctl command,
so it is the only incorrect answer.

lii  Answers to Assessment Test

flast.indd  09/14/2016  Page lii flast.indd  09/14/2016  Page liii

19.	 B, C, E.  Options B, C, and E are all truthful statements and are therefore correct answers.
Option A is wrong, because Nginx does not use separate program threads for each client
but instead deals with spawned client threads described in option B. Option D is also
an incorrect choice, because Nginx is not deprecated and, instead, may end up someday
replacing Apache.

20.	 A, B, E.  Options A, B, and E are correct, because Samba user account information can be
kept in the smbpasswd, tdbsam, or ldapsam databases. net is a command (not a data-
base), which is similar to the Windows/DOS net utility and is used when a Samba server
needs to join a domain or Active Directory as a member. Therefore, option C is a wrong
answer. The smbclient in option D is either a command that connects, lists shares, and
allows FTP-like services for a file share or a Samba package filename. Therefore, option D
is also an incorrect choice.

21.	 D.  Option D is the correct choice, because when used with no options, the exportfs
command displays all of the current exports, and when the NFS service starts, it reads the
/etc/exports file (the NFS export table) and performs the needed share exporting. Option A
is an incorrect choice, because the rpcinfo command displays various RPC service data
(including what ports are involved, if you add the -p option). The nfsstat utility displays
NFS client and server activity statistics from the /proc/net/rpc/nfsd, /proc/net/rpc/
nfs, and /proc/mounts files, so option B is an incorrect choice. Option C’s showmount
command displays NFS server information, such as its state and NFS clients mounting its
provided exports, but it does not read the NFS export table when the service is started, so it
is a wrong choice as well. The mountstats utility displays NFS client per-mount statistics
from the /proc/self/mountstats file, so option E is an incorrect answer.

22.	 B, E.  DHCPd logs all DHCP events to the standard log file for your Linux system. For
distributions that still use the syslog facility that’s typically the /var/log/messages file
(option B). However, some current distributions use the systemd journal instead (option E).
Option A’s pump log file is not a log file. Instead, pump is a Linux DHCP client package
and thus is an incorrect choice. Option C’s BOOTP journal is an incorrect choice, because
it is a protocol, Bootstrap Protocol (BOOTP), and not a journal. BOOTP allows a diskless
workstation to send out a broadcast message on the network looking for a server to send it
the operating system file to use to boot the workstation. The dhcpd.log file (option D) is
also a wrong choice. This file does not exist. However, there is the dhcpd.conf configura-
tion file as well as the dhcpd.leases file (for logging server-leased IP addresses) used in
association with DHCP.

23.	 A.  The pam_sss.so module uses the Security Services Daemon for authenticating users,
and thus option A is the correct answer. The pam_unix.so module (option B) uses the
standard /etc/passwd and /etc/shadow files, so it is an incorrect choice. Option C’s
pam_nis.so module is a wrong answer, because it uses an NIS server for authentication.
The pam_krb5.so module (option D) is an incorrect choice, because this PAM module uses
the Kerberos 5 authentication system. Option E’s pam_ldap.so is also a wrong answer,
because it uses a LDAP server for authentication and not the Security Services Daemon.

24.	 B, C.  The ldapmodify (option B) utility allows you to add objects, such as user objects, to
an LDAP database, and it also allows you to modify those objects, so it is a correct answer.
The ldapadd utility (option C) is a link to the ldapmodify utility, and its primary purpose

Answers to Assessment Test  liii

flast.indd  09/14/2016  Page lii flast.indd  09/14/2016  Page liii

is to add objects defined in an LDIF file to the LDAP database. Therefore, option C is also a
correct answer. Option A’s ldappasswd utility allows you to generate an encrypted value
from a text value in order to change the password assigned to the LDAP account you logged
in with, and therefore it is a wrong choice. The ldapsearch utility (option D) is also an
incorrect answer, because this utility allows you to create and customize queries in order to
search an LDAP database. Option E’s ldapobject is a made-up utility name and is there-
fore an incorrect choice.

25.	 D.  This is a bit of a trick question, because there is only one correct answer, the slapd
.conf method (option D), which uses a single text configuration file to configure an LDAP
environment. The /etc/ldap.conf file (option A) is the single text configuration
file, so therefore it is an incorrect answer. The slapd-conf method (option B) uses LDIF
(option C) files to define the base LDAP directory tree, so those two choices are wrong.
Option E’s /etc/ldap is a directory used in the slapd-conf method, so it also is an
incorrect choice.

26.	 A, C, E.  Postfix provides similar commands that emulate common sendmail features:
sendmail (option A) mimics the sendmail executable program and command options
but redirects to the Postfix program, mailq (option C) lists the messages in the outgoing
mail queue, and newaliases (option E) initializes the aliases database. Therefore, options
A, C, and E are all correct choices. Option B’s procmail is not a sendmail command but
instead a popular email program that allows user-configured recipes that let each individual
user direct how their email is received and processed. Therefore, it is an incorrect choice.
Option D’s mbox is also a wrong answer, because it is an email mailbox type that uses a
single file for each user account and is usually stored in the /var/spool/mail directory or
the individual user directories.

27.	 B.  The /proc/sys/net/ directory (option B) contains pseudo-files with control router func-
tions, especially in the ipv4 and ipv6 subdirectories, so it is the correct choice. The /proc/
sys/vm/ directory (option A) contains pseudo-files, but they relate to the Linux kernel’s vir-
tual memory (VM) subsystem configuration, so it is a wrong choice. The /proc/sys/dev/
directory (option C) also contains pseudo-files. However, these files provide device parameters
for certain system devices, so it is an incorrect choice. Not only does the /srv/ directory not
contain pseudo-files, but it typically contains data served by the system, such as Samba shares
and web pages. Therefore, option D is a wrong answer as well. The /proc/sys/iptables/
directory (option E) is a made-up directory and an incorrect choice.

28.	 vsftpd.conf.  The primary configuration file is the vsftpd.conf, and it is located in
the /etc/ directory or the /etc/vsftpd/ directory (depending on your distribution). It is
internally documented, and there is also a vsftpd.conf man page.

29.	 E.  The Protocol option (option E) sets the support level (more specifically called the proto-
col level) supported by the OpenSSH configuration, and thus it is the correct choice. Option A’s
PermitRootLogin option enables/disables direct logins by the root user, so it is a wrong
answer. The PubKeyAuthentication option (option B) enables/disables public key authen-
tication, so it is an incorrect choice. Option C’s AllowUsers configuration option sets an
allowed user list, which permits users on this list to log into the system using OpenSSH.
Therefore, option C is also a wrong answer. Option D is an incorrect choice, because the
PasswordAuthentication option enables/disables authentication via passwords.

liv  Answers to Assessment Test

flast.indd  09/14/2016  Page liv flast.indd  09/14/2016  Page PB

30.	 A.  This is a tricky question. Option A is the only correct choice. The fail2ban utility
peruses certain log files for login attempts, and if it sees a particular IP address with mul-
tiple login failures, it updates firewall rules to reject (ban) the offending IP address. While
Snort (option B), which is a powerful network sniffer, can be configured to kick off shell
scripts (which could update firewall rules), by default it only sends alerts for suspected mali-
cious activity, so it is an incorrect choice. Option C’s Bugtraq is not a utility but instead a
computer security mailing list, so it is a wrong answer. Option D’s nmap utility can be used
to audit network ports to determine what services are seen listening on particular ports
(inside and outside a firewall), but it does no firewall modification, so it is also a wrong
answer. Finally, option E’s nc (or netcat) is a utility that is also useful for auditing your
network’s security, but it does not modify firewalls on the fly, so it is an incorrect choice.

c01.indd  09/14/2016  Page 1

The LPI 201
Exam

Chapter 1:  Starting a System

Chapter 2:  Maintaining the System

Chapter 3:  Mastering the Kernel

Chapter 4:  Managing the Filesystem

Chapter 5: � Administering Advanced Storage
Devices

Chapter 6:  Navigating Network Services

Part

I

c01.indd  09/14/2016  Page 3

Chapter

1
Starting a System

The following exam objectives are
covered in this chapter:

✓✓ 202.1: Customizing SysV-init system startup

✓✓ 202.2: System Recovery

✓✓ 202.3: Alternate Bootloaders

c01.indd  09/14/2016  Page 4

Before you can log in and start using your Linux system, a
complicated process of booting the operating system must
take place. A lot happens behind the scenes in the Linux boot
process. It helps to know all of what is going on just in case
something goes wrong.

This chapter examines the boot and startup processes in Linux systems. First, it looks at
the role the computer firmware plays in getting the process started. After that, it discusses
Linux bootloaders and examines how to configure them. Next, the chapter discusses the Linux
initialization process, showing how Linux decides which background applications to start at
bootup. The chapter ends by looking at some system recovery options that you have available
to help salvage a system that won’t boot.

The Linux Boot Process
When you turn on the power to your Linux system, it triggers a series of events that eventually
leads to the login prompt. Normally, you don’t worry about what happens behind the scenes
of those events; you just log in and start using your applications.

However, there may be times when your Linux system doesn’t boot quite correctly, or
perhaps an application that you expected to be running in background mode isn’t running.
In those cases, it helps to have a basic understanding of how Linux boots the operating sys-
tem and starts programs so that you can troubleshoot the problem.

This section walks through the steps of the boot process and shows how you can watch
it to see which steps failed.

Following the Boot Process
The Linux boot process can be split into three main steps:

1.	 The workstation firmware starts, performing a quick check of the hardware, called a
Power-On Self Test (POST), and then it looks for a bootloader program to run from a
bootable device.

2.	 The bootloader runs and determines what Linux kernel program to load.

3.	 The kernel program loads into memory and starts the necessary background programs
required for the system to operate (such as a graphical desktop manager for desktops or
web and database servers for servers).

The Linux Boot Process  5

c01.indd  09/14/2016  Page 5

While these three steps may seem simple on the surface, a somewhat complicated bal-
let of operations happens behind the scenes to keep the boot process working. Each step
performs several actions as it prepares your system to run Linux.

Viewing the Boot Process
You can monitor the Linux boot process by watching the system console screen as the sys-
tem boots. You’ll see lots of informative messages scroll by as the system detects hardware
and loads the software.

Some graphical desktop Linux distributions hide the boot messages on a
separate console window when they start up. Often, you can hit either the
Esc key or the Ctrl+Alt+F1 key combination to view those messages.

Usually the boot messages scroll by somewhat quickly, and it’s hard to see just what’s
happening. If you need to troubleshoot boot problems, you can review the boot-time mes-
sages using the dmesg command. Most Linux distributions copy the boot kernel messages
into a special ring buffer in memory called the kernel ring buffer. The buffer is circular and
set to a predetermined size. As new messages are logged into the buffer, older messages are
rotated out.

The dmesg command displays the most recent boot messages that are currently stored in
the kernel ring buffer, as shown in Listing 1.1.

Listing 1.1:  The dmesg command output

$ dmesg
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 3.13.0-37-generic (buildd@kapok) (gcc version 4.8.2
 (Ubuntu 4.8.2-19ubuntu1)) #64-Ubuntu SMP Mon Sep 22 21:28:38 UTC 2014 (Ubuntu
3.13.0-37.64-generic 3.13.11.7)
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-37-generic root=UUI
D=09007318-c158-4f3e-b519-e90bc538fb3a ro quiet splash vt.handoff=7
[0.000000] KERNEL supported cpus:
[0.000000] Intel GenuineIntel
[0.000000] AMD AuthenticAMD
[0.000000] Centaur CentaurHauls
[0.000000] e820: BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved

6  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 6

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000006edeffff] usable
[0.000000] BIOS-e820: [mem 0x000000006edf0000-0x000000006edfffff] ACPI data
[0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
[0.000000] NX (Execute Disable) protection: active
[0.000000] SMBIOS 2.5 present.
[0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox
12/01/2006

Most Linux distributions also store the boot messages in a log file, usually in the /var/
log folder. For Debian-based systems, the file is usually /var/log/boot, while for Red Hat–
based systems, the file is /var/log/boot.log.

Although it helps to be able to see the different messages generated during boot time, it
is also helpful to know just what generates those messages. This chapter discusses each of
these three boot steps, and it goes through some examples showing how they work.

The Firmware Startup
All IBM-compatible workstations and servers utilize some type of built-in firmware to control
how the installed operating system starts. On older workstations and servers, this firmware
was called the Basic Input/Output System (BIOS). On newer workstations and servers, a
new method, called the Unified Extensible Firmware Interface (UEFI), is responsible for
maintaining the system hardware status and launching an installed operating system.

Both methods eventually launch the main operating system program, however, and each
method uses different ways of doing that. This section walks you through the basics of the
BIOS and UEFI methods, showing you how they participate in the Linux boot process.

The BIOS Startup
The BIOS firmware found in older workstations and servers was somewhat limited in what
it could do. The BIOS firmware had a simplistic menu interface that allowed you to change
some settings to control how the system found hardware and define what device the BIOS
should use to start the operating system.

One of the limitations of the original BIOS firmware was that it could read only one
sector’s worth of data from a hard drive into memory in order to run. As you can prob-
ably guess, that’s not enough space to load an entire operating system. To get around that
limitation, most operating systems (including Linux and Microsoft Windows) split the boot
process into two parts.

First, the BIOS runs a bootloader program. The bootloader is a small program that initial-
izes the necessary hardware to find and run the full operating system, which is usually found
at another location on the same hard drive but sometimes situated on a separate internal or
external storage device.

The bootloader program usually has a configuration file, so you can tell it where to find
the actual operating system file to run or even to produce a small menu allowing the user to
boot between multiple operating systems.

The Firmware Startup  7

c01.indd  09/14/2016  Page 7

To get things started, the BIOS must know where to find the bootloader program on an
installed storage device. Most BIOS setups allow you to load the bootloader program from
several locations:

■■ An internal hard drive

■■ An external hard drive

■■ A CD/DVD drive

■■ A USB memory stick

■■ A network server

When booting from a hard drive, you must designate which hard drive, and which parti-
tion on the hard drive, the BIOS should load the bootloader program from. This is done by
defining a Master Boot Record (MBR).

The MBR is the first sector on the first hard drive partition on the system. There is only
one MBR for the computer system. The BIOS looks for the MBR and reads the program
stored there into memory. Since the bootloader program must fit in one sector, it must be
very small—so it can’t do much. The bootloader program mainly points to the location of
the actual operating system kernel file, which is stored in a boot sector of a separate parti-
tion on the system. There are no size limitations on the kernel boot file.

The bootloader program isn’t required to point directly to an operating
system kernel file—it can point to any type of program, including another
bootloader program. You can create a primary bootloader program that
points to a secondary bootloader program, which provides options to load
multiple operating systems. This process is called chainloading.

The UEFI Startup
While there were plenty of limitations with BIOS, computer manufacturers learned to live
with them, and BIOS was the default standard for IBM-compatible systems for many years.
However, as operating systems became more complicated, it eventually became clear that a
new boot method needed to be developed.

Intel created the Extensible Firmware Interface (EFI) in 1998 to address some of the
limitations of BIOS. The adoption of EFI was somewhat of a slow process, but by 2005 the
idea caught on with other vendors, and the Universal EFI (UEFI) specification was adopted
as a standard. These days, just about all IBM-compatible desktop and server systems utilize
the UEFI firmware standard.

Instead of relying on a single boot sector on a hard drive to hold the bootloader pro-
gram, UEFI specifies a special disk partition, called the EFI System Partition (ESP) to store
bootloader programs. This allows for any size of bootloader program, plus the ability to
store multiple bootloader programs for multiple operating systems.

The ESP setup utilizes the old Microsoft File Allocation Table (FAT) filesystem to store
the bootloader programs. On Linux systems, the ESP is typically mounted in the /boot/efi
folder, and the bootloader files are typically stored using the .efi filename extension.

8  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 8

The UEFI firmware utilizes a built-in mini bootloader (sometimes referred to as a boot
manager), which allows you to configure just which bootloader program file to launch.

Not all Linux distributions support the UEFI firmware. If you’re using a UEFI
system, make sure that the Linux distribution you select supports it.

With UEFI, you need to register each individual bootloader file that you want to appear
at boot time in the boot manager interface menu. The efibootmgr Linux application
allows you to create and remove boot entries or change the boot order. The UEFI interface
includes a shell environment, allowing you to enter commands to alter boot settings, or
select the bootloader to run each time you boot the system.

Once the firmware finds and runs the bootloader, its job is done. The bootloader step in
the boot process can be somewhat complicated. The next section dives into covering this step.

Another popular new technology commonly found on UEFI systems is the
use of solid state drives (SSDs) to replace legacy hard drives. SSD hard-
ware doesn’t use legacy hard drive controllers, but instead, utilizes the
Non-Volatile Memory Express (NVMe) standard. The Linux kernel has sup-
ported NVMe systems since kernel version 3.3, and the UEFI boot process
works just fine when using SSD hardware in Linux systems.

Linux Bootloaders
The bootloader program helps bridge the gap between the system firmware and the full
Linux operating system kernel. In Linux, you have several choices of bootloaders. The most
popular ones that you’ll run across are these:

■■ Linux Loader (LILO)

■■ Grand Unified Bootloader (GRUB) Legacy

■■ GRUB2

In the original versions of Linux, the Linux Loader (LILO) bootloader was the only one
available. It was extremely limited in what it could do, but it accomplished its purpose, that
is, loading the Linux kernel from the BIOS startup. LILO became the default bootloader used
by Linux distributions in the 1990s. The LILO configuration file is stored in a single file,
/etc/lilo.conf, which defines the systems to boot. Unfortunately, LILO doesn’t work with
UEFI systems, so it has limited use on modern systems and is quickly fading into history.

The first version of the GRUB bootloader (now called GRUB Legacy) was created in
1999 to provide a more robust and configurable bootloader to replace LILO. GRUB quickly
became the default bootloader for all Linux distributions, whether they were run on BIOS
or UEFI systems.

Linux Bootloaders  9

c01.indd  09/14/2016  Page 9

GRUB2 was created in 2005 as a total rewrite of the GRUB Legacy system. It supports
advanced features, such as the ability to load hardware driver modules and use logic state-
ments to alter the boot menu options dynamically, depending on conditions detected on the
system (such as if an external hard drive is connected).

Since UEFI can load any size of bootloader program, it’s now possible to
load a Linux operating system kernel directly without a special bootloader
program. This feature was incorporated in the Linux kernel starting with
version 3.3.0. However, this method isn’t common, because bootloader
programs can provide more versatility in booting, especially when working
with multiple operating systems.

This section walks through the basics of both the GRUB Legacy and GRUB2 bootloaders,
which should cover just about every Linux distribution that you’ll run into these days.

GRUB Legacy
The GRUB Legacy bootloader was designed to simplify the process of creating boot
menus and passing options to kernels. GRUB Legacy allows you to select multiple ker-
nels and/or operating systems using a menu interface as well as an interactive shell. You
configure the menu interface to provide options for each kernel or operating system you
wish to boot. The interactive shell provides a way for you to customize boot commands
on the fly.

Both the menu and the interactive shell utilize a set of commands that control features of
the bootloader. This section walks you through how to configure the GRUB Legacy boot-
loader, how to install it, and how to interact with it at boot time.

Configuring GRUB Legacy
When you use the GRUB Legacy interactive menu, you need to tell it what options to show.
You do that using special GRUB menu commands.

The GRUB Legacy system stores the menu commands in a standard text configuration
file. The configuration file used by GRUB Legacy is menu.lst, and it is stored in the /boot/
grub folder. (While not a requirement, some Linux distributions create a separate /boot
partition on the hard drive.) Red Hat–derived Linux distributions (such as CentOS and
Fedora) use grub.conf instead of menu.lst for the configuration file.

The GRUB Legacy configuration file consists of two sections:

■■ Global definitions

■■ Operating system boot definitions

The global definitions section defines commands that control the overall operation of the
GRUB Legacy boot menu. The global definitions must appear first in the configuration file.
There are only a handful of global settings. Table 1.1 shows these settings.

10  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 10

Ta b le 1.1     GRUB Legacy global commands

Setting Description

color Specifies the foreground and background colors to use in the boot menu

default Defines the default menu option to select

fallback A secondary menu selection to use if the default menu option fails

hiddenmenu Don’t display the menu selection options

splashimage Points to an image file to use as the background for the boot menu

timeout Specifies the amount of time to wait for a menu selection before using the default

For GRUB Legacy, to define a value for a command you just list the value as a command-
line parameter:

default 0
timeout 10
color white/blue yellow/blue

The color command defines the color scheme for the menu. The first pair of values defines
the foreground/background colors for normal menu entries, while the second pair defines the
foreground/background colors for the selected menu entry.

After the global definitions, you place definitions for the individual operating systems
that are installed on the system. Each operating system should have its own definition sec-
tion. You can use many boot definition settings to customize how the bootloader finds the
operating system kernel file. Fortunately, just a few commands are required to define the
operating system. The ones to remember are as follows:

■■ title—The first line for each boot definition section, this is what appears in the boot menu.

■■ root—Defines the disk and partition where the GRUB /boot folder partition is located
on the system.

■■ kernel—Defines the kernel image file stored in the /boot folder to load.

■■ initrd—Defines the initial RAM disk file, which contains drivers necessary for the
kernel to interact with the system hardware.

■■ rootnoverify—Defines non-Linux boot partitions, such as Windows.

The root command defines the hard drive and partition that contain the /boot folder for
GRUB Legacy. Unfortunately, GRUB Legacy uses a somewhat odd way of referencing those
values:

(hddrive, partition)

Linux Bootloaders  11

c01.indd  09/14/2016  Page 11

Also unfortunately, GRUB Legacy doesn’t refer to hard drives the way Linux does: it
uses a numbering system to reference both disks and partitions, starting at 0 instead of at 1.
For example, to reference the first partition on the first hard drive of the system, you’d use
(hd0,0). To reference the second partition on the first hard drive, you’d use (hd0,1).

The initrd command is another important feature in GRUB Legacy. It helps solve a prob-
lem that arises when using specialized hardware or filesystems as the root drive. The initrd
command defines a file that’s mounted by the kernel at boot time as a RAM disk. The kernel
can then load modules from the RAM disk, which then allows it to access hardware or file-
systems not compiled into the kernel itself. (Chapter 3, “Mastering the Kernel,” discusses how
to create the initrd image, as well as the initramfs image, used by Debian systems).

Listing 1.2 shows a sample GRUB Legacy configuration file that defines both a Windows
partition and a Linux partition for booting.

Listing 1.2:  Sample GRUB Legacy configuration file

default 0
timeout 10
color white/blue yellow/blue

title CentOS Linux
root (hd1,0)
kernel (hd1,0)/boot/vmlinuz
initrd /boot/initrd

title Windows
rootnoverify (hd0,0)

This example shows two boot options: one for a CentOS Linux system and one for a
Windows system. The CentOS system is installed on the first partition of the second hard
drive, while the Windows system is installed on the first partition of the first hard drive. The
Linux boot selection specifies the kernel file to load, as well as the initrd image file to load
into memory.

Installing GRUB Legacy
Once you build the GRUB Legacy configuration file, you must install the GRUB Legacy
program in the MBR. The command to do this is grub-install.

The grub-install command uses a single parameter that indicates the partition on
which to install GRUB. You can specify the partition using either the Linux or GRUB
Legacy format. For example, to use the Linux format, you’d write

grub-install /dev/sda

to install GRUB on the MBR of the first hard drive. To use the GRUB Legacy format, you
must enclose the hard drive format in quotes:

grub-install '(hd0)'

12  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 12

If you’re using the chainloading method and prefer to install a copy of GRUB Legacy on
the boot sector of a partition instead of to the MBR of a hard drive, you must specify the
partition, again using either the Linux or GRUB format:

grub-install /dev/sda1
grub-install 'hd(0,0)'

You don’t need to reinstall GRUB Legacy in the MBR after making changes to the con-
figuration file, because GRUB Legacy reads the configuration file each time it runs.

Interacting with GRUB Legacy
When you boot a system that uses the GRUB Legacy bootloader, you’ll see a menu that
shows the boot options that you defined in the configuration file. If you wait for the time-
out to expire, the default boot option will process. Alternatively, you can use the arrow
keys to select one of the boot options and then press the Enter key to select it.

You can also edit boot options on the fly from the GRUB menu. First, arrow to the boot
option that you want to modify, and then press the E key. Use the arrow key to move the
cursor to the line that you need to modify, and then press the E key to edit it. Press the B
key to boot the system using the new values. You can also press the C key at any time to
enter an interactive shell mode, allowing you to submit commands on the fly.

GRUB 2
Since the GRUB2 system was intended as an improvement over GRUB Legacy, many of the
features are the same, with just a few twists. For example, the GRUB2 system changes the
configuration filename to grub.cfg, and it stores it in the /boot/grub/ folder. (This allows
you to have both GRUB Legacy and GRUB2 installed at the same time.)

Configuring GRUB2
There are also a few changes to the commands used in GRUB2. For example, instead of
the title command, GRUB uses the menuentry command, and you must also enclose each
individual boot section within braces immediately following the menuentry command.
Here’s an example of a GRUB2 configuration file:

menuentry "CentOS Linux" {
 set root=(hd1,1)
 linux /boot/vmlinuz
 initrd /initrd
}
menuentry "Windows" {
 set root=(hd0,1)
}

Linux Bootloaders  13

c01.indd  09/14/2016  Page 13

Notice that GRUB2 uses the set command to assign values to the root keyword, and it
uses an equal sign to assign the device. GRUB2 utilizes environment variables to configure
settings instead of commands.

To make things more confusing, GRUB2 changes the numbering system for partitions.
While it still uses 0 for the first hard drive, the first partition is set to 1. So to define the
/boot folder on the first partition of the first hard drive, you now need to use

set root=hd(0,1)

Also, notice that the rootnoverify and kernel commands are not used in GRUB2.
Non-Linux boot options are now defined the same as Linux boot options using the root
environment variable, and you define the kernel location using the linux command.

The configuration process for GRUB2 is also somewhat different. While GRUB2 uses
the /boot/grub/grub.cfg file as the configuration file, you should never modify that file.
Instead, there are separate configuration files stored in the /etc/grub.d folder. This allows
you (or the system) to create individual configuration files for each boot option installed on
your system (for example, one configuration file for booting Linux and another for booting
Windows).

For global commands, use the /etc/default/grub configuration file. The format for
some of the global commands has changed from the GRUB Legacy commands so it is
GRUB_TIMEOUT instead of just timeout.

Most Linux distributions generate the new grub.cfg configuration file automatically
after certain events, such as when upgrading the kernel. Usually, the distribution will keep
a boot option pointing to the old kernel file just in case the new one fails.

Installing GRUB2
Unlike GRUB Legacy, you don’t need to install GRUB2. All you need to do is to rebuild the
main installation file by running the grub-mkconfig program.

The grub-mkconfig program reads configuration files stored in the /etc/grub.d folder
and assembles the commands into the single grub.cfg configuration file.

You can update the configuration file manually by running the grub-mkconfig command:

grub-mkconfig > /boot/grub/grub.cfg

Notice that you must either redirect the output of the grub-mkconfig program to the
grub.cfg configuration file or use the –o option to specify the output file. By default, the
grub-mkconfig program just outputs the new configuration file commands to standard
output.

Interacting with GRUB2
The GRUB2 bootloader produces a boot menu similar to the GRUB Legacy method. You
can use arrow keys to switch between boot options, the E key to edit a boot entry, or the C
key to bring up the GRUB2 command line to submit interactive boot commands. Figure 1.1
illustrates the editing of an entry in the GRUB2 boot menu on an Ubuntu system.

14  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 14

Fi gu r e 1.1     Editing an Ubuntu GRUB2 menu entry

Some graphical desktops (such as Ubuntu) hide the GRUB boot menu
behind a graphical interface. Usually, if you hold down the Shift key when
the system first boots, this will display the GRUB boot menu.

Alternative Bootloaders
While GRUB Legacy and GRUB2 are the most popular Linux bootloader programs, you
may run into a few others, depending on which Linux distributions you are using.

The Systemd-boot bootloader program is starting to gain popularity in Linux distribu-
tions that use the systemd init method (see the next section). The systemd-boot bootloader
generates a menu of boot image options, and can load any EFI boot image.

The U-Boot bootloader program can boot from any type of disk, and load any type of
boot image.

The Syslinux project includes five separate bootloader programs that have special uses in
Linux:

■■ SYSLINUX—A bootloader for systems that use the Microsoft FAT filesystem (popular
for booting from USB memory sticks)

■■ EXTLINUX—A mini bootloader for booting from an ext2, ext3, ext4, or btrfs filesystem

■■ ISOLINUX—A bootloader for booting from a LiveCD or LiveDVD

■■ PXELINUX—A bootloader for booting from a network server

■■ MEMDISK—A utility to boot older DOS operating systems from the other Syslinux
bootloaders

Linux Bootloaders  15

c01.indd  09/14/2016  Page 15

The ISOLINUX bootloader is popular for use in distributions that release a LiveDVD
version. The bootloader requires two files: isolinux.bin, which contains the bootloader
program image, and isolinux.cfg, which contains the configuration settings.

Newer systems also allow booting an iso image from a USB flash drive.
To do this you’ll need an additional file, isodhpfx.bin, which is a hybrid
bootloader program image that can be loaded onto a hard drive or USB
flash drive. This file is generated by the xorriso program.

The PXELINUX bootloader is somewhat complicated. It uses the Pre-boot Execution
Environment (PXE) standard, which defines how a network workstation can boot and
load an operating system from a central network server. PXE uses DHCP to assign a net-
work address to the workstation and BOOTP to load the bootloader image from the server.
The network server must support the Trivial File Transfer Protocol (TFTP) to transfer the
boot image file to the workstation.

To utilize PXELINUX, the TFTP server needs to have the PXELINUX bootloader pro-
gram stored as /tftpboot/pxelinux.0 available for the workstations to download. Each
workstation must also have a configuration file available in the /tftpboot/pxelinux.cfg
directory. The files are named based on the MAC address of the workstation, and they
contain specific configuration settings required for that workstation.

Secure Bootloaders
There’s one other feature new to the UEFI boot method that can cause heartburn for Linux
administrators. UEFI supports a feature called secure boot. In secure boot, the UEFI boot
manager only loads bootloader images that are digitally signed to ensure their safety. This
is a great feature to prevent a virus or malware program from taking over your system, but
does add an additional layer of complexity to the Linux boot process.

There are generally three ways to run Linux in a secure boot environment:

■■ Disable secure booting in the UEFI boot manager

■■ Purchase your own digital signature key to sign your bootloader images

■■ Use a bootloader image signed by someone else

The first method is most often the easiest, as long as your system UEFI boot manager
allows you to disable the secure boot feature. However, that can leave your Linux system
vulnerable to attack, and not all systems allow you to disable secure boot.

Purchasing your own digital signature key can be expensive, and somewhat cumbersome
if you change bootloader images frequently. Each time you change the bootloader image
you need to re-sign the file, which means getting an external signing agent involved.

There is, however, a relatively simple solution. A few Linux organizations produce
signed mini-bootloader images for public use. The mini-bootloader acts as a middleman in
the boot process. The UEFI boot manager boots the mini-bootloader, then, in turn, it boots
the standard Linux bootloader image.

16  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 16

Currently the two most popular mini-bootloader image methods are from the Linux
Foundation (called preloader), and Fedora (called shim). The shim mini-bootloader file is
named shim.efi, and is stored in the uefi folder on the system. When it boots, it automati-
cally looks for a GRUB 2 bootloader image file named grubx64.efi, also in the uefi folder
on the system. That way you can still change the GRUB 2 bootloader image without having
to worry about the digitally signed shim.efi file.

Process Initialization
A Linux system comprises many programs running in background to provide services for
the system. The init program starts all of those programs when the Linux system starts
up. This is called the initialization process.

When the kernel finishes loading, it looks for the init program in one of three locations:

■■ /sbin/init

■■ /etc/init

■■ /bin/init

If none of these files exist, the kernel attempts to start a generic shell session using the
/bin/sh program. If that fails as well, the kernel enters panic mode and stops processing.

The main job of the init program is to start other programs. The programs that start
are based on the features that you want running in your Linux system. For example, a
Linux server doesn’t necessarily need to start a graphical desktop environment, or a Linux
desktop doesn’t necessarily need to start the Apache web server service.

Currently three popular initialization process methods are used in Linux distributions:

■■ Unix System V (also called SysV)

■■ systemd

■■ Upstart

The original Linux init program was based on the Unix System V init program,
and it became commonly called SysV (or sometimes SysV-init). The SysV init program
uses a series of shell scripts divided into separate runlevels in order to determine which
programs run at what times. A runlevel groups common applications that must all start
or stop together into a common group. Each program uses a separate shell script to
start and stop the individual program, but the system can run all of the scripts at the
same time.

The system administrator sets the runlevel in which the Linux system starts. This in turn
determines which set of programs is running. The system administrator can also change the
runlevel at any time while the system is running.

The SysV init program had served the Linux community well for many years, but as
Linux systems became more complicated and required more services, the runlevel shell
scripts became more complicated. This caused Linux developers to look for other solutions.

Process Initialization  17

c01.indd  09/14/2016  Page 17

The systemd program was developed by the Red Hat Linux group to handle starting and
stopping programs in dynamic Linux environments. Instead of runlevels, it uses targets and
units to control what applications run at any time on the system. It uses separate configura-
tion files that determine this behavior.

The Upstart version of the init program was developed as part of the Ubuntu Linux
distribution. Its main goal was to handle the dynamic environment that hot-pluggable
devices cause in Linux. The Upstart method uses separate configuration files for each ser-
vice, and each service configuration file sets in which runlevel the service should start. That
way, you have just one service file that’s used for multiple runlevels.

The following sections take a closer look at each of these initialization process methods
to help you get comfortable in any Linux environment.

The SysV Method
The key to the SysV initialization process is runlevels. The init program determines which
programs to start based on the runlevel of the system.

Runlevels are numbered from 0 to 6, and each one is assigned a set of programs that should
be running for that runlevel. When the Linux kernel starts, it determines which runlevel to start
by a configuration file. It’s important to know how to manage runlevels and how to determine
when each runlevel is used by the kernel. The following sections show you how to do that.

Runlevels
While each Linux distribution defines applications that should be running at specific run-
levels, there are some general guidelines that you can use. Table 1.2 shows the general usage
of the Linux runlevels.

Ta b le 1. 2     Linux runlevels

Runlevel Description

0 Shut down the system.

1 Single-user mode, used for system maintenance.

2 On Debian-based systems, multiuser graphical mode.

3 On Red Hat–based systems, multiuser text mode.

4 Undefined.

5 On Red Hat–based systems, multiuser graphical mode.

6 Reboot the system.

18  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 18

Most Linux distributions use the Red Hat runlevel method of using runlevel 3 for multiuser
text mode and runlevel 5 for multiuser graphical mode. However, Debian-based systems use
runlevel 2 for all multiuser modes.

Starting Applications in a Runlevel
There are two ways to start applications in runlevels:

■■ Using the /etc/inittab file

■■ Using startup scripts

The /etc/inittab file defines what applications start at which runlevel. Each line in the
/etc/inittab file defines an application and uses the following format:

id:runlevels:action:process

The id field contains one to four characters that uniquely define the process. The
runlevels field contains a list of runlevels in which the application should be running.
The list is not comma separated, so the value 345 indicates that the application should be
started in runlevels 3, 4, and 5.

The action field contains a keyword that tells the kernel what to do with the application
for that runlevel. Possible values are shown in Table 1.3.

Ta b le 1. 3     The SysV inittab action values

Action Description

boot The process is started at boot time.

bootwait The process is started at boot time, and the system will wait for it to finish.

initdefault Specifies the runlevel to enter after the system boots.

kbrequest The process is started after a special key combination is pressed.

once The process is started once when the runlevel is entered.

powerfail The process is started when the system is powered down.

powerwait The process is started when the system is powered down, and the system
will wait for it to finish.

respawn The process is started when the runlevel is entered and restarted when-
ever it terminates.

sysinit The process is started at boot time before any boot or bootwait items.

wait The process is started once, and the system will wait for it to finish.

Process Initialization  19

c01.indd  09/14/2016  Page 19

The initdefault line specifies the runlevel in which the system normally runs after boot:

id:3:initdefault:

Besides the runlevels, the SysV init method also specifies startup scripts to control how
applications start and stop. The /etc/init.d/rc or /etc/rc.d/rc script runs all scripts
with a specified runlevel. The scripts themselves are stored in the /etc/init.d/rcx.d
or /etc/rcx.d folder, where x is the runlevel number.

Scripts are stored with a specific filename that indicates whether they start or stop at
the runlevel. Scripts that start with an S start the programs, and scripts that start with a K
stop the programs. The script filenames also contain a number, which indicates the order in
which the rc program runs the scripts. This allows you to specify which scripts get started
before others in order to control any dependency issues.

Modifying Program Runlevels
Working through all of the script files stored to start and stop individual programs can be
somewhat of a hassle. To make life easier, Linux distributions include a couple of utilities to
assign a runlevel easily for any program that you need to start or stop:

■■ chkconfig

■■ update-rc.d

The chkconfig command is used in most Red Hat–based Linux distributions. It’s a very
versatile command that allows you to list at what runlevels the application starts and also
to change the runlevels in which a specific application starts.

When used with the –-list parameter, the chkconfig command displays all of the
applications defined, along with the runlevels in which they start. Alternatively, you can list
a specific application to see how it is configured:

$ chkconfig –-list network
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
$

In this example, the network application is configured to start in runlevels 2, 3, 4, and 5.
You can then use the –-levels parameter to modify the runlevels:

chkconfig –-levels 12345 network on

This sets the network program to start on runlevels 1, 2, 3, 4, and 5.
Table 1.4 shows the different formats that you can use with the chkconfig command.

Ta b le 1. 4     The chkconfig formats

Format Description

chkconfig program Check if the program is set to start at the
current runlevel.

20  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 20

Format Description

chkconfig program on Start the program at the default runlevel.

chkconfig program off Don’t start the program at the default
runlevel.

chkconfig –-add program Add the program to start at boot.

chkconfig –-del program Remove the program from starting at boot.

chkconfig –-levels [levels] program on Set the program to start at the specified
runlevels.

chkconfig –-list program Display the current runlevel settings for the
program.

For Debian-based Linux distributions, you’ll need to use the update-rc.d command to
control application runlevels. To start a program at the default runlevel, just use the follow-
ing format:

update-rc.d program defaults

To remove the program from starting at the default runlevel, use the following format:

update-rc.d program remove

If you want to specify what runlevels the program starts and stops at, you’ll need to use
the following format:

update-rc.d –f program start 40 2 3 4 5 . stop 80 0 1 6 .

The 40 and 80 specify the relative order within the runlevel when the program should
start or stop (from 0 to 99). This allows you to customize exactly when specific programs
are started or stopped during the boot sequence.

Checking the System Runlevel
You’ve seen that the /etc/inittab file indicates the default runlevel with the initdefault
action, but there’s no guarantee that’s the runlevel at which your Linux system is currently
running. The runlevel command displays both the current runlevel and the previous run-
level for the system:

$ runlevel
N 2
$

Ta b le 1. 4     The chkconfig formats  (continued)

Process Initialization  21

c01.indd  09/14/2016  Page 21

The first character is the previous runlevel. The N character means the system is in the
original boot runlevel. The second character is the current runlevel.

Changing Runlevels
You can change the current runlevel of your Linux system using either the init or telinit
command. Just specify the runlevel number as the command-line parameter. For example,
to reboot your system you can enter this command:

init 6

The downside to using the init command is that it immediately changes the system to
the specified runlevel. That may not be an issue if you’re the only person on your Linux sys-
tem, but in a multiuser Linux environment, this can have adverse effects for the other users.

A kinder way to change the runlevel on multiuser systems is to use one of a handful of
special commands designed for that purpose:

■■ shutdown—Gracefully changes the runlevel to 1, or single-user mode

■■ halt—Gracefully changes the runlevel to 0 to stop the system

■■ poweroff—Gracefully changes the runlevel to 0 to stop the system

■■ reboot—Gracefully changes the runlevel to 6 to restart the system

Each of these commands also allows you to specify a message to send to any other users
on the system before it changes the runlevel. You can also specify a time for the change,
such as +15 for 15 minutes.

The systemd Method
The systemd initialization process method is quickly gaining in popularity in the Linux
world. It’s currently the default initialization process used in the Fedora, CentOS, and Red
Hat Linux distributions.

The systemd initialization process introduced a major paradigm shift in how Linux sys-
tems handle services. This has also caused some controversy in the Linux world. Instead of
lots of small initialization shell scripts, the systemd method employs one monolithic program
that uses individual configuration files for each service. This is somewhat of a departure
from the earlier Linux philosophy.

This section walks you through the basics of how the systemd initialization process
works.

Units and Targets
Instead of using shell scripts and runlevels, the systemd method uses units and targets. A
unit defines a service or action on the system. It consists of a name, a type, and a configura-
tion file. There are currently eight different types of systemd units:

■■ automount

■■ device

22  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 22

■■ mount

■■ path

■■ service

■■ snapshot

■■ socket

■■ target

The systemd program identifies units by their name and type using the format name.type.
You use the systemctl command to list the units currently loaded in your Linux system:

systemctl list-units
UNIT LOAD ACTIVE SUB DESCRIPTION
...
crond.service loaded active running Command Scheduler
cups.service loaded active running CUPS Printing Service
dbus.service loaded active running D-Bus System Message
...
multi-user.target loaded active active Multi-User System
network.target loaded active active Network
paths.target loaded active active Paths
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets
...
#

Linux distributions can have hundreds of different units loaded and active. We just
selected a few from the output to show you what they look like. The systemd method uses
service type units to manage the daemons on the Linux system. The target type units are
important in that they group multiple units together so that they can be started at the same
time. For example, the network.target unit groups all of the units required to start the
network interfaces for the system.

The systemd initialization process uses targets similar to the way SysV uses runlevels. A
target represents a different group of services that should be running on the system. Instead
of changing runlevels to alter what’s running on the system, you just change targets.

To make the transition from SysV to systemd smoother, there are targets that mimic
the standard 0 through 6 SysV runlevels, called runlevel0.target through runlevel6
.target.

Configuring Units
Each unit requires a configuration file that defines what program it starts and how it
should start the program. The systemd system stores unit configuration files in the /lib/

Process Initialization  23

c01.indd  09/14/2016  Page 23

systemd/system folder. Here’s an example of the sshd.service unit configuration file
used in CentOS:

cat sshd.service
[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target
#

The sshd.service configuration file defines the program to start (/usr/sbin/sshd),
along with some other features, such as what services should run before the sshd service
starts (the After line), what target level the system should be in (the WantedBy line), and
how to reload the program (the Restart line).

Target units also use configuration files. They don’t define programs, but instead they
define which service units to start. Here’s an example of the graphical.target unit con-
figuration file used in CentOS:

cat graphical.target
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
After=multi-user.target
Conflicts=rescue.target
Wants=display-manager.service
AllowIsolate=yes

24  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 24

[Install]
Alias=default.target
#

The target configuration defines what targets should be loaded first (the After line),
what targets are required for this target to start (the Requires line), what targets conflict
with this target (the Conflicts line), and what targets or services the target requires to be
running (the Wants line).

Setting the Default Target
The default target used when the Linux system boots is defined in the /etc/systemd/
system folder as the file default.target. This is the file the systemd program looks for
when it starts up. This file is normally set as a link to a standard target file in the /lib/
systemd/system folder:

ls -al default.target
lrwxrwxrwx. 1 root root 36 Oct 1 09:14 default.target ->
 /lib/systemd/system/graphical.target
#

On this CentOS system, the default target is set to the graphical.target unit.

The systemctl Program
In the systemd method, you use the systemctl program to control services and targets. The
systemctl program uses options to define what action to take, as shown in Table 1.5.

Ta b le 1.5     The systemctl commands

Command name Explanation

list-units Displays the current status of all configured units

default Changes to the default target unit

isolate Starts the named unit and stops all others

start name Starts the named unit

stop name Stops the named unit

reload name Causes the named unit to reload its configuration file

restart name Causes the named unit to shut down and restart

status name Displays the status of the named unit (You can pass a PID value rather
than a name, if you like.)

Process Initialization  25

c01.indd  09/14/2016  Page 25

Command name Explanation

enable name Configures the unit to start when the computer next boots

disable name Configures the unit not to start when the computer next boots

Instead of using shell scripts to start and stop services, you use the start and stop
commands:

systemctl stop sshd.service
systemctl status sshd.service
sshd.service - OpenSSH server daemon
Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled)
Active: inactive (dead)

Oct 04 10:33:33 localhost.localdomain systemd[1]: Stopped OpenSSH server
 daemon.

systemctl start sshd.service
systemctl status sshd.service
sshd.service - OpenSSH server daemon
Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled)
Active: active (running) since Thu 2014-10-04 10:34:08 EDT; 4s ago
Process: 3882
ExecStartPre=/usr/sbin/sshd-keygen (code=exited, status=0/SUCCESS)
Main PID: 3889 (sshd)
CGroup: /system.slice/sshd.service
 3889 /usr/sbin/sshd -D

Oct 04 10:34:08 localhost.localdomain sshd-keygen[3882]: Generating SSH2 RSA
host key: [OK]
Oct 04 10:34:08 localhost.localdomain systemd[1]: Started OpenSSH server daemon.
Oct 04 10:34:08 localhost.localdomain sshd[3889]: Server listening on
 0.0.0.0 port 22.
Oct 04 10:34:08 localhost.localdomain sshd[3889]: Server listening on ::
 port 22.
#

To change the target that is currently running, you must use the isolate command. For
example, to enter single-user mode, you’d use the following:

systemctl isolate rescue.target

To go back to the default target for the system, you just use the default command.

26  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 26

There’s also a systemd-delta command that allows you to identify when
multiple configuration files exist and overwrite each other.

One of the more controversial features of the systemd initialization process is that it
doesn’t use the standard Linux syslogd log file system. Instead, it has its own log files, and
those log files are not stored in text format. To view the systemd log files, you need to use
the journalctl program.

The Upstart Method
The Ubuntu Linux distribution created the Upstart initialization process as a replacement
for the SysV initialization process. The goal was to create an initialization process that
could better handle hot-pluggable devices that are commonly found on systems today.

The Upstart method replaces the /etc/inittab file and all of the /etc/init.d startup
scripts with a single /etc/init folder. The /etc/init folder contains configuration files
for each system service and program that needs to start, usually in the format name.conf,
where name is the program name.

An example of an Upstart configuration file looks like this:

tty1 - getty
#
This service maintains a getty on tty1 from the point the system is
started until it is shut down again.

start on stopped rc RUNLEVEL=[2345] and (
 not-container or
 container CONTAINER=lxc or
 container CONTAINER=lxc-libvirt)

stop on runlevel [!2345]

respawn
exec /sbin/getty -8 38400 tty1
$

The tty1.conf configuration file specifies when the tty1 console port should be enabled.
Notice that the configuration file specifies the runlevels when it should start (2, 3, 4, and 5).

One of the great features of Upstart is that it can trigger a script to run not only at a specific
runlevel but also when a device is connected to the system.

To change the runlevel or event that starts or stops a program, you just modify the pro-
gram’s configuration file in the /etc/init folder.

To stop a program or service using Upstart, you just use the stop command-line command,
along with the program or service name:

System Recovery  27

c01.indd  09/14/2016  Page 27

$ sudo stop bluetooth
bluetooth stop/waiting
$

Likewise, to start up a program or service, you use the start command:

$ sudo start bluetooth
bluetooth start/running, process 2635
$

The Upstart initialization method provides a simpler way of managing programs and
services running on the Linux system.

The Linux Standard Base (LSB) is a specification supported by some Linux
distributions in order to attempt to create a standard experience between
Linux systems. Part of the LSB defines how systems use commands in init
scripts. Standard init commands such as start, stop, and restart are
defined by the LSB, and they should be supported by all Linux distribu-
tions that follow the LSB. Unfortunately, some major Linux distributions
(such as Debian) have recently dropped out of the LSB group, making it
seem less likely that there will be a standard Linux initialization method
anytime soon.

System Recovery
There’s nothing worse than starting up your Linux system and not getting a login prompt.
Plenty of things can go wrong in the Linux startup process, but most of the issues come
down to two categories:

■■ Kernel failures

■■ Drive failures

Fortunately, there are ways to help recover your Linux system from many of these errors.
The following sections walk you through some standard troubleshooting practices that you
can follow to attempt to recover a Linux system that fails to boot.

Kernel Failures
Kernel failures occur when the Linux kernel stops running in memory, causing the Linux
system to crash. They are often a result of a software change, such as installing a new ker-
nel without the appropriate module or library changes or starting (or stopping) a program
at a new runlevel. Often these types of boot errors can be fixed by starting the system using
an alternative method and editing the necessary files to change the system. This section
describes the techniques that you can use to alter the system setup after a failed boot.

28  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 28

Selecting Previous Kernels at Boot
One of the biggest culprits for a failed boot is upgrading the Linux kernel, either on your
own or from a packaged distribution upgrade. When you install a new kernel file, it’s
always a good idea to leave the old kernel file in place and create an additional entry in the
GRUB boot menu to point to the new kernel.

By creating multiple kernel entries in the GRUB boot menu, you can select which kernel
version to boot. If the new kernel fails to boot properly, you can reboot and select the older
kernel version.

Most Linux distributions do this automatically when adding a new kernel, keeping the
most recent older kernel available in the boot menu, as shown in Figure 1.2.

Fi gu r e 1. 2     The CentOS Grub boot menu with multiple kernel options

Single-User Mode
At times, you may need to perform some type of system maintenance, such as adding a new
hardware module or library file to get the system to boot properly. In these situations, you
will want the system to boot up without allowing multiple users to connect, especially in a
server environment. This is called single-user mode.

The GRUB menu allows you to start the system in single-user mode by adding the
single command to the linux line in the boot menu commands. To get there, press the e
key on the boot option in the GRUB boot menu.

When you add the single command, the system will boot into runlevel 1, which creates
a single login for the root user account. Once you log in as the root user account, you can
modify the appropriate modules, init scripts, or GRUB boot menu options necessary to get
your system started correctly.

Passing Kernel Parameters
Besides the single-user mode trick, you can add other kernel parameters to the linux
command in the GRUB boot menu. The kernel accepts lots of parameters that alter the

System Recovery  29

c01.indd  09/14/2016  Page 29

hardware modules that it activates or the hardware settings that it looks for with specific
devices. (This is especially true for sound and network cards.) You can specify the different
hardware settings as additional parameters to the kernel in the linux command and then
boot from that entry in the GRUB menu.

Root Drive Failure
Perhaps the worst feeling a Linux system administrator can experience is seeing that the
bootloader can’t read the root drive device. This type of error may not be fatal, however,
because it is sometimes possible to recover from a corrupt root drive. This section walks
through the steps that you can take to attempt to recover a corrupt root drive and possibly
save your Linux system.

Using a Rescue Disk
Many Linux distributions provide what’s called a rescue disk to be used when fatal disk
errors occur. The rescue disk usually boots either from the CD/DVD drive or as a USB
stick, and it loads a small Linux system into memory. Since the Linux system runs entirely
in memory, it can leave all of the workstation hard drives free for examination and repair.
From the system command-line prompt, you can perform some diagnostic and repair tasks
on your system hard drives.

The tool of choice for checking and fixing hard drive errors is the fsck command. The
fsck command isn’t a program. Rather, it is an alias for a family of commands that are
specific to different types of filesystems (such as ext2, ext3, and ext4). You need to run the
fsck command against the device name of the partition that contains the root directory of
your Linux system. For example, if the root directory is on the /dev/sda1 partition, you’d
run this command:

fsck /dev/sda1

The fsck command will examine the inode table, along with the file blocks stored on
the hard drive, and attempt to reconcile them. If any errors occur, you will be prompted
whether to repair them or not. If there are many errors on the partition, you can add the
-y parameter to answer yes automatically to all of the repair questions. After a successful
repair, it’s a good idea to run the fsck command one more time to ensure that all of the
errors have been found and corrected. Continue running the fsck command until you get a
clean run with no errors.

Mounting a Root Drive
When the fsck repair is complete, you can test the repaired partition by mounting it into
the virtual directory created in memory. Just use the mount command to mount it to an
available mount directory:

mount /dev/sda1 /media

30  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 30

You can examine the filesystem stored in the partition to ensure that it’s not corrupt.
Before rebooting, you should unmount the partition using the umount command:

umount /dev/sda1

After successfully unmounting the partition, you can reboot your Linux system using
the standard bootloader and attempt to boot using the standard kernel and runlevels.

E x e rc ise 1.1

Using Rescue Mode

This exercise demonstrates how to start your Linux distribution in single-user mode to
examine filesystems and configurations without performing a complete bootup. To use
single-user mode, follow these steps:

1.	 First, start your Linux distribution as normal, and log in at the standard login prompt
(either the graphical desktop or the command-line login) as your normal user
account.

2.	 Type runlevel to determine the default runlevel for your system. The first character
returned refers to the previous runlevel (N denotes no previous runlevel since the
system booted). The second character is the current runlevel. This is likely to be 2 on
Debian-based systems, 3 on command-line Red Hat–based systems, or 5 on graphi-
cal desktop Red Hat–based systems.

3.	 Now reboot your system, and hit an arrow key when the GRUB menu appears to stop
the countdown timer. If you’re using a Linux distribution that hides the GRUB menu
(such as Ubuntu), hold down the Shift key when the system boots to display the GRUB
menu.

4.	 At the GRUB menu, use the arrow keys to go to the default menu entry (usually the
first entry in the list), then press the e key. This takes GRUB into edit mode.

5.	 Look for either the linux or linux16 menu command lines. These define the kernel
used to start the session.

6.	 Go to the end of the linux or linux16 line, and add the word single. Press Ctrl-x
to save the change temporarily and start your system using that menu entry.

7.	 The Linux system will boot into single-user mode. Depending on your Linux distribu-
tion, it may prompt you to enter the root user account or to press Ctrl+D to continue
on with the normal boot. Enter the root user account password to enter single-
user mode.

8.	 Now you are at the root user command prompt. Enter the command runlevel
to view the current runlevel. It should show runlevel 1. From here you can modify
configuration files, check filesystems, and change user accounts.

9.	 Reboot the system by typing reboot.

Exam Essentials  31

c01.indd  09/14/2016  Page 31

10.	 You should return to the standard boot process and GRUB menu options as before.
Select the standard GRUB menu option to boot your system and then log in.

11.	 At a command line prompt, type runlevel to ensure that you are back to the normal
default runlevel for your Linux system.

Summary
Although Linux distributions are designed to boot without any user intervention, it helps
to know the Linux boot process in case anything does go wrong. Most Linux systems use
either the GRUB Legacy or GRUB2 bootloader program. These programs both reside in the
BIOS Master Boot Record or in the ESP partition on UEFI systems. The bootloader loads
the Linux kernel program, which then runs the init program to start individual back-
ground programs required for the Linux system.

There are several different types of initialization scripts used by Linux distributions. The
SysV method is the oldest, derived from the original Unix system. The systemd method is a
more modern replacement, and it is becoming more popular in many Linux distributions.
The Ubuntu Linux distribution has also created the Upstart method, which is an advanced
initialization method to the SysV method, allowing more dynamic control over which pro-
grams start based on what hardware devices are detected at boot time.

Finally, no discussion on Linux startup is complete without examining system recovery
methods. If your Linux system fails to boot, the most likely cause is either a kernel issue or
a root device issue. For kernel issues, you can often modify the GRUB menu to add addi-
tional kernel parameters or even to boot from an older version of the kernel. For root drive
issues, you can try to boot from a rescue mode into a version of Linux running in memory
and then use the fsck command to repair a damaged root drive.

Exam Essentials
Describe the Linux boot process.    The BIOS or UEFI starts a bootloader program from
the Master Boot Record, which is usually the Linux GRUB Legacy or GRUB2 program.
The bootloader program loads the Linux kernel into memory, which in turn looks for the
init program to run. The init program starts individual application programs and starts
either the command-line terminals or the graphical desktop manager.

Describe the Linux GRUB Legacy and GRUB2 bootloaders.    The GRUB Legacy boot-
loader stores files in the /boot/grub folder, and it uses the menu.lst or grub.conf configu-
ration file to define commands used at boot time. The commands can create a boot menu,
allowing you to select between multiple boot locations, options, or features. You must
use the grub-install program to install the GRUB Legacy bootloader program into the

32  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 32

Master Boot Record. The GRUB2 bootloader also stores files in the /boot/grub folder, but
it uses the grub.cfg configuration file to define the menu commands. You don’t edit the
grub.cfg file directly, but instead you store files in the /etc/default/grub file or individual
configuration files in the /etc/grub.d folder. Run the update-grub program to generate the
grub.cfg file from the configuration files.

Describe alternative Linux bootloaders.    The LILO bootloader is used on older Linux sys-
tems. It uses the /etc/lilo.conf configuration file to define the boot options. The Syslinux
project has created the most popular alternative Linux bootloaders. The SYSLINUX boot-
loader runs on FAT filesystems, such as USB memory sticks. The ISOLINUX bootloader is
popular on LiveCD distributions, because it can boot from a CD or DVD. It stores the boot-
loader program in the isolinux.bin file and configuration settings in the isolinux.cfg file.
The PXELINUX bootloader program allows a network workstation to boot from a network
server. The server must contain the pxelinux.0 image file along with the pxelinux.cfg
directory, which contains separate configuration files for each workstation. EXTLINUX is a
small bootloader program that can be used on smaller embedded Linux systems.

Describe Linux runlevels and the init structure.    The init program starts applications based
on a default runlevel. Runlevels from 0 to 6 are defined, with each runlevel containing scripts
that start and stop specific programs. The /etc/inittab configuration file defines the default
runlevel for the Linux system, along with which programs start at what runlevel. Init scripts
are stored in the /etc/init.d and /etc/rc.d folders and run as needed.

Explain the SysV initialization system.    The SysV init system uses a default runlevel speci-
fied by the line id:2:initdefault: in the /etc/inittab file. You use either the chkconfig,
update-rc.d, or systemctl command to change which services are started when switching
to specific runlevels. Runlevels 0, 1, and 6 are reserved for shutdown, single-user mode, and
rebooting, respectively. Runlevels 3, 4, and 5 are the common user runlevels on Red Hat
and most other distributions, and runlevel 2 is the normal user runlevel on Debian systems.

Describe how to change SysV init runlevels.    The programs init and telinit can be used
to change to other runlevels. shutdown, halt, poweroff, and reboot are also useful when
shutting down, rebooting, or switching to single-user mode.

Explain the systemd initialization system.    The systemd system uses units and targets to
control services. The default target is specified by the file /etc/systemd/system/default
.target, and it is a link to a target file in the /lib/systemd/system folder.

Describe how to change systemd init targets.    You use the systemctl program to start and
stop services, as well as to change the target level of the system.

Describe how to recover from a failed boot.    The GRUB bootloaders provide you with
options that can help if your Linux system fails to boot. You can press the e key at the
GRUB boot menu to edit any boot menu entry and then add any additional kernel param-
eters, such as placing the system in single-user mode. You can also use a rescue disk to boot
Linux into memory, then use the fsck command to repair any corrupt hard drives, and
then use the mount command to mount them to examine the files.

Review Questions  33

c01.indd  09/14/2016  Page 33

Review Questions
You can find the answers in the Appendix.

1.	 What program does the workstation firmware start at boot time?

A.	 A bootloader

B.	 The init program

C.	 The Windows OS

D.	 The mount command

E.	 The telinit program

2.	 Where does the firmware first look for a Linux bootloader program?

A.	 The /boot/grub folder

B.	 The Master Boot Record (MBR)

C.	 The /var/log folder

D.	 A boot partition

E.	 The /etc folder

3.	 What Linux command lets you examine the most recent boot messages?

A.	 fsck

B.	 init

C.	 mount

D.	 dmesg

E.	 chkconfig

4.	 What folder do most Linux distributions use to store boot logs?

A.	 /etc

B.	 /var/messages

C.	 /var/log

D.	 /boot

E.	 /proc

5.	 Where does the workstation BIOS attempt to find a bootloader program? (Select all that
apply.)

A.	 An internal hard drive

B.	 An external hard drive

C.	 A DVD drive

D.	 A USB memory stick

E.	 A network server

34  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 34

6.	 Where is the Master Boot Record located?

A.	 The first sector of the first hard drive on the system

B.	 The boot partition of any hard drive on the system

C.	 The last sector of the first hard drive on the system

D.	 Any sector on any hard drive on the system

E.	 The first sector of the second hard drive on the system

7.	 Where is the EFI System Partition (ESP) stored on Linux systems?

A.	 /boot

B.	 /etc

C.	 /var

D.	 /boot/efi

E.	 /boot/grub

8.	 What file extension do UEFI bootloader files use?

A.	 .cfg

B.	 .uefi

C.	 .lst

D.	 .conf

E.	 .efi

9.	 Which was the first bootloader program used in Linux?

A.	 GRUB Legacy

B.	 LILO

C.	 GRUB2

D.	 SYSLINUX

E.	 ISOLINUX

10.	 Where are the GRUB Legacy configuration files stored?

A.	 /boot/grub

B.	 /boot/efi

C.	 /etc

D.	 /var

E.	 /proc

11.	 Where are GRUB2 configuration files stored? (Select all that apply.)

A.	 /proc

B.	 /etc/grub.d

C.	 /boot/grub

D.	 /boot/efi

E.	 /var

Review Questions  35

c01.indd  09/14/2016  Page 35

12.	 What command must you run to generate the GRUB2 grub.cfg configuration file?

A.	 chkconfig

B.	 update-rc.d

C.	 grub-mkconfig

D.	 grub-install

E.	 init

13.	 What program does the kernel use to start other programs?

A.	 GRUB2

B.	 systemctl

C.	 telinit

D.	 init

E.	 BIOS

14.	 Which configuration file contains the SysV default runlevel?

A.	 /etc/init.d

B.	 /etc/inittab

C.	 /etc/grub.d

D.	 /etc/rc.d

E.	 /boot/grub.cfg

15.	 What runlevel is the default for Debian-based systems?

A.	 0

B.	 1

C.	 6

D.	 5

E.	 2

16.	 What command would you use to change the current runlevel? (Select all that apply.)

A.	 telinit

B.	 chkconfig

C.	 update-rc.d

D.	 init

E.	 dmesg

17.	 What command displays the runlevels in which a program will be started?

A.	 chkconfig

B.	 init

C.	 dmesg

D.	 update-rc.d

E.	 telinit

36  Chapter 1  ■  Starting a System

c01.indd  09/14/2016  Page 36

18.	 What command do Debian systems use to set the runlevels for programs?

A.	 chkconfig

B.	 update-rc.d

C.	 init

D.	 telinit

E.	 dmesg

19.	 What program allows you to fix corrupt hard drive partitions?

A.	 mount

B.	 umount

C.	 fsck

D.	 init

E.	 telinit

20.	 Which command allows you to append a partition to the virtual directory on a running
Linux system?

A.	 mount

B.	 umount

C.	 fsck

D.	 dmesg

E.	 init

c02.indd  09/14/2016  Page 37

Maintaining the
System

The following exam objectives are
covered in this chapter:

✓✓ 200.1 Measure and troubleshoot resource usage

✓✓ 200.2 Predict future resource needs

✓✓ 206.1 Make and install programs from source

✓✓ 206.2 Backup operations

✓✓ 206.3 Notify users on system-related issues

Chapter

2

c02.indd  09/14/2016  Page 38

Keeping a Linux system up and running involves many
important basic maintenance tasks, such as backing up data
and capacity planning. Included in this task group is install-
ing software as well as keeping the system user community
informed.

This chapter begins by exploring the means and methods for notifying users about cur-
rent system issues. Next, it covers backup topics, focusing on the various standard tools
available to accomplish this task. It then touches on compiling and installing an application
from source code, followed by the sometimes-tricky job of capacity planning and trouble-
shooting resource usage.

Keeping Users Informed
Proper communication with system users, whether they are fellow system administra-
tors, programmers, clients, and so on, can go a long way in establishing good relations.
Hopefully, your company has established standard policies for keeping system users
informed. If so, you can use those policies to guide your manual and automated end-user
communication methods.

Besides the old standbys of email, automated text messaging, and company intranet
web pages, a Linux system offers the following additional utilities and files to help with
communication:

■■ /etc/issue

■■ /etc/issue.net

■■ /etc/motd

■■ /sbin/shutdown

■■ /bin/usr/notify-send (/usr/bin/notify-send)

■■ /bin/wall (/usr/bin/wall)

In this section, we’ll explore each method in detail. This information will help you to
choose which utilities best meet your company’s communication policies.

Keeping Users Informed  39

c02.indd  09/14/2016  Page 39

Looking at Fluid Messaging
Fluid messaging involves informing active system users of current events, such as a system
shutdown, as they are happening. These methods are intended to be used either for emer-
gency purposes or as supplemental communication for a planned situation.

Using the wall Command
The /usr/bin/wall command sends simple messages to certain system users. Only users
who meet the following conditions will receive these messages:

■■ Users who are currently logged into a terminal (tty#) or a terminal-emulator (pts/#)

■■ Users who have their message status set to “yes”

The /bin/mesg or /usr/bin/mesg command allows you to view and set your message
status. The mesg command is demonstrated here:

$ mesg
is n
$
$ mesg y
$
$ mesg
is y
$
$ mesg n
$
$ mesg
is n
$

Notice from the previous example, the mesg command used by itself simply shows the
current message status. Issuing the mesg y command turns on messaging, and issuing mesg n
turns it off.

What’s happening behind the scenes with mesg is that you are granting (y)
or revoking (n) write access to your terminal device. If write access is
granted, other users can use programs such as /bin/write or /usr/bin/
write to send messages to the terminal.

The general write command syntax is shown here:

write username terminal_id

An example of the write command in use is shown in Figure 2.1 and Figure 2.2.

40  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 40

F i gu r e 2 .1     Issuing the write command

Notice in Figure 2.1 that the who -T command is used first. This command shows the
current write access status of each logged-in user. A plus sign (+) between the username and
terminal id indicates that write access is granted, while a minus sign (-) indicates that no
write access has been granted. A question mark (?) indicates a user who is logged into the
GUI. For a GUI user to receive a write command message, a GUI terminal emulator must
be opened, designated by a pts/# terminal type, and write access must be granted. The
pts/0 terminal id in Figure 2.1 indicates that the user, rich, has a terminal emulator appli-
cation running in his GUI. However, the terminal must still have write access granted (+) in
order to receive write command messages, which it does.

In Figure 2.1, after the who -T command is used, the write command is employed.
To use the write command, two options must be included: the user’s username, who is
to receive the message, and that user’s terminal id. In Figure 2.1, the user’s username is
chris, and the terminal id is tty2. Once the write command is issued, it waits for your
message via standard input. However, there is no prompt to indicate this. Just type in your
message, and press Ctrl+D when you are finished. The message is automatically sent, and it
displays on the receiving user’s terminal, as shown in Figure 2.2.

F i gu r e 2 . 2     Receiving write command output

You can use the /bin/wall or /usr/bin/wall utility to broadcast a message to all
terminals with write access granted. Thus, it can be a handy utility to use for standard
communication.

The general wall command syntax is

wall message

Keeping Users Informed  41

c02.indd  09/14/2016  Page 41

Figure 2.3 and Figure 2.4 show the wall command in action. Notice in Figure 2.3 that
the message is written after the wall command is issued. The wall command is similar to
the write command in that it can accept the message via standard input. In Figure 2.3, the
message is typed in and Ctrl+D is pressed to send the message.

F i gu r e 2 . 3     Issuing the wall command

By default, the systemctl utility (covered in Chapter 1) will send a wall
message when any of its following commands are issued: emergency,
halt, kexec, power-off, reboot, or rescue. To prevent a wall mes-
sage from being sent while using systemctl, include the --no-wall option
in its command line.

The wall message is disruptive in that it will display in the middle of whatever the user
is currently doing in the terminal, as shown in Figure 2.4. However, the user receiving the
message can simply press Enter to receive the $ prompt back.

F i gu r e 2 . 4     Receiving wall command output

On some distributions, anyone can use the wall command, not just those
with super user privileges. This may cause some undesirable conse-
quences in your particular work environment. To avoid problems, you may
want to turn off terminal write access by default (if you haven’t done so
already), which you can set via login environment files, or block general
access to the wall command.

42  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 42

Using the notify-send Command
The wall command is useful, but if a user is not logged into a console terminal or does
not have a GUI terminal emulator open, you cannot send messages to that user. The /bin/
notify-send or /usr/bin/notify-send utility can remedy this situation, and it is a good
tool to use alongside the wall command.

The notify-send command may not be installed by default. If it is not
and you wish to install it, you can find the notify-send utility in the
libnotify-bin package.

You can try out the notify-send command by sending yourself messages in the GUI.
The general notify-send syntax looks like this:

notify-send "Title" "Message"

Figure 2.5 shows the notify-send command in action on a CentOS distribution. The
command is issued within a GUI terminal emulator. Notice that the message is displayed at
the desktop’s bottom. Different Linux desktop environments will display these notification
messages in different desktop display locations.

F i gu r e 2 .5     Trying out the notify-send command

Be aware that users can turn off these notification messages via simple desk-
top environment settings. That can be problematic if you are solely depen-
dent on the notify-send command for GUI user communication purposes.

Keeping Users Informed  43

c02.indd  09/14/2016  Page 43

To send notify-send messages to GUI users besides yourself, you need super user privi-
leges. Additionally, you need certain environment variables, depending upon how you are
implementing the notify-send utility and which distribution you are using.

In Figure 2.6, the notify-send is employed by a user with super user privileges who is
logged into an Ubuntu distribution virtual console terminal. Notice that the DISPLAY envi-
ronment variable is needed.

F i gu r e 2 .6     Issuing the notify-send command to another user

The DISPLAY environment variable in Figure 2.6 is set to the w command’s tty column
value for the user kevin. This is necessary for the notify-send utility to know where to
send its output. Notice that the sudo command is also used. It is needed so that the su -c
command can be employed to issue the notify-send command as the user logged into
the GUI; in this case, that’s kevin. The backslashes (\) in front of the quotation marks (")
surrounding both the notify-send command’s message title and message are also neces-
sary. Because the command, sent as an option with su -c, must be surrounded by its own
quotation marks, the backslashes allow the notify-send options to have their necessary
double quotation marks (") and not interfere with the su -c command’s operation. The
very last parameter in Figure 2.6’s long command is the username kevin. This is an option
to the su -c command, so that the user kevin will execute the notify-send command. The
results of all of this work are shown in Figure 2.7.

F i gu r e 2 .7     Receiving notify-send command output

Figure 2.7 shows the sent test message. On this Ubuntu distribution, the received
notify-send message displays near the upper-left area of the Unity desktop.

On other distributions, such as CentOS, when sending messages to other GUI users,
even more environment variables are needed. In Figure 2.8, notice that prior to using the

44  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 44

notify-send command, the DBUS_SESSION_BUS_ADDRESS environment variable must be set
to the GUI user’s current setting for that variable and then exported. This environment
variable is often needed when you create a cron job to automate such communication.

F i gu r e 2 . 8     Issuing the notify-send command to another user on CentOS

Figure 2.8 uses the grep and sed commands to pull out the needed current DBUS_
SESSION_BUS_ADDRESS environment variable setting from the /proc/proc_ID/environ file.
proc_ID is the process ID for the user’s gnome-shell process.

Using the notify-send utility as a global GUI user communication tool
begs for a shell script. You should already have basic bash shell scripting
experience. However, some advanced commands, such as the sed utility,
may require you to seek additional help. Consult a resource, such as the
Linux Command Line and Shell Scripting Bible (Wiley, 2015), to help you
create your own notify-send script, or use your favorite search engine to
find some shell script examples to modify.

The notify-send command has several additional options that can be useful. Unfortunately,
on some distributions, the man pages for this particular utility are either nonexistent or
sparse at best. If you need more information, use your favorite search engine to look up
additional notify-send documentation.

Using the /sbin/shutdown Command
The /sbin/shutdown command allows you to halt, reboot, or power down your system as
well as to communicate with your system users while doing so. More likely than not, you
are already familiar with this command.

As you would suspect, the shutdown command requires super user privileges for its use.
The general syntax for the shutdown command is

shutdown [options] time [wall message]

The [options] include options to halt the system (-H), power off the system (-P), and
reboot the system (-r), as well as several other useful selections. Once you’ve started a

Keeping Users Informed  45

c02.indd  09/14/2016  Page 45

shutdown process, you can typically cancel it by using the shutdown -c command. See the
man pages for additional shutdown options that you may wish to use.

If no [options] are used, the shutdown command performs differently
depending on the distribution that you are using. It may take the system
to single-user mode, although a time must be specified, or it may immedi-
ately power off the system.

The time parameter allows you to specify a time to enact the shutdown options. It takes
many formats, such as a military time layout specified as hh:mm. You can indicate the num-
ber of minutes from the current system time using a +n or n format. The shutdown com-
mand allows the now time parameter to indicate 0 minutes from now (immediately). On
some distributions, if time is not specified, a +1 is assumed. See the man pages for all of the
time specifications available on your distribution.

The [wall message] parameter lets you modify the shutdown command message sent to
any logged-in users. This parameter operates in a similar manner as the wall command,
with one major difference: it ignores the mesg setting on a terminal. Therefore, the message
can be written on any terminal whether write access is granted or not.

Keep in mind that, like the wall command, the [wall message] parameter
will only broadcast the designated message to users logged into a terminal
or using a terminal emulator. You will need another communication form
to warn other users of the impending system shutdown.

An example of using the shutdown command is shown in Figure 2.9. Both the time
and [wall message] parameters are included. This particular example is from an Ubuntu
distribution.

F i gu r e 2 . 9     Using the shutdown command with a message

Notice in Figure 2.9 that the [wall message] parameter is displayed under the system’s
shutdown communication message, “The system is going down for power-off in
5 minutes!” The various distributions display different standard shutdown communica-
tion messages, and your [wall message] may appear above or below the standard message.
Even if you do not include a [wall message] parameter, the system’s standard message is
still broadcast to terminal users.

46  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 46

For the distribution shown in Figure 2.9, the user issuing the shutdown command does not
receive a command prompt back. Therefore, in this case, instead of entering the shutdown -c
command to cancel the shutdown, the Ctrl+C key combination is needed for cancelation. When
using this method to cancel a shutdown, no messages are sent. When using the shutdown -c
command, a wall message is broadcast to terminal users. A snipped version is shown here:

shutdown -c

Broadcast message from root@localhost.localdomain ...
The system shutdown has been canceled at Wed ...

It’s obviously important to know just how your Linux distribution handles the /sbin/
shutdown command before you start using it on a live system. It would be a good practice
not only to read your distribution’s man pages but also to try out the shutdown command
on a test system.

To ensure that all of your system users receive important fluid communica-
tions, you can look outside the command line for help. Many companies
provide phone call, text, and email message broadcasting services, which
may be useful for your various needs. Use your favorite search engine to
locate such service companies. Before you do, check to see if your own
company or organization already has internal services that it can use for
these types of fluid communication methods.

There are some additional shutdown [options] that can be useful relating to the [wall
message] parameter. The -k option will disable logins and send out warning messages, but
it will not bring down the system. A snipped example of this is shown here:

$ sudo shutdown -k +20 "Please log out..."
$
Broadcast message from christine@server01
 (/dev/tty2) at 8:43 ...

The system is going down for maintenance in 20 minutes!
Please log out...
$

Notice that when using the -k option, the shutdown [wall message] looks no different
from a regular shutdown message. Keep in mind that this option does not force anyone to
log out.

Some distributions offer the --no-wall option. It allows a shutdown to proceed with no
wall messages to the terminal users. Only the super user issuing the command will receive
one message, similar to what is shown here:

shutdown --no-wall +5

mailto:root@localhost.localdomain

Keeping Users Informed  47

c02.indd  09/14/2016  Page 47

Shutdown scheduled for Wed 2016–12–02 09:02:48 EST,
use 'shutdown -c' to cancel.

Be aware that if you decide to cancel the shutdown after using the --no-wall option, the
terminal users will still receive the cancelation message. Therefore, if you used this option
on the original shutdown command and need to cancel the shutdown, be sure to suppress
the cancelation message like this:

shutdown -c --no-wall

Fluid messaging, such as using the /sbin/shutdown command’s [wall message] param-
eter, involves informing active system users concerning events that are currently happening.
There are also useful tools that allow communication automation for future events.

Looking at Static Messaging
Static messaging involves communicating with system users using files that are changed
only when the message needs to change. They can contain serious information, such as
company system access policies, or light-hearted announcements, such as when the next
company picnic is scheduled.

The system users see these messages when they log into the system. Thus this static mes-
saging form is specifically called logon messaging. These techniques are intended to be used
as primary communication methods for planned situations. There are several Linux files
that can help employ this automated communication style:

■■ /etc/issue

■■ /etc/issue.net

■■ /etc/motd

Each file serves a slightly different purpose and may not be available for all user types or
on all distributions. As with most options, its best to explore them and then decide which
logon messaging file to implement on your system(s).

Using the /etc/issue File
The /etc/issue file allows text to be displayed on the tty terminal login screens. It typi-
cally holds a company’s system access policy, and it rarely changes. It may also contain
planned upcoming system outages. When unmodified, the /etc/issue file usually simply
holds system information, such as what Linux kernel version is running. An example of this
unmodified file from a CentOS distribution is shown here:

$ cat /etc/issue
\S
Kernel \r on an \m

$

48  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 48

Notice that a few special characters are used in the file. You can use @character and
\character arrangements as long as they are supported by your distribution’s getty pro-
gram (the program responsible for managing tty terminals).

With super user privileges, you can modify the file, for example, if system users need to
be informed of an upcoming outage:

cat /etc/issue
\S
Kernel \r on an \m

##
 NOTICE

 System will be down for maintenance
 When: December 26 1:00am through 1:30am

##

#

The modified /etc/issue file causes the tty login display to look like the one shown in
Figure 2.10. Notice how the special characters are now formatted in the display.

F i gu r e 2 .10     Using a modified /etc/issue file

The /etc/issue file will not contain helpful comments for you to peruse, because all of
its contents are displayed on the login screen. You can typically type in man issue to get
help on modifying this file.

You will often need to provide your GUI users with logon messages too. If
you use the GNOME Display Manager (GDM), you can easily accomplish
this by modifying the GUI login banner. Use your GUI help application to
locate “changing the login banner” documentation. It is typically located
within any system administration guide provided. If you are using LightDM
Greeter, be aware that while changing the background image is easy, add-
ing and modifying logon greeter messages may be more difficult. Use your
favorite search engine to explore the various options currently available.

Keeping Users Informed  49

c02.indd  09/14/2016  Page 49

Using the /etc/issue.net File
The /etc/issue.net file is very similar to the /etc/issue file. Its primary purpose is
to display logon messages for remote logins. By default, it is typically enabled only for
Telnet connections. Here is an example of a default /etc/issue.net file on an Ubuntu
distribution:

$ cat /etc/issue.net
Ubuntu 14.04.3 LTS

Nothing too exciting exists in this file. It simply contains the distribution’s current
version.

You may want to check with your legal department and computer security
team on what should be displayed within your company or organization’s
login messages. For security purposes, it’s usually not a good idea to
show the Linux distribution, its version, or kernel information. Legally, it
is wise to include some message warning that unauthorized system use is
prohibited.

To enable OpenSSH to use the /etc/issue.net file, you need to make a small configura-
tion file change. Edit the /etc/ssh/sshd_config file on your system. (This configuration
file will not exist if you do not have OpenSSH installed on your system.) You should find a
line similar to the following:

#Banner /etc/issue.net

Remove the hash mark (#) from the line. If the word none is listed, instead of the issue
.net file, change it to /etc/issue.net. You will need to reboot your OpenSSH server for
the change to take effect.

The following is a modified /etc/issue.net file:

$ cat /etc/issue.net

 WARNING
Authorized access only
Violators will be prosecuted

$

When OpenSSH has been configured to use the modified /etc/issue.net file, any ssh
logins should look similar to Figure 2.11.

50  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 50

F i gu r e 2 .11     Using a modified /etc/issue.net file with OpenSSH

Using the /etc/motd File
The /etc/motd file (Message of the Day file) provides an additional logon communication
method only for tty terminal users. The /etc/motd file contents are displayed after the user
has logged into the system but before a command-line prompt is displayed.

Traditionally, the file contained more light-hearted messages, such as upcoming com-
pany events or sayings. It now typically contains upcoming system event information, often
because the /etc/issue and /etc/issue.net files are needed for displaying legal logon
messages.

On some distributions, the file pre-exists but is empty. On others, it is not installed
by default but is easily created. As you would expect, you must have super user privi-
leges to create or modify it. Here is a modified /etc/motd file located on a CentOS
distribution:

cat /etc/motd

Hello, I'm a modified MOTD file.

#

Figure 2.12 shows how the file is displayed after a user has logged into the system.
Notice that the /etc/motd file’s contents display after the user has logged in but before a
shell prompt is received.

F i gu r e 2 .12     Using a modified /etc/motd file

Backing Up the System  51

c02.indd  09/14/2016  Page 51

You can find out more about your distribution’s /etc/motd file by entering
man motd at the command line.

On some distributions, more files are involved than just /etc/motd. For example, on
Ubuntu, a file called /run/motd.dynamic is displayed at login. It is automatically created by
/etc/init.d/motd and contains items such as currently needed software package updates.

Static messaging using logon messages is just one of the many ways that you can com-
municate with system users. Fluid messaging methods also provide many helpful commu-
nication tools. There are many ways to keep Linux system users informed as part of your
basic system maintenance process.

Backing Up the System
One of the most important system maintenance tasks that you handle is protecting system
data via a backup process. All too often, companies and organizations treat this task with
little thought and planning, which can lead to financial disaster. In addition, just having
backups is useless if there are no plans in place for recovering the data.

We’ll explore developing a backup strategy in this section. We’ll also cover looking at
different backup media that can be used in your strategy and various Linux utilities associ-
ated with data backups. Hopefully, the information provided here will help you start to
develop a rigorous data backup plan, successfully implement it, and be ready to recover
data if needed.

Developing a Backup Strategy
Developing a well-thought-out backup plan is key to protecting company data. Consider
starting the data backup planning process with this question to company leaders, “Just how
valuable is your data?”

Determining the data’s value is just the first step, but it does help to guide your backup
strategy. Keep in mind that there is no single backup solution. Your plan will depend
entirely on your company’s individual data protection needs.

Because they are often used interchangeably, confusion may exist
between the terms backup and archive. When you design your backup
and archival strategy, be sure to use these terms in your plan properly. A
backup is a copy of the data that is used for safeguarding the original data.
An archive is either a copy of the data or the actual data itself, typically put
on less-expensive media and moved into long-term storage, which is often
environmentally controlled and in a different physical location. Your data
backup plan(s) may differ greatly from your data archival plan(s).

52  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 52

When developing a data backup plan, you should consider several important items.
These items will allow you to determine a budget and make decisions on what methods to
include in your backup plan. Typically, these important items include the following:

■■ Data categories

■■ Value of each data category

■■ Maximum acceptable data inaccessibility time

Data categories involve cataloging your data into groups in order to determine value. For
example, you will have a system data category that covers data necessary for system opera-
tion. You may also have data categories such as customer payment information.

Once data has been categorized and a value determined, you need to decide on the maxi-
mum acceptable amount of time that data can be inaccessible. Typically, measurements
such as recovery time objective (RTO) are used. RTO states the maximum tolerable length
of time that data (or a computer) can be unreachable.

Keep in mind that whole books have been written on creating backup and
recovery strategies. Please use the information here as a simple starting
point for your particular implementation.

When the previous key items have been determined, research and decisions on the fol-
lowing backup and recovery topics can take place:

■■ Backup media

■■ Backup storage and rotation solutions

■■ Backup types

■■ Data recovery

■■ Directories to backup

■■ Software solutions (network and local)

When you are developing this plan, none of these topics can be viewed in isolation. For
example, the backup media that you select will affect your software and storage solution
decisions. And, of course, the best backup plan is one that is reviewed and tested.

Looking at Backup Media
There are many factors to consider when you are looking at the media available for your
backup strategy, such as portability, longevity, and cost. In this section, we’ll explore differ-
ent media, focusing on these important factors:

Magnetic Tape    One of the oldest media used for backup, magnetic tape is still around and
in use. It’s known for its reliability and longevity. However, to achieve its optimal longevity,
tapes should be stored in a location with regulated temperature and humidity controls. This
is especially important if you are using them for data archival purposes. Magnetic tape
is cheap, averaging around 1 cent per gigabyte. Even though it is inexpensive, technology

Backing Up the System  53

c02.indd  09/14/2016  Page 53

companies are still working to improve it. Back in 2014, a company developed a single
magnetic tape capable of holding at least 2.5 terabytes.

Though magnetic tape has several benefits, it also has disadvantages that keep many from
using it in their backup schemes. For example, the data stored on tape can only be accessed
sequentially, which causes data restoration to take a lot longer than data stored on media
that can be randomly accessed. Also, tape is not multiuser; that is, only one process at a
time can access it.

Overall, magnetic tape is not the most popular medium for periodic data backup purposes,
but it does have its niche. It is extremely useful for data archival purposes due to its low
cost. In fact, many film studios use magnetic tape to store their various necessary individual
film formats.

When considering a data archival plan, be sure to look at a media type’s
potential obsolescence. For example, Zip disks were used for a very short
period of time. Tape has been around forever, and it may be just what you
need for archival purposes.

Optical Discs    Optical discs include CDs, DVDs, and Blu-ray discs, and they became pop-
ular as backup media because of their low cost. In addition, their small size and portability
make them easy to transport to offsite backup storage locations and/or easily store within a
company onsite vault.

For some organizations, optical media do not work as backup media due to their relative
small size. For a CD, you are limited to 700 MB of data. DVDs are typically limited to
4.7 GB. A Blu-ray disc’s capacity often falls between 25 and 50 GB, though technology
companies are working to increase Blu-ray’s data storage capabilities. Another potential
limitation for use in backups is that optical disks can be slower to write to and read from
than other backup media, such as a local hard disk drive (HDD).

HDDs    HDDs are also an old and proven backup medium. You can use them for backups,
whether their technology is IDE, SCSI, SATA, and so on. You just need to make sure that
they are partitioned and that a filesystem has been placed on them. In view of their data
capacity, HDDs are an inexpensive backup medium and they are faster to write to and read
from than some other media, such as optical disks.

The biggest problem comes if you are using a local HDD, instead of a remote one, as
your backup media. Since it is attached to your Linux system, any disaster that occurs to
the system typically occurs to the backup HDD as well. However, they can be very conve-
nient for smaller backup schemes, such as a production environment, which needs hourly
backups that are later backed up to an offsite location and can survive losing a day’s
worth of work.

Solid State Drives    Solid state drives (SSDs) can be connected either locally or remotely,
or they can be removable. Often popular for use as a disk for an operating system, their

54  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 54

biggest advantage for backups is their writing and reading speed. Though not as portable as
optical media, they still are relatively easy to transport and store.

SSDs can be prohibitive to use in a backup plan because of their cost. They are, at present,
more expensive than optical media or HDDs. In addition, their data storage durability is
unproven. It’s thought that if an SSD is not used and left without power for a long period of
time, it could potentially lose portions of its data.

It’s not just the media type that is a factor but also the media’s location during and after
a backup. If you conduct your backups locally, then you may need to transport the backup
media to another location for disaster recovery purposes. We explore this topic next.

Exploring Backup Storage and Rotation Solutions
Whether you choose a local or a remote backup solution, it may be necessary to come up
with a media storage and rotation solution. Any removable media, local or remote, will
need to be stored in a location that will protect its data. For example, if you choose optical
discs as your backup medium and store the discs in the same building as the original data,
a local fire may destroy both your original data and its backups.

Companies often store their backup media in a fireproof safe. Keep in mind
that fireproof does not guarantee that the media will not be destroyed
in a fire. The term fireproof means that an object is fire resistant up to a
certain temperature. Check any storage facilities that you use for their
fire-resistance capabilities before choosing them as a place to store your
backup media.

Depending on the backup or archive media that you have chosen, items to consider for
media storage may include the following:

■■ Temperature control

■■ Humidity control

■■ Fire resistance

■■ Security

Temperature and humidity controls are especially important for data archives on tape.
Security is also important for any media type. However your data is secured on the system,
it should have equal or higher security on its backup media. Also consider who has access
to the media storage location.

Not only should locally created backups have a media storage solution, but a rotation
schedule is important too. If media is stored off site, you need to determine how often and
when backup media will be returned locally for reuse.

Data restoration convenience can also be an issue for media stored off site. Often com-
panies address this issue by creating multiple data backups. Therefore, some media can be
stored off site in case of a big disaster, while other media can be stored carefully on site to
restore data quickly when needed.

Backing Up the System  55

c02.indd  09/14/2016  Page 55

If you are rotating backup media on and off site, don’t forget transportation security
issues. Determine how the media should be protected while in transit to the storage facility.
Some companies employ the use of an armored truck, because their data is essentially money.

If you choose a remote backup solution, your storage issues are greatly reduced and
rotation typically becomes a non-issue. A storage area network (SAN) or network-attached
storage (NAS) can be a handy solution for backing up data remotely. You can use these
as local backup solutions, but for our purposes here, they are being treated as remote
solutions.

A SAN provides block-level storage, and a NAS provides file-level storage. The primary
difference between these two, for backup purposes, is that a NAS must be on the local
area network (LAN), while a SAN can be physically miles away connected over a fast Fibre
Channel network solution. It’s easy to see right away that SAN storage has backup advan-
tages over NAS, but cost can be a factor. In addition, data encryption as the data travels
over the network should be part of your plan.

Again, the data value drives how much money you want to spend to back up, rotate, and
store your data. Keep this in mind as you review these various topics.

Cloud Storage Backup

Backing up data to the cloud may be the right solution for your company’s data. Cloud
backup and storage services, such as Amazon S3 (Simple Storage Service) and Google
Cloud Storage, offer varied and affordable cloud backup solutions.

One problem they solve right away is the need for media rotation. Many offer quick and
easy data recovery and have reasonably priced options. Some cloud services offer tools
available in Linux package repositories that can allow you to integrate their cloud storage
solutions easily into your current backup and archival scheme.

Nevertheless, cloud backup solutions may not be the right fit for your particular organiza-
tion. Data limits may be prohibitive. Encryption of the data as it travels over their network
may not be offered. Still their options are definitely worth investigating as a potential part
of your backup plan.

Looking at Backup Types
For our purposes here, backup types refer to the different methods for backing up data that
has been modified. The four most common types are these:

■■ Full

■■ Incremental

■■ Differential

■■ Snapshot

56  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 56

Each of these backup types is explored in this section. Their advantages and disadvan-
tages are included:

Full Backup    A full backup is a copy of all data, ignoring its modification date, to another
set of media. This backup type’s primary advantage is that it takes a lot less time than
other types to restore a system’s data. However, not only does it take longer to create a
full backup compared to the other types, but it also requires more storage. It requires no
other backup types in order to restore a system fully.

Incremental Backup    An incremental backup makes a copy of only data that has been modi-
fied since the last backup operation (any backup operation type). Typically, a file’s modified
time stamp is compared to the last backup type’s time stamp. This backup type takes a lot
less time to create than the other types, and it requires a lot less storage space. However,
the data restoration time for this backup type can be significant, because you first have to
restore the full backup and then restore each incremental backup. For optimization pur-
poses, you must complete a full backup periodically.

Differential Backup    A differential backup makes a copy of all data that has changed
since the last full backup. It could be considered the happy medium between full and incre-
mental backups. This backup type takes less time than a full backup but potentially more
time than an incremental backup. It requires less storage space than a full backup but more
space than a plain incremental backup. Also, restoration takes a lot less time using differ-
ential backups than incremental backups, because only the full backup and the latest dif-
ferential backup are needed. For optimization purposes, you must complete a full backup
periodically.

Snapshot Backup    A snapshot backup is considered a hybrid approach, and it is a
slightly different flavor of backup. First, the backup software makes a full data copy to
backup media, such as a SAN, and then the software uses pointers, such as hard links,
to create a reference table linking the backup data with the original data. The next time
you make a backup, instead of a full backup the backup software performs an incre-
mental backup (only modified or new files are copied to the backup media), and the
software copies and updates the pointer reference table. This saves space, because only
modified files and the updated pointer reference table need to be stored for each addi-
tional backup.

The snapshot backup type described here is a copy-on-write snapshot.
There is another snapshot flavor called a split-mirror snapshot, where the
data is kept on a mirrored storage device. When a backup is run, a copy of
all the data is created, not just new or modified data.

With a snapshot backup, you end up with the ability to go back to any point in time and
do a full system restore from that point. It also uses a lot less space than the other backup
types. In essence, snapshots simulate multiple full backups per day without taking up the

Backing Up the System  57

c02.indd  09/14/2016  Page 57

same space or requiring the same processing power as a full backup type would. The rsync
utility (described later in this chapter) uses this method.

As you can see, you have a lot to choose from as to how best to implement your backup
plan. But wait! There are even more issues to consider before you start creating a backup plan.

Looking at Data Recovery
The time comes when data needs to be restored. No one really likes to think about it, but it
does happen. Files are accidently deleted, disk drives fail, and grand disasters happen. Like
death and taxes, data recovery is inevitable.

Data restoration needs to be an integral part of your backup plan. The specific details
are heavily dependent on the other plan choices you make. However, you need to plan for
each one of the following data-restoration scenarios:

Single or Multiple Data File Recovery    This is the most common data-recovery scenario
that occurs on a system. Users accidently delete their files. Other users ruin data within
their files. It’s convenient if you can provide a solution that allows users to recover these
files themselves and provide up-front education on how to avoid these types of scenarios.

Full Partition or Disk Recovery    Hopefully, you have proper structures in place, such as
RAID disks, to avoid these kinds of problems, but they still can happen. Your RTO mea-
surements will play a big factor in the recovery plan for this scenario.

System Recovery    This is typically your worst-case situation. The entire system and all
its data must be restored. There are two flavors of this restore: you can do a full system
restore, which involves booting the OS from a live distribution and then restoring all of the
files needed for the Linux OS to work (all of the system configuration files and all the data
files). Another flavor is the configuration/data restore. This entails first reinstalling Linux
and then restoring the system configuration files and all of the data files.

Planning for each data-restoration scenario will make the actual restoration event go
much smoother. In addition to planning for data recovery, be sure to evaluate and test your
plans regularly to ensure that they meet your company’s current needs.

Exploring Directories to Back Up
When you categorize your data, one item to consider is where that data resides in your
Linux directory structure. This will help you to determine which directories to include in
the various backups. Also, the directories that you choose to back up are dependent on
your planned recovery schemes.

It’s a good idea to periodically document all of the packages installed on
the system. You can create this documentation using package utilities,
such as rpm or dpkg. This documentation is primarily for your own refer-
ence, just in case you need to know what packages were installed due to a
data recovery failure or some other terrible data disaster. It’s always better
to have too much documentation instead of too little.

58  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 58

Table 2.1 contains important directories to consider including in your backup scheme.
Your choices will vary depending on your restoration needs as well as your system’s con-
figuration. The Backup Consideration column makes suggestions based on the two system
recovery options (full system restore and configuration/data restore) covered previously.

Ta b le 2 .1     Directories to consider for backup plans

Directory Contents Backup Consideration

/bin User utility programs.

Some distributions store many of
these programs in /usr/bin.

Full system restore: yes

Configuration/data restore: no

/boot Holds configuration files used during
the system boot process.

Full system restore: only for
documentation purposes (for
example, comparing boot files
to restored boot files)

Configuration/data restore: no

/dev Contains device files for the hardware
devices system.

Full system restore: only if
distro is configured to use
static /dev files.

Configuration/data restore: no

/etc System configuration files. Yes

/home Typically, the user’s home directory.
However, depending on your system’s
configuration, others may exist
(example: /home2).

Yes

/lib Stores kernel modules and shared
libraries.

Full system restore: yes

Configuration/data restore: no

/lost+found Files saved during unplanned system
shutdowns.

No

/media Temporary mount directory for
removable media devices.

No

/mnt Temporary mount directory for
removable media devices.

No

/opt Third-party application software. Yes

/proc Virtual filesystem for running processes
and kernel information.

No

Backing Up the System  59

c02.indd  09/14/2016  Page 59

Directory Contents Backup Consideration

/root The root user’s home directory. Yes

/run A tmpfs filesystem mounted early dur-
ing the boot process and used by various
tools.

No

/sbin System administrator utility programs. Full system restore: yes

Configuration/data restore: no

/srv System-specific files for various services. Yes

/sys Virtual filesystem stores information con-
cerning and allows modification of con-
nected hardware devices.

No

/tmp Temporary files. No

/usr Stores binaries, documentation, source
code, libraries, and so on.

Yes

/var Contains log, lock, spool, mail, and temp
files.

Yes

(Some subdirectories, such as
/var/run, can be excluded.)

Some of these directories may not appear in older Linux distributions. Also, be aware
that some distributions are moving away from the File Hierarchy Standard (FHS), http:
//www.pathname.com/fhs/, or don’t fully follow it. Therefore, be sure to understand all of
the directories your particular distribution uses and what is stored in them before you create
a backup plan.

Reviewing Backup Software Solutions
Reviewing the various software solutions to use in your backup plan is best done last. Once
you have gathered and reviewed your backup and restore requirements, you’ll have a clearer
picture of what software will meet your needs.

You can group the backup software solutions into two primary categories: GUI and/or
web-based solutions and command-line solutions. Both categories offer local and network
backups. The first group to explore is the GUI and/or web-based solutions.

Amanda    Amanda (also called Amanda Network Backup) is an open-source software
backup solution that runs on a Linux host machine. At its core are command-line utilities,
such as dump and tar. It provides the ability to back up data from multiple-OS platforms to
a variety of media that include disk and tape, as well as to the cloud. Amanda offers several

http://www.pathname.com/fhs/

60  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 60

editions, including a free downloadable Community Edition and an Enterprise Edition,
which includes a nice GUI interface called Zmanda Management Console. Find out more
about this solution at www.zmanda.com/.

Bacula    Bacula is also an open-source software backup solution that is released under the
AGPL v3 license. It has five primary components (Director, Console, File, Storage, and
Monitor services), which allow flexibility in how you manage your network backups,
including web, GUI, and text-based interfaces. It provides the ability to back up data from
multiple-OS platforms to a variety of media that include disk and tape, as well as to the
cloud. However, the Bacula project doesn’t recommend that you use its product if you are
not experienced at using command-line options, such as tar and dump, due to its difficulty
in setup. Nevertheless, there are many tutorials on the Web. Also, an enterprise version
(closed-source) is available called Bacula Systems, which offers all of the various backup
types and support. Find out more about this solution at http://blog.bacula.org/ and
http://www.baculasystems.com/.

Bareos    Bareos is a fork of the Bacula backup software. It is open-source and also released
under the AGPL v3 license. The Bareos backup solution is nearly a clone of Bacula. It has
the same primary components as well as the various interfaces. Bareos does have a few
additional features, including the ability to install the Director component on a Windows
system. In addition, the Bareos developers have created their backup solution to protect
your backup data following user-specified rules. This feature may make it difficult to reuse
backup tapes with Bareos, and therefore the project developers recommend using another
solution for this particular situation. Find out more about this solution at www.bareos.org.

Duplicity    Another popular backup solution is Duplicity. It can be used from the command
line or via a GUI front end called deja-dup. It typically comes preinstalled on Ubuntu, and
it is the core behind the Unity Backups icon. It is primarily targeted at Linux/Unix clients,
but with some work you can get it to run on a Windows machine. It provides the ability to
back up data to a variety of media, as well as to the cloud. It allows you to encrypt your
backups using GNU Privacy Guard (GPG). Find out more about this solution at http:
//duplicity.nongnu.org/.

BackupPC    BackupPC is another open-source software backup solution, which is released
under the GNU GPL. It can back up Linux, Unix, Mac OS X, and Windows machines, and
it supports disk backup media. BackupPC has a web-based front end and uses rsync and
tar at its core. Find out more about this solution at http://backuppc.sourceforge.net.

You may not need something as comprehensive as the GUI and/or web-based software
solutions that are offered. Fortunately, the command-line solutions listed here are still
viable alternatives:

■■ cpio

■■ dd

■■ dump/restore

■■ rsync

http://www.zmanda.com/
http://blog.bacula.org/
http://www.baculasystems.com/
http://www.bareos.org
http://backuppc.sourceforge.net
http://duplicity.nongnu.org/

Backing Up the System  61

c02.indd  09/14/2016  Page 61

■■ star (tar with SELinux)

■■ tar

Keep in mind that some utilities used for data backups can also be used for other pur-
poses. For example, tar can be used for backups or for distributing source code, as covered
later in this chapter. In fact, several command-line backup solutions are covered in detail in
the upcoming sections.

Once you have developed and reviewed your backup strategy, be sure to test it. Also, put
into place a periodic backup plan review to ensure that it is meeting your company’s data
protection needs.

Performing Backups
If you have planned properly, backing up your data will occur on a regular and potentially
automated basis. But occasionally you will need to conduct unscheduled data backups. For
example, your organization may have a special project whose data protection needs to fall
outside the company’s normal backup plan. Whether the backup is planned or unplanned,
several command-line utilities are available for you to use in data backups.

This chapter section takes a more in-depth look at a few utilities that you can employ in
data backups (and archival). In addition, it covers verifying the backup, an important part
in any backup process.

Using tar to Conduct Backups
The tar utility has been around for quite a while. Its name is an acronym for “tape archiver,”
which shows its age. Though it’s old, it is still a very popular tool, and it is often used at the
core of various software backup solutions because of its flexibility and stability.

Using the tar command, you start out with several files that need to be backed up. You
end up with a copy of those files, stored in a single file, called an archive file. If the archive file
is compressed using a data compression utility, the compressed archive file is called a tarball.

It may be a little confusing that the tar utility’s resulting data backup files are called
archive files. However, other than that small issue, the utility is fairly straightforward in
its use.

The tar utility’s resulting archive files can be stored on any filesystem media type, not
just tapes. You can also move these archive files anywhere you choose, such as to the cloud,
but encryption is recommended first.

One reason for the tar command’s popularity is its straightforward command-line
options. For example, to create a tar archive file, you use the -c option (c as in create) as
opposed to something non-inherent like -F.

Table 2.2 lists several, but certainly not all, tar command options that you can use for
creating a data backup. For a bigger list of various tar options, be sure to consult its man
pages. In addition, you can find out a great deal more by typing info tar at the command
line.

62  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 62

Ta b le 2 . 2     tar command options for creating data backups

Long Style Option Short Style Option Option Description

–-create -c Create a tar archive file (full or
incremental, depending on other
given options).

–-update -u Append files to a pre-created tar archive
file but only those files modified since
the original archive file was created
(cannot be used with tape media).

--listed-incremental=file -g file Create an incremental or full archive
based on metadata stored in file.

--level=# Force a level # archive.

--gzip -z Compress tar archive file into a tarball
using gzip compression.

--bzip2 -j Compress tar archive file into a tarball
using bzip2 compression.

--xz -J Compress tar archive file into a tarball
using xz compression.

More than likely, you have already created tarballs using the tar command. However, a
little review may be in order. Here is an example:

$ ls
Project42.dat ProjectFileA.dat ProjectFileB.dat
$
$ tar -Jcvf Project42.tar.xz *.dat
Project42.dat
ProjectFileA.dat
ProjectFileB.dat
$

In the previous tar command, four options are used. The -J option is used so that a
tarball will be created using xz compression. The c option is used to create the tar archive.
The v option allows the filenames to be displayed as standard output as they are placed into
the tar archive. Finally, the f option designates the tar archive filename, Project42.tar.xz.
The *.dat parameter asks for all of the files with a .dat file extension in the current work-
ing directory to be included in this archive.

Backing Up the System  63

c02.indd  09/14/2016  Page 63

You can also use the “old style” tar command options. For this style,
you remove the single dash in front of the tar option. For example,
-c becomes c. Keep in mind that additional “old style” tar command
options must be “squished” together. Thus, tar cvf is valid, but
tar c v f is not.

You can use a variation of this command to create both full and incremental backups. A
simple example helps to explain this concept. Here is the process for creating a full backup:

$ ls *.dat
Project42.dat ProjectFileA.dat ProjectFileB.dat
$
$ tar -g Archive1.snar -Jcvf Project42_Full.tar.xz *.dat
Project42.dat
ProjectFileA.dat
ProjectFileB.dat
$

Notice the -g option in the preceding full backup example. The -g option creates a file,
called a snapshot file, named Archive1.snar. This snapshot file can have any name that
you desire, and it can be located anywhere within the filesystem. The .snar file extension
indicates that it is a tar archive snapshot file. A tar archive snapshot file contains metadata
used in association with tar commands for creating full and incremental backups. The
snapshot file uses file time stamps, so the tar command can determine if a file has been
modified since it was last backed up. The snapshot file is also used to determine any files
that are new or if files have been deleted since the last backup.

The previous example created a full backup of the designated files along with the meta-
data snapshot file, Archive1.snar. Now the same snapshot file will be used to help deter-
mine if any files have been modified, are new, or have been deleted to create an incremental
backup:

$ echo "Answer to everything" >> ProjectFileC.dat
$
$ tar -g Archive1.snar -Jcvf Project42_Incremental.tar.xz *.dat
ProjectFileC.dat
$

In the example, a new file, ProjectFileC.dat, is created. Again, the tar command
uses the -g option pointing to the previously created Archive1.snar snapshot file.
This time, the metadata within Archive1.snar lets the tar command know that the
ProjectFileC.dat file is a new file and that it was not included in a previous backup.
Therefore, the new tarball contains only the ProjectFileC.dat file, and it is effectively
an incremental backup.

64  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 64

The tar command views full and incremental backups in levels. A full
backup is a one that includes all of the files indicated, and it is considered
a level 0 backup. The first tar incremental backup after a full backup is con-
sidered a level 1 backup. The second tar incremental backup is considered
a level 2 backup, and so on. You can force the tar command to do a full
backup with a level n snapshot file via the --level=0 option.

You can continue to create additional incremental backups using the same snapshot file:

$ echo "42 is the answer to everything" >> ProjectFileD.dat
$
$ tar -g Archive1.snar -Jcvf Project42_Incremental_2.tar.xz *.dat
ProjectFileD.dat
$

Using these various tar options allow you to create a myriad of various backups for
small projects or entire systems. However, whenever you create data backups, it is a good
practice to verify them. Table 2.3 provides some tar command options for viewing and
verifying data backups.

Ta b le 2 . 3     tar command options for verifying/viewing data backups

Long Style Option Short Style Option Option Description

--compare
--diff

-d Compare a tar archive file’s members with
external files and list the differences.

--list -t Display a tar archive file’s contents.

--verbose -v Display the files as they are processed
(typically used when creating or restoring
data backups).

--verify -W Verify the tar archive as it is being
processed (cannot be used with
compression).

Backup verification can take several different forms. You might ensure that the desired
files are included in your backup by using the -v option on the tar command in order to
watch the files being listed as they are included in the tar archive.

You can also verify that desired files are included in your backup after the fact. Use the
-t option to list out tarball or tar archive file contents:

$ tar -tf Project42_Full.tar.xz
Project42.dat
ProjectFileA.dat
ProjectFileB.dat

Backing Up the System  65

c02.indd  09/14/2016  Page 65

$ tar -tf Project42_Incremental.tar.xz
ProjectFileC.dat
$ tar -tf Project42_Incremental_2.tar.xz
ProjectFileD.dat
$

If you move a backup file to a new location over a network, it may get cor-
rupted during the transfer. Verify that it arrived unaltered by using a check-
sum utility, such as md5sum, before and after the transfer.

You can verify files (sometimes called members) within an archive file by comparing
them against the current files. The option to accomplish this task is -d. In this first exam-
ple, no differences are found:

$ tar -df Project42.tar.xz
$

However, when a file included in this tarball is altered in the current directory and the
-d option is used again, the tar command lists the file’s differences:

$ mv ProjectFileB.dat ../
$ cp ProjectFileA.dat ProjectFileB.dat
$
$ tar -df Project42.tar.xz
ProjectFileB.dat: Mode differs
ProjectFileB.dat: Mod time differs
ProjectFileB.dat: Size differs
$
$ rm ProjectFileB.dat
$ cp ../ProjectFileB.dat ProjectFileB.dat
$ tar -df Project42.tar.xz
ProjectFileB.dat: Mod time differs
$

Another good method for verifying your backup is to verify it automatically immediately
after the tar archive is created. You can easily accomplish this by tacking on the -W option,
as shown in this snippet:

$ tar -Wcvf Project_Verify.tar *.dat
Project42.dat
ProjectFileA.dat
[...]
Verify Project42.dat
Verify ProjectFileA.dat
[...]
$

66  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 66

You cannot use the -W option if you employ compression to create a tarball. However,
you could create and verify the tar archive first and then compress it in a separate step.

You can also use the -W option when you extract files from a tar archive. This is handy
for instantly verifying files restored from backups.

Table 2.4 lists some of the options that you can use with the tar command to restore
data from a tar archive file or tarball. Be aware that several options used to create the
backup, such as -g and -v, can also be used when restoring data.

Ta b le 2 . 4     tar command options for restoring data from backups

Long Style Option Short Style Option Option Description

--extract
--get

-x Extract files from a tar archive file.

--gunzip -z Uncompress the tar archive file from a
tarball using the gunzip command.

--bunzip2 -j Uncompress the tar archive file from a
tarball using the bunzip2 command.

--unxz -J Uncompress the tar archive file from a
tarball using the unxz command.

You have most likely extracted files from tar archives and tarballs. However, a little
review may be helpful. Here is an example where the incremental backup files, created ear-
lier in this chapter, are restored to a new directory:

$ mkdir test
$ cd test
$ tar -Jxvf ../Project42_Incremental.tar.xz
ProjectFileC.dat
$
$ tar -Jxvf ../Project42_Incremental_2.tar.xz
ProjectFileD.dat
$

Unfortunately, chapter space is limited. We’ve only scratched the surface of all of the tar
command capabilities that can be used for backups, such as using tar backup parameters
and/or creating backup and restore shell scripts using the tar command. Be sure to take
a look at GNU tar website, https://www.gnu.org/software/tar/manual/, to learn more
about this popular command-line backup utility.

Working with Magnetic Tape
As covered earlier in this chapter, magnetic tape is still useful for storing data because it is
inexpensive: measured in price per byte (or terabyte) ratios. It is often used for data archival
purposes because of this low cost.

https://www.gnu.org/software/tar/manual/

Backing Up the System  67

c02.indd  09/14/2016  Page 67

Each magnetic tape can contain several backups, one after the other. However, a tape
is a sequential access medium, not a random access device like a hard drive. Think of a
series of tar archive files lined up on a long, narrow road. To reach a tar archive file near
the road’s end, you must walk down that road, past the other tar archive files, to locate that
particular file. If after you locate that file you need a tar archive file that’s near the road’s
beginning, you must walk back down the road in the opposite direction (rewind) to reach
that archive file. This paints a fair picture of magnetic tape access.

A magnetic tape contains special markers, such as tape beginning, tape end, and file
mark (used between the backup files), as shown in Figure 2.13. These markers help the pro-
grams using the tape.

F i gu r e 2 .13     Depiction of magnetic tape files

tarball file #1 FILE
MARK tarball file #2

For creating archives and backups, SCSI tape drives are popular because they are con-
sidered the most reliable. Linux interfaces SCSI tape devices to the system via two primary
device files, /dev/st* and /dev/nst*, as shown in a snipped listing here:

$ ls -ld /dev/st[0–7]
crw-rw----. 1 root tape 9, 0 Dec 5 08:38 /dev/st0
crw-rw----. 1 root tape 9, 1 Dec 5 08:38 /dev/st1
[...]
crw-rw----. 1 root tape 9, 1 Dec 7 08:38 /dev/st7
$ ls -ld /dev/nst[0–7]
crw-rw----. 1 root tape 9, 128 Dec 5 08:38 /dev/nst0
crw-rw----. 1 root tape 9, 129 Dec 5 08:38 /dev/nst1
[...]
crw-rw----. 1 root tape 9, 135 Dec 7 08:38 /dev/nst7
$

The primary difference between a /dev/st* tape device file and a /dev/nst* device
file is that the st SCSI device is an automatically rewinding tape device and the nst SCSI
device is not. In other words, when the program you are using with the tape device is done,
it will automatically rewind the tape back to its beginning or not. Automatically rewind-
ing a tape at an operation’s end was more popular when magnetic tapes were used in daily
backup situations.

Though rarely used nowadays, a /dev/ht* device file refers to an
automatically rewinding PATA-attached tape device. Also, a /dev/nht*
device file refers to a PATA-attached tape device that will not automati-
cally rewind.

68  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 68

You can find out more about SCSI magnetic tape devices by typing man st at the com-
mand line. In addition, the lsscsi command (if installed on your system) will display
information about all of your SCSI devices, including SCSI magnetic tapes.

To control a tape and use it with an archive/backup program, employ the mt command.
You need either super user privileges or tape group membership to use the mt program. The
general syntax for this command is

mt [-f device] operation [count] [arguments]

The -f device specifies the tape drive device that you are controlling. You can substi-
tute -t device. Also, if you have the environment variable TAPE defined, you can leave it
off, which is why -f device is considered optional.

Often the mt command is not installed by default. If you find this to be the
case on your distribution, you can locate it in the mt-st software package.

A few of the more relevant tape device operation choices are listed in Table 2.5. Not
all operation choices are valid for all tape drive types. For a more complete list, see the mt
command’s man page.

Ta b le 2 .5     mt operations for managing tape devices

Operation Operation Description

status Display tape status information.

load Load tape (most tapes are automatically loaded when inserted into
a tape drive).

erase Erase all current data on tape.

fsf count Skip count files on tape (go forward), and position tape head on
the next file’s first block.

bsf count Skip count files on tape (rewind), and position tape head on the
previous file’s last block.

tell Get current tape head position.

eod Go to end of current data on tape.

rewind Rewind tape.

eject Rewind and unload tape (if needed).

offline Rewind and unload tape (if needed).

Backing Up the System  69

c02.indd  09/14/2016  Page 69

Here is a simple snipped example of using the mt command. A tape is loaded within a
SCSI tape drive, represented by device file /dev/st0, and the mt command is used to check
its status:

mt -f /dev/st0 status
SCSI 2 tape drive:
File number=0, block number=0, partition=0.
[...]
 BOT ONLINE IM_REP_EN
#

The ONLINE status code shown indicates that the tape drive has a tape loaded and that
it’s ready for operation. The BOT status code indicates that the tape is positioned at the
beginning of the first file. (In this case, no files have been loaded to the tape yet, so the tape
head is positioned at the tape’s beginning.)

Now that a tape is loaded and ready, you can use the tar command to back up files to
the tape. What is actually happening is that a tarball file is placed on the tape, as shown in
this snipped example:

tar -Jcvf /dev/st0 /home/chris/Project
tar: Removing leading '/' from member names
/home/chris/Project/
/home/chris/Project/ProjectFileA.dat
[...]

/home/chris/Project/Project_Verify.tar
#

Since this is an automatically rewinding tape device, /dev/st0, the tape will rewind
when the backup operation is complete.

If you have single- or multi-drive SCSI media changer devices, you’ll
use the mtx command to load and unload the tapes and not the mt
command.

The files can later be restored, if desired, from the tape also using the tar command.
Of course, you first have to load the appropriate tape into the tape drive. Here is a snipped
example of restoring the files to a different directory from tape:

mkdir temp
cd temp

70  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 70

tar -Jxvf /dev/st0
/home/chris/Project/
/home/chris/Project/ProjectFileA.dat
[...]

/home/chris/Project/Project_Verify.tar
#

It’s possible that you may never have to deal with magnetic tapes. But if you do, the tar
and mt commands are worthy utilities to employ.

Using rsync to Conduct Backups
The rsync is a nice utility that allows you to perform backups to disk drives locally or to
those connected over a network. Not only it is lightning fast, but you can easily encrypt
your file transfers tunneling through OpenSSH.

It’s fairly simple to conduct an rsync backup locally. Popular option combinations such
as either -av or -ah, allow you to back up files to a local location quickly, as shown in
Figure 2.14.

F i gu r e 2 .14     Using rsync locally

The -a option is called the archive option, and it is equivalent to using the -rlptgoD
options. As you might suspect, adding -v increases the output’s verbosity, while -h makes
the output more human readable. The --progress option is nice if you like to see a progress
report as the files are being backed up. For other rsync options, see the man pages.

To use rsync over a network and have the transfer be encrypted, both local and remote
machines must have rsync and OpenSSH installed. Figure 2.15 shows a snipped example of
using this method.

Backing Up the System  71

c02.indd  09/14/2016  Page 71

F i gu r e 2 .15     Using rsync over a network

If you specify your remote host destination via rsync://host:/, you are
not using encryption. Be sure to use host:/ or user@host:/ to transfer
files through OpenSSH.

You can do much more with rsync than just partial file backups. You can also set up
full backups. In addition, employing hard links lets you use rsync for incremental backups
as well. (Use your favorite search engine to find articles on using rsync and hard links to
create incremental backups for your data.)

Using dd to Copy Data
Another command-line utility that you can use for data backups is the dd command. It’s pri-
marily used to create a low-level copy of a hard drive, and it is often used in digital forensics.

Don’t use dd to back up or restore a disk that is currently mounted to a
Linux system. Doing so could cause corruption.

The command itself is fairly straightforward. It is a handy utility for copying damaged
disks. Its general syntax is as follows:

dd of=output-device if=input-device

The output-device is either an entire drive or a partition. The input-device is the same.
Just make sure that you get the right device for out and the right one for in; otherwise, you
may unintentionally wipe data!

If you are getting rid of a disk, you can also use the dd command to zero-out the disk, as
shown here:

dd of=/dev/sdc if=/dev/zero count=10

The if=/dev/zero uses the zero device file to write zeros to the disk. The count option
is added so that this action is completed 10 times in order to zero-out the disk thoroughly.
This particular task will take a long time to run, and it’s still better to shred any disks that
will no longer be used by your company.

rsync://host:/

72  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 72

For various additional options that may be useful for many other applications, see the
man pages.

Automating Backups with Scripts
With anything repetitious, like backups, it makes sense to automate the activity as much as
possible. Shell scripts can be very handy to use in this particular case.

In the certification objectives, the /bin/sh file is mentioned. Be careful in
using this file in your shell scripts’ hashpling. It may simply be a pointer
to /bin/bash, but on some distributions it points to /bin/dash. It’s best
to check the /bin/sh file’s long listing before using it in scripts or avoid it
altogether by using your desired shell in the script’s hashpling.

Once you have your backup scripts working and tested, consider running them with
cron (or anacron) to ensure that backups are never forgotten. Since backups are a popular
shell script, use your favorite search engine to find various examples located on the Internet.
You may be able to find something that will meet your needs with only a few modifications.

Installing Programs from Source
There will be times when you need or want to install a program from source. It may be that
the program is not available in a repository, or that you would like to view the source code
before installing the program, or that you are considering writing a new program based on
this one, and so on. When that time comes, it’s handy to know the basic steps required:

1.	 Download the installation file.

2.	 Unpack the installation file.

3.	 Read the installation’s documentation.

4.	 Prepare for compiling.

5.	 Compile the program.

6.	 Move the binaries to appropriate locations.

Programs you run, sometimes called binaries or machine code, were origi-
nally source code programs, written in a programming language “easy”
for humans to understand. A source code program is compiled and/or
interpreted into machine code, and it becomes an executable program. To
modify an executable program, you need its source code version.

These steps are fairly straightforward, and they are typically required by most programs
obtained in this manner. However, be aware that it is ultimately up to the program’s creator

Installing Programs from Source  73

c02.indd  09/14/2016  Page 73

as to how the installation takes place, so you may have to modify your actions to install a
particular program successfully. And, of course, you need super user privileges to install
programs this way.

Obtaining the Installation Files
There are many different ways to obtain the installation files for a particular program.
Installation files typically come packaged in a tarball format. Often, the program’s creator
maintains a web presence that will direct you to the program’s tarball download source.

It’s usually a good idea to get all of your system’s software up to date prior
to installing a new program. For example, on a RHEL-based system, use
yum update, and on a Debian-based system, use sudo apt-get update
and then sudo apt-get dist-upgrade.

Once you locate the program’s tarball download source, use your choice of methods to
download the file. You can use a direct HTTP or HTTPS download via your favorite web
browser, or, if available, you can download via a torrent client, or you can use the wget
command-line utility, and so on.

The proper final location for original source code is in a /usr/src/ subdi-
rectory. However, during the installation process, the source code should
temporarily reside in a home or temporary directory.

Unpacking the Installation Files
To unpack the installation files, you simply extract them from the program’s tarball file. For
program distribution purposes, the compression method typically used is gzip compres-
sion, as indicated by a tarball file having a .tgz or .tar.gz extension. However, it is not
unheard of for other compression methods, such as bzip2 or xz, to be used.

For demonstration purposes in this chapter, we’ll install the curl program (http://curl
.haxx.se) from source. Its tarball uses gzip compression, and it is shown here:

ls
curl-7.46.0.tar.gz

To decompress and unpack the installation files from the tarball, use the tar command
with the appropriate extraction and decompression options. If you don’t remember the
appropriate tar command extraction and decompression options, consult the man pages.

Tab key command completion of the tarball filename can be very helpful
here. Often these installation file tarballs have long names with version
numbers attached.

http://curl.haxx.se
http://curl.haxx.se

74  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 74

Here is a snipped example of extracting the installation files from the curl program’s
tarball:

tar -zxvf curl-7.46.0.tar.gz
curl-7.46.0/
curl-7.46.0/projects
[...]
curl-7.46.0/Makefile.in
#

Once the installation files are extracted, you should see a directory created within your
current working directory. This directory contains the installation files that you need to
complete this program’s installation on your system.

ls -F
curl-7.46.0/ curl-7.46.0.tar.gz
#

Once you change your present working directory into this new directory, you should see
several files, such as README or README.txt, configure, Makefile.in, and so on. Every pro-
gram’s installation files will be slightly different.

Reading Installation Documentation
It’s fairly clear what you should do with the README or README.txt file...read it! This is the
general documentation file, and it will often have installation instructions within it (though
installation instructions are sometimes located in a file called INSTALL). The most impor-
tant reason for reading the README and INSTALL files is that the program author may have
chosen to pursue a non-standard installation course. Hopefully, the author will document
the course you should pursue in order to be successful.

Table 2.6 provides a brief description of files that you should consider reading before
installing the software. Be aware that not all programs will have all of these files. Also,
there may be additional files included or files with slightly different names.

Ta b le 2 .6     Installation files to read prior to installing a program

Typical Filename Purpose

README General documentation and installation instructions

INSTALL Installation instructions

COPYING Software license

Installing Programs from Source  75

c02.indd  09/14/2016  Page 75

Typical Filename Purpose

RELEASE-NOTES Features and bug fixes included in the program version

NEWS Features and bug fixes included in the program version

AUTHORS Program creator(s) and contact information

Another reason to read these files is that a program author will often document any
needed dependencies. Unlike installing with utilities like yum or apt-get, software depen-
dencies are not automatically obtained and installed as part of this process. You have to do
it manually.

You’ll need the correct compilers (software that compiles programs)
installed on your system for the source code installation to work prop-
erly. It’s typically helpful to go ahead and install these potentially needed
development tools ahead of time. On a Red Hat–based system, type yum
groupinstall "Development Tools", and on a Debian-based system,
type sudo apt-get install build-essential at the command line.

Compiling Preparation
In this next basic step, you run a standard script that checks the system’s configuration and
sets up preparations for the compiling step. The script that you run is configure, and it
should be one of the files within the program’s installation file directory.

For a security fix to a source-code installed program, you may need to
employ the patch command and compile the program again. A patch file
is created using the diff command on the new source code file and the
original source code file. Afterward, this patch file is applied to the original
source code using the patch utility before recompilation. For more infor-
mation, type man patch at the command line.

Typically, when you run the configure script, it will look for both optional and manda-
tory dependencies and settings. The script will check to see if you have the proper compiler(s)
installed, check for any necessary program dependencies, check for any optional dependen-
cies, and create a file called Makefile. It can do some other checking and setup as well.

The Makefile is created (or updated) by the configure script using what it finds on your
system as well as the contents of the Makefile.in file stored within the program’s installa-
tion file directory.

76  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 76

Many configure scripts have a help utility that provides a list of options
that you can use with the script. Type ./configure --help at the
command line to view these options.

Because a configure script can produce a great deal of output, it’s a good idea to pipe it
into a file, using tee, as well as to watch its display on the terminal screen. Using the curl
program’s configure script as an example, here is a snipped listing of its execution:

cd curl-7.46.0
./configure | tee ../curl_configure.log
checking whether to enable maintainer-specific por[...]
checking whether make supports nested variables... yes
[...]
HTTP2 support: disabled (—with-nghttp2)
Protocols: DICT FILE FTP GOPHER HTTP IMAP POP3 [...]
#

Typically, if the configure script finds what it needs, it ends successfully. If it runs into
any serious problems, such as not finding a particular required library or compiler installed
(mandatory requirements), tackle those problems first and then rerun the configure script.

Compiling the Program
At this point, you are ready to compile the source code into binary. The command to do so
is make. The make command uses the Makefile file, which was either created or modified in
the previous step, as a guide.

The following is a snipped example of compiling the curl program. Notice again that
the output is preserved by piping it into the tee utility.

make | tee ../curl_make.log
Making all in lib
make[1]: Entering directory '/root/curl-7.46.0/lib'
make all-am
[...]
make[1]: Leaving directory '/root/curl-7.46.0'
#

Now that the program’s source code is compiled, all that is left to do is to finish the
installation process.

Completing the Installation
To complete the installation, you just need to run the make install command. It typically
creates any needed program directories, moves the program binaries and any supporting

Installing Programs from Source  77

c02.indd  09/14/2016  Page 77

files, such as documentation and program libraries, to their proper locations, and sets
proper permissions settings for the files.

Using the curl example, here is a snipped example of using make install. Notice again,
it is piped through the tee program to preserve its output if needed:

make install | tee ../curl_make_install.log
Making install in lib
make[1]: Entering directory '/root/curl-7.46.0/lib'
[...]
make[1]: Leaving directory '/root/curl-7.46.0'
#

Once the program is installed, you can remove the installation files’ direc-
tory and its contents. But you may want to hang onto the program’s tarball,
because an uninstall program that may prove useful is often included if
you need to uninstall this program. Also, consider storing the unpacked
source code in a /usr/src subdirectory.

Once everything is moved to its appropriate location, try out your new program! Here
the curl program is used with its version option as a test:

curl --version
curl 7.46.0 (x86_64-pc-linux-gnu) libcurl/7.46.0
[...]
#

In Exercise 2.1, you’ll install a popular integrated development environment called
Geany from source code.

E x e rc i s e 2 .1

Installing the Geany IDE from Source Code

To install the Geany integrated development environment, follow these steps:

1.	 Log in as an ordinary user to a Linux system connected to the Internet, and open
your favorite web browser.

2.	 Go to http://www.geany.org, and find the installation tarball to download. It will
have a name similar to geany-#.#.tar.gz, where # is a version or release number.

3.	 Using your favorite method, download the Geany installation tarball.

4.	 Once the tarball is downloaded, log onto a user account that has super user
privileges.

http://www.geany.org

78  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 78

E x e r c i s e 2 .1   (c ont inue d)

5.	 You will need to install compilers and a few other items. If you are on a Red Hat–
based system, such as CentOS or Fedora, type yum groupinstall "Develop-
ment Tools" and press Enter. If you are on a Debian-based distribution, such as
Ubuntu, type sudo apt-get install build-essential, press Enter, and input
the appropriate password. Answer appropriately any questions that arise during the
installation to install these tools.

6.	 Copy the downloaded Geany tarball to your current directory.

7.	 Type tar -zxvf geany-#.#.tar.gz to unpack the tarball, where # is the version
or release number of the Geany tarball. (Keep in mind that if the file does not end in
.tar.gz, you will not only need to change the file extension in your command, but
you may also need to change your tar command options in order to use the correct
decompression method.)

8.	 Type ls -F to view the name of the Geany directory that contains the installation
files.

9.	 Type cd geany-#.# and enter the correct numbers in place of # to move your pres-
ent working directory into the newly created Geany directory.

10.	 Read the README and INSTALL files. You may find that additional packages need to be
installed in the next step besides the ones listed.

11.	 Install the needed GTK2 library and, on a Debian system, install the intltool pack-
age as well. If you are on a Red Hat–based system, type yum install gtk2-devel
and press Enter. If you are on a Debian-based system, type sudo apt-get install
gtk+2.0 intltool and press Enter. Answer appropriately any questions that arise
during the installation to get these packages installed.

12.	 Prepare for compilation by typing ./configure and pressing Enter. If you receive
any missing dependency errors, install any missing dependencies and run the con-
figure script again.

13.	 Compile the Geany program by typing make and pressing Enter.

14.	 Use super user privileges to move the binaries and other files to their appropriate
locations by typing make install or sudo make install (whichever command
is appropriate for your super user situation) and pressing Enter.

15.	 Check the Geany program’s version by typing geany -V and press Enter. If all is
well, you should get a response.

16.	 Try out your Geany IDE by logging into the GUI as an ordinary user. Open a terminal
emulator, type geany, and press Enter. If your program was successfully installed,
you should see the Geany IDE window.

Managing Resource Usage  79

c02.indd  09/14/2016  Page 79

Managing Resource Usage
Managing your system’s resource usage involves troubleshooting resource problems as they
occur. However, measuring via monitoring and predicting future resource usage can help
minimize resource problems ahead of time. Unfortunately, too many system administrators
spend more time on troubleshooting and less time on monitoring/predicting.

This section provides a look at the various tools that you can use for all three activi-
ties. It also addresses when these tools should be used. In addition, it covers resource usage
troubleshooting and capacity planning.

Measuring Resource Usage
There is an old saying that states, “You can’t manage what you can’t measure.” This saying
is appropriate for measuring resource usage. You must measure resources often, accurately,
and thoroughly to gather the necessary data to manage these resources properly. In addi-
tion, you must measure accurately before you can begin to troubleshoot or capacity plan
resource usage.

Resource measuring via monitoring comes in a couple of different forms. Sometimes you
just need to keep an eye on things. At other times, you are monitoring data to find out why
certain problems are occurring. Also, you may need to be regularly collecting data for sys-
tem capacity planning.

Entire books have been written on the subjects of resource troubleshoot-
ing, capacity planning, and monitoring resource usage. This section will
get you started in the right direction, but you may need to explore other
resources to complete your education.

It can be a little overwhelming trying to track all of the various system resource data sta-
tistics. Here are a few key items for which you should be measuring and collecting data on
each system/network you manage:

■■ System uptime

■■ CPU usage and load statistics

■■ Memory usage and swap statistics

■■ Disk I/O and load statistics

■■ Network I/O and load statistics

■■ Firewall throughput

■■ Router throughput

■■ Network bandwidth usage

80  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 80

There will be times, however, when you many need to monitor special items on your
system for troubleshooting, specific application growth, or special capacity planning. For
example, you may need to determine if the irqbalance utility (which distributes interrupt
requests among the system’s multiple processors) helps to improve your system’s perfor-
mance. In this case, tracking each processor core’s interrupt request load is necessary both
before and after installing the irqbalance utility.

Fortunately, on a Linux system, you can employ many measurement command-line
tools. Table 2.7 lists a few along with a general description of each.

Ta b le 2 .7     Command-line utilities for resource utilization monitoring and recording

Utility Description Display Type Monitors

free Shows the amount of free/used
physical and swap memory.

Static Memory

htop Enhancement of the top utility, which
allows horizontal as well as vertical
scrolling, and uses function keys for
process control.

Dynamic CPU Memory
Process
States Uptime

iftop Similar to the top utility, it shows
current network traffic information,
including DNS.

Dynamic Network

iostat Shows device I/O loading summary
broken down per device.

Static or Dynamic CPU

Device I/O

iotop Similar to the top utility, it shows
current I/O usage by processes (or threads).

Dynamic Device I/O

ip The -s link option and route option will
display network and routing statistics.
(Replaces the netstat command.)

Static Network

Routing

iptraf Shows network information, and it is
menu driven.

Dynamic Network

lsof Shows open files and network
connections by process.

Static Network

Process map

mpstat Shows multiple processor statistics. Static or Dynamic CPU

mtr Shows routing information for the
URL parameter.

Dynamic Routing

netstat The netstat -i option and -r option
will display network and routing
statistics. This command is considered
obsolete. Use ip instead.

Static Network

Routing

Managing Resource Usage  81

c02.indd  09/14/2016  Page 81

Utility Description Display Type Monitors

ntop Gathers network statistics that can
be viewed via a web browser via
port 3000.

Dynamic Network

pmap Shows a processes map for the PID
parameter.

Static Process map

ps Shows current process information,
including CPU consumption.

Static CPU

Process states

pstree Shows current processes in a tree format. Static Process map

sar Acronym for System Activity Reporter: a
multiple resource monitoring utility that
collects and displays a wide variety of
resource usage information.

Static or Dynamic CPU

Memory

Network

Device I/O

ss Displays socket statistics directly from
kernel space. Provides more information
than the netstat utility.

Static Network

tcpdump A packet analyzer/sniffer that shows
designated network interface captured
packet content descriptions.

Dynamic Network

top Multiple display panels that show
various resource usage data such as
processes consuming the most CPU.
Display can easily be changed on the fly.
The atop and htop utilities are enhance-
ments of the top command.

Dynamic CPU

Memory

Process states

Uptime

uptime Shows how long the system has gone
without a reboot, load averages, and
current number of users.

Static Uptime

vmstat Shows swap (virtual memory)
performance.

Static or Dynamic Memory

w Shows current user information,
including CPU consumption.

Static CPU

Process states

Your distribution may have additional utilities installed than those listed in
Table 2.7, which you can employ for resource monitoring and system per-
formance activities. A quick way to find these utilities is by typing man -k
monitor and man -k performance at the command line.

82  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 82

Not every utility in Table 2.7 is installed by default on every distribution. Also, keep in
mind that several full-resource-monitoring software solutions are available and are covered
later in this chapter.

Several utilities in Table 2.7 have additional resources that they monitor other than the
abbreviated types listed in the Monitors column. See the man pages for a full description
of these various utilities. Be aware that there are many more monitoring command-line
utilities available to install. Open your favorite web browser, and type in the search words
Linux monitoring for additional monitor utility lists.

You can turn any static display utility listed in Table 2.7 into a dynamic
display via the watch command. The watch command will rerun the util-
ity every two seconds (by default), but you can modify this interval. For
example, to rerun the iostat command every five seconds, type watch
-n 5 iostat and press Enter. The iostat command will rerun every five
seconds until you press Ctrl+C. Find out more about watch by viewing its
man pages.

The sar (acronym for System Activity Reporter) utility is a special one in that it can col-
lect data over a long period of time and provide a great deal of it. Because of its ease of use,
it’s also a good tool for those new to resource monitoring. It’s typically installed by default
on most distributions, but if for some reason you don’t find it on yours, it is located in the
sysstat package.

The sar utility uses data stored by the sadc utility in /var/log/sa/ and, by default, dis-
plays data from the current file, though you can change this behavior via certain command
options. Used without any options, the sar command will display today’s stored CPU usage
information in 10-minute intervals, as shown in this snipped example:

$ sar
[...]
12:20:01 PM CPU %user %nice %system %iowait %steal[...]
12:20:01 PM all 1.97 0.00 1.84 0.22 0.00[...]
12:30:01 PM all 0.29 0.00 1.37 0.16 0.00[...]
[...]

You can show current CPU information and change the displayed intervals as well. In
this snipped example, CPU usage is shown by sar four times and is spaced one second
apart:

$ sar 1 4
[...]
06:49:50 PM CPU %user %nice %system %iowait %steal[...]
06:49:51 PM all 1.05 0.00 6.32 0.00 0.00[...]
06:49:52 PM all 1.02 0.00 2.04 0.00 0.00[...]

Managing Resource Usage  83

c02.indd  09/14/2016  Page 83

06:49:53 PM all 0.00 0.00 1.03 0.00 0.00[...]
06:49:54 PM all 0.00 0.00 4.08 0.00 0.00[...]
Average: all 0.52 0.00 3.35 0.00 0.00[...]
$

The sadc (acronym for System Activity Data Collector) utility collects various system
resource usage data for sar. It stores the data in the /var/log/sa/ directory in the file
sadd, where dd is equal to the day of the month, by default.

If you run sar with a particular option, such as networking or disk informa-
tion, and you get the response “requested activities not available in
file,” you will need to modify your sadc configuration. On Red Hat–based
systems, modify the file /etc/sysconfig/sysstat and add the desired
option to the SADC_OPTIONS line. On a Debian-based distribution, modify
the file /etc/default/sysstat and, within the sadc section, either add the
option to the SA1_OPTIONS line or make sure that ENABLE="true" is set.

The sa1 utility stores system activities in binary data files. The sa2 creates a daily sum-
mary of sa1’s collected data. Both sa1 and sa2 are typically run via cron.

Keep in mind that these utilities work together to process and display only local system
information. To find out more information on sar, sadc, sa1, and sa2, take a look at their
man pages.

Predicting Resource Usage
Predicting resource usage is formally called capacity planning. Capacity planning involves
the following steps:

1.	 Understanding the system users’ current needs

2.	 Monitoring the current system’s usage of resources

3.	 Gathering future direction and anticipated needs of the system users and applications

4.	 Making predictions and decisions based on the information gathered

Capacity planning predictions need to have documented proof of both current resource
usage and the current resource usage growth rate through time. Without this data, the pro-
jected resource usage growth and anticipated capacity break point of a configuration will
be grossly inaccurate.

There are several full-resource-monitoring software solutions that you can use to
collect data and produce the needed graphs. Generally, these solutions are divided into
presentation software, which produces useful charts and/or graphs, and collector software
(also called a data logger), which gathers resource usage data. You’ll find that many of
these software products have the ability to work together. A few of these are covered here:

Cacti    Cacti is a resource usage presentation software solution, which provides the ability
to produce usage graphs from templates. It is a front end to RRDTool. Cacti stores its data

84  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 84

in a MySQL database, and its front end is handled via PHP. It is often used for monitoring
network traffic because it can handle rather complex networks. Also, it allows this gathered
data to be used in MRTG graphs. Find out more about Cacti at http://www.cacti.net.

collectd    collectd is a daemon that allows you to monitor IT infrastructure usage. Written
in C for portability, it collects local (and remote with a network plugin) system statistics.
The collectd daemon is fairly easy to configure. You configure the data gathered and how it
is gathered via plugins and a few other settings within the collectd.conf configuration file
located in /etc/ or /etc/collectd/, depending on your distribution. The configuration
file’s LoadPlugin options determine which plugins to use in collectd.

Other utilities are needed to display gathered statistics. If a utility is not installed by default
on your Linux distribution, it is in the collectd package. You can get additional details on
collectd at https://collectd.org/.

MRTG    This software solution’s name is an acronym for Multi Router Traffic Grapher,
which nearly says it all. It collects and graphs network traffic data. Written in Perl for por-
tability, it can graph just about any network device’s statistics. MRTG produces HTML
pages that deliver a dynamic network traffic graph. It can be used in conjunction with
RRDTool as well. Find out more about this solution at http://oss.oetiker.ch/mrtg/.

Nagios    This very popular software solution suite comes in two flavors: FOSS and propri-
etary. You’ll have to pay for the Nagios XI software solution, but the Nagios Core product
is free. Nagios Core provides monitoring of systems, network devices, and various services.
It uses a plugin that allows you to create customized service checks if desired.

Nagios Core provides a centralized view for all monitored items throughout your company.
There is a web interface for viewing current and collected data and logs of previous out-
ages, events, alerts, and so on. Nagios Core is primarily a data collector, and it doesn’t
provide usage or performance graphing. However, the collected data can be used with
third-party graphing tools, such as PNP4Nagios and nagiosgraph.

One of Nagios Core’s best features is that it can send out problem alerts via email or text
messaging. You can even incorporate your own custom alert script. Find out more about
Nagios Core and the other Nagios products at http://www.nagios.com.

There is also a Nagios community that provides an ISO-certified CD-ROM
for CentOS, including the tools most often used in Nagios. This allows you
to install and set up Nagios quickly for monitoring. The Nagios community
website is http://www.fullyautomatednagios.org/.

Icinga    Icinga started as a Nagios (described earlier) fork. It is now split into two different
products, Icinga1 (the original Nagios fork) and Icinga2 (a total rewrite). Icinga is compat-
ible and similar to Nagios, but incorporates a different (some feel it is better) user interface,
and a quicker development cycle. Find out more about Icinga products at www.icinga.org.

RRDTool    An industry standard, RRDTool stands for Round-Robin Database Tool,
because its collected resource usage data is stored in a round-robin database. This

http://www.cacti.net
https://collectd.org/
http://oss.oetiker.ch/mrtg/
http://www.nagios.com
http://www.fullyautomatednagios.org/
http://www.icinga.org

Managing Resource Usage  85

c02.indd  09/14/2016  Page 85

database’s size doesn’t change because the oldest data is deleted whenever newer data is
stored in it. It does provide tools on how to use this data in order to produce resource
usage graphs. However, it is often used in other utilities, such as Cacti, MRTG, and
Nagios. Additional information on RRDTool can be found on its official website at
http://www.rrdtool.org.

By using one or more of these full-resource monitoring software solutions, you can pre-
dict growth and avoid problems with resource exhaustion. In addition, these programs,
as well as the command-line tools covered earlier, allow you to find current performance
bottlenecks and diagnose resource usage problems, as covered next.

Troubleshooting Resource Usage
Once you have monitoring resource usage and capacity planning in place, you will mini-
mize having to troubleshoot resource usage. However, when troubles do come, they will be
much easier to solve.

Besides monitoring your resources, you should understand how these resource-monitoring
software solutions interact. A particular resource symptom may be directly related to a
problem with another resource. Therefore, it’s important to correlate system symptoms
with the likely cause of the problem. The following are a few items to consider as you trou-
bleshoot resource usage:

Memory    Memory (also called RAM) is divided into 4 Kb chunks called pages. When the
system needs more memory, using a memory management scheme, it takes an idle process’s
memory pages and copies them to disk. This disk location is a special partition called swap
space or swap or virtual memory. If the idle process is no longer idle, its memory pages
are copied back into memory. This process of copying memory pages to and from the disk
swap space is called swapping.

You can view memory statistics on a system using command-line tools such as free, sar,
and vmstat. If your system does not have properly sized memory, you should see high
RAM usage. In addition, due to these memory issues, the system will increase swapping
and result in increased disk I/O. The vmstat tool is handy in this case, because it allows
you to view disk I/O specific to swapping as well as total blocks in and blocks out to
the device.

Be aware that RAM bottlenecks keep processor(s) usage artificially low.
If you increase the RAM on your system, your processor(s) loads will also
increase.

Processes    It is crucial to identify what processes are using what resources, especially if a
particular resource is having problems. You may need to determine if resource problems are
causing the process problems or vice versa. The ps, psmap, and pstree utilities can be use-
ful in correlating particular processes with particular resource problems.

http://www.rrdtool.org

86  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 86

For example, if a disk is experiencing unusually high I/O, it may be due to a particular
process and it may be causing a group of processes performance troubles. This is called I/O
blocking. In this particular example, you would find these processes in what is called an
uninterruptible sleep. The vmstat utility’s b column displays how many processes are in this
state. To determine the actual processes, use the ps utility and look for a D process state.

Don’t forget that the /proc directory has lots of useful information con-
cerning a running system and its processes.

CPU    For troubleshooting and monitoring purposes, you need to understand your CPU’s
hardware. First, determine how many CPUs are on your system. For each CPU, you need to
know the number of processor cores, whether or not hyper-threading is used, cache sizes,
and so on. The /proc/cpuinfo file and the lscpu commands can be helpful here.

The various CPU items to watch include idle time, average use loads, queue length, inter-
rupt request loads, and so on. The uptime, top, sar, and mpstat are a few of the utilities to
help you here.

Device I/O    For device I/O, which is usually focused on disks, you need to understand
your hardware. Is it NAS, iSCSI, or SAN? Are you using LVM, and what is the filesystem
type employed? Once you understand your system’s underlying disk hardware, then you
will be better able to interpret monitoring software and utilities data.

The command-line utilities useful here include iostat, iotop, lsof, and sar. If your disks
are accessed through your network, don’t forget to include network monitors as part of
your device I/O troubleshooting toolkit.

Network Throughput    Network package throughput and bottlenecks can be a constant
worry in a system administrator’s life. Understanding your network’s hardware and topol-
ogy is the first step in troubleshooting. Without a clear picture, you’ll be chasing rabbits
instead of solving problems.

Your network’s size, hardware, and topology will also determine what tools will work best
for your troubleshooting purposes. The command-line utilities iftop, ip, iptraf, and ntop
can be helpful. If set up to capture network traffic, the sar utility can also be used. Also,
lsof can display what network services, such as FTP, are in use on your system, and tcp-
dump can provide network packet analysis. And let’s not forget those humble little helpful
utilities such as ping, traceroute, and ifconfig.

Keep in mind that if you manage a large network, the various full-resource-monitoring
software solutions, such as MRTG, may be more useful for troubleshooting. Their graphics
capabilities might prove necessary for locating bottlenecks.

As you’ve probably noticed, the various resources can all directly affect one another.
Thus, using a variety of command-line and resource-monitoring tools will help you in man-
aging your system’s resource usage.

Exam Essentials  87

c02.indd  09/14/2016  Page 87

Summary
The non-glamorous job of keeping a Linux system up and humming along involves many
important basic maintenance tasks. Everyday maintenance tasks include routine ones such
as backing up data. Without extra data copies, any disaster, large or small, could be ruin-
ous. Monitoring the system resource usage is another basic and continual job that is neces-
sary for a system’s overall health.

Some non-standard jobs are also required, which are not conducted on a daily basis,
such as installing a program from its source code. Data restores may also be needed occa-
sionally, such as when a user accidentally deletes an important file.

Keeping system users happy is part of the maintenance job. Monitoring a system’s
current resource usage and planning for its future needs will lessen outages and poor
performance. These tasks help to avoid “The computer is slow today” refrain from users.
Of course, keeping your system users informed allows you to set expectations. Nothing
causes frustration more than unmet expectations. A nice Linux feature is that there are
many built-in communication tools that you can employ for notification purposes.

Exam Essentials
Summarize fluid system notification utilities.    The wall, mesg, notify-send, and shutdown
utilities all can provide messages to system users. The wall command can send messages
to all system users who are logged into a terminal and whose terminal has write access
granted. The notify-send command can send notifications to GUI users. The shutdown
command not only can shut down the system, but it can also send messages to system users
while doing so.

Describe logon notification files.    The files /etc/issue, /etc/issue.net, and /etc/motd
have different uses for static logon system notifications. All have content that can be dis-
played at some point during the terminal login process. For GUI users, logon notification
must be set up via the display manager.

Explain the pros and cons of backup media.    Magnetic tape is inexpensive and useful for
data archival purposes. Optical discs are portable, but their capacity is limited. HDDs are
inexpensive, though not as cheap as tape, and they are faster for reading/writing than some
other media. If local HDDs are used, a disaster could wipe out the backups. SSDs are the
fastest medium, but they are also the most expensive.

Summarize different backup types.    A full backup is one where all data is copied to
another medium. An incremental backup copies only the data that has been modified or
added since the last backup. The differential backup type is similar to an incremental one,
except that only data that has been modified or added since the last full backup is copied.
For snapshots, a full backup is made and a pointer reference table is created. After that,

88  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 88

an incremental backup is done along with the pointer reference table, which is copied and
updated, saving space compared to other backup types.

Describe the different backup utilities.    The tar utility is an old but useful tool. It allows
you to create backup files, called tar archive files. You can also use tar to compress the
backup files on the fly, turning them into tarballs. If you are using magnetic tape as a
backup medium, the mt command can assist in controlling the tape for backup purposes.
The dd utility is useful for creating low-level bit-by-bit copies of a partition or an entire drive.
It is often used in digital forensic applications. For a fast and reliable system backup utility,
the rsync command is useful. It also allows file transfer encryption through OpenSSH.

Explain the steps to install a program from source.    To install a program from its source,
you must first obtain the installation files, typically packed into a tarball. Once you unpack
the tarball, it is important to read through the provided documentation and obtain any
additional needed software. You then run the configure script in order to check the sys-
tem and prepare for compilation. At that time, you also run the make command so that the
program can be compiled. The final step is to use the make install command to move pro-
gram files to their proper location.

Summarize the resource-monitoring utilities.    The command-line utilities included in
Table 2.7 such as top, vmstat, and sar allow various system resources to be monitored,
which provides data for troubleshooting and capacity planning. Full-resource products,
such as MRGT and Nagios, provide data collection for all system resources. They also offer
graphs for analysis.

Review Questions  89

c02.indd  09/14/2016  Page 89

Review Questions
You can find the answers in the Appendix.

1.	 Which of the following commands will allow a message to be sent to any tty terminals with
write access allowed? (Choose all that apply.)

A.	 mesg

B.	 write

C.	 echo

D.	 mail

E.	 wall

2.	 To shut down your system without sending a message to users, use which of the following
/sbin/shutdown options?

A.	 -c

B.	 -k

C.	 --no-wall

D.	 --wall

E.	 None of the above

3.	 Your company’s legal department has decided that a login notification is needed on a
Linux system that you manage, warning that unauthorized system use is prohibited. Which
method is the best one for deploying this legal notification?

A.	 Edit the /etc/issue file, and place the notification there.

B.	 Edit the /etc/motd file, and place the notification there.

C.	 Use the notify-send command to send the notification to users.

D.	 Edit the ∼./bashrc file, and place the notification there.

E.	 None of the above.

4.	 Assume that money is plentiful, and you want the fastest media to use for your company’s
backups. Based on that information, which is the best backup media choice?

A.	 Magnetic tapes

B.	 Optical discs

C.	 HDD

D.	 SSD

E.	 NAS

5.	 Your co-worker, also a system administrator, hands you an SSD and says, “This has all the
files on it that were created and/or modified since the system’s last full backup.” Which of
the following backup types can this backup be? (Choose all that apply.)

A.	 Full

B.	 Incremental

90  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 90

C.	 Differential

D.	 None of the above

E.	 All of the above

6.	 Which of the following Linux directories should be included in a backup when you plan on
using the backup data in full system restores? (Choose all that apply.)

A.	 /bin/

B.	 /home/

C.	 /run/

D.	 /tmp/

E.	 All of the above

7.	 Which of the following software packages are GUI and/or web-based backup solutions?
(Choose all that apply.)

A.	 Amanda

B.	 Duplicity

C.	 Nagios

D.	 Bacula

E.	 connectd

8.	 Which of the following tar command options would employ gzip compression for creating
a backup tarball? (Choose all that apply.)

A.	 -g

B.	 --gzip

C.	 -z

D.	 g

E.	 z

9.	 When using the tar command for an incremental backup, a snapshot file is created. This
snapshot file should have which of the following file extensions as part of its name?

A.	 .tar

B.	 .tgz

C.	 .tar.snap

D.	 .snap

E.	 .snar

10.	 To verify a tar backup immediately after it is created, you use which of the following tar
command options? (Choose all that apply.)

A.	 --compare

B.	 --diff

Review Questions  91

c02.indd  09/14/2016  Page 91

C.	 -d

D.	 -W

E.	 -J

11.	 Which of the following indicates a tape device that automatically rewinds? (Choose all that
apply.)

A.	 /dev/st0

B.	 /dev/nst0

C.	 /dev/ht1

D.	 /dev/nht1

E.	 /dev/nht0

12.	 To control a magnetic tape for backups, use the _______ program.

A.	 tar

B.	 star

C.	 mt

D.	 rsync

E.	 dd

13.	 Which of the following rsync commands is the proper way to send a backup over the net-
work to the remote host, ServerA, while having the transfer encrypted using OpenSSH?

A.	 rsync -av Project /run/media/ServerA

B.	 rsync -av Project ServerA

C.	 rsync -av ServerA Project

D.	 rsync -av Project ServerA:∼/
E.	 rsync -av Project rsync://ServerA:/

14.	 Which of the following are true about the dd command? (Choose all that apply.)

A.	 The dd command can be used to create a low-level copy of a hard drive.

B.	 The dd command is popular for daily incremental backups.

C.	 The dd command can be safely used to back up a disk mounted at /.

D.	 The dd command can be used for managing tapes.

E.	 The dd command can be used to zero-out a hard disk.

15.	 When installing a program from source code, which of the following installation files typi-
cally can provide you with additional installation information? (Choose all that apply.)

A.	 README

B.	 INSTALL

C.	 COPYING

D.	 RELEASE-NOTES

E.	 NEWS

rsync://ServerA:/

92  Chapter 2  ■  Maintaining the System

c02.indd  09/14/2016  Page 92

16.	 During the process of installing a program from source, which of the following creates
or updates the Makefile with the Makefile.in file’s contents and what it finds on your
system?

A.	 INSTALL

B.	 configure

C.	 make

D.	 make install

E.	 cp

17.	 Which of the following monitoring commands allow you to view system memory information?
(Choose all that apply.)

A.	 free

B.	 mpstat

C.	 mtr

D.	 top

E.	 vmstat

18.	 Which of the following will show CPU usage information 20 times in 2-second intervals?

A.	 uptime 20 2

B.	 uptime 2 20

C.	 sar 20 2

D.	 sar 2 20

E.	 None of the above

19.	 Which of the following are considered to be system resource-monitoring solutions? (Choose
all that apply.)

A.	 collectd

B.	 Duplicity

C.	 MRTG

D.	 Nagios

E.	 All of the above

20.	 Which of the following are true about Linux system memory? (Choose all that apply.)

A.	 Memory is divided into sheets.

B.	 Memory for an idle process can be swapped out to swap space.

C.	 Swap can also be called virtual memory.

D.	 Swapping is the memory management scheme, where idle processes swap memory.

E.	 Memory-swapping statistics can be viewed using the psmap utility.

c03.indd  09/14/2016  Page 93

Chapter

3
Mastering the Kernel

The following exam objectives are
covered in this chapter:

✓✓ 201.1: Kernel Components

✓✓ 201.2: Compiling a Linux kernel

✓✓ 201.3: Kernel runtime management and troubleshooting

c03.indd  09/14/2016  Page 94

While we usually refer to the Linux operating system as just
Linux, in reality, quite a few parts make up a complete Linux
system. The Linux kernel is the main component that keeps

things together and running on your system. It is the heart of the Linux system, controlling
hardware, memory, and the running applications.

This chapter looks first at the different parts of the Linux kernel and how they fit
together to control the computer. Next, the chapter examines how the Linux kernel is
installed in different Linux distributions and where to find the different parts of it. After
that, the chapter discusses how to create a new kernel in order to support new hardware
or just to update your Linux system to the latest features. Finally, the chapter examines
how to manage the kernel and kernel modules, along with how to troubleshoot the kernel
if anything goes wrong.

What Is the Kernel?
A complete Linux system consists of four main parts:

■■ The Linux kernel

■■ The GNU utilities

■■ A graphical desktop environment

■■ Application software

Each of these four parts has a specific job in the Linux system. While each of the parts
by itself isn’t very useful, taken together, they create what we call Linux. Figure 3.1 shows a
basic diagram of how these parts fit together to create the overall Linux system.

The core of the Linux system is the kernel. The kernel controls all of the hardware and
software on the computer system, allocating hardware when necessary and executing software
when required. This section walks through exactly what the kernel is, and then it covers the
different parts of the kernel.

The Kernel Features
If you’ve been following the Linux world at all, no doubt you’ve heard the name Linus
Torvalds. Linus is the person responsible for creating the first Linux kernel software while
he was a student at the University of Helsinki. He intended it to be a copy of the Unix
system, which was a popular operating system used by many universities at the time.

What Is the Kernel?  95

c03.indd  09/14/2016  Page 95

F i gu r e 3 .1     The Linux system

Application software

Linux kernel

Computer hardware

Window management software

GNU system utilities

After developing the Linux kernel, Linus released it to the Internet community and solic-
ited suggestions for improving it. This simple process started a revolution in the world of
computer operating systems. Soon Linus was receiving suggestions from students as well as
professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete
chaos. To simplify things, Linus acted as a central point for all improvement suggestions. It
was ultimately Linus’s decision whether or not to incorporate suggested code in the kernel.
This same concept is still in place with the Linux kernel code, except that instead of just
Linus controlling the kernel code, a team of developers called the Linux Foundation has
taken on the task.

The kernel is primarily responsible for four main functions:

■■ System memory management

■■ Software program management

■■ Hardware management

■■ Filesystem management

The following sections explore each of these functions in more detail.

System Memory Management
One of the primary functions of the operating system kernel is memory management.
Memory management is the ability to control how programs and utilities run within the

96  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 96

memory restrictions of the system. Not only does the kernel manage the physical memory
available on the server, but it can also create and manage virtual memory, or memory that
does not actually exist but is created on the hard drive and treated as real memory.

It does this by using space on the hard disk, called the swap space. The kernel swaps
the contents of virtual memory locations back and forth from the swap space to the actual
physical memory. This allows the system to think that there is more memory available than
what physically exists, as shown in Figure 3.2.

F i gu r e 3 . 2     The Linux system memory map

Virtual memory
Physical memory

Swap space

The kernel

The memory locations are grouped into blocks called memory pages. The kernel locates
each page of memory in either the physical memory or the swap space. The kernel then
maintains a table of the memory pages that indicates which pages are in physical memory
and which pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory
pages that have not been accessed for a period of time to the swap space area (this is called
swapping out), even if there’s other memory available. When a program wants to access a
memory page that has been swapped out, the kernel must make room for it in physical memory
by swapping out a different memory page and swapping in the required page from the swap
space. Obviously this process takes time, and it can slow down a running process. The process
of swapping out memory pages for running applications continues for as long as the Linux
system is running.

What Is the Kernel?  97

c03.indd  09/14/2016  Page 97

You can see the current status of the virtual memory on your Linux system by viewing
the special /proc/meminfo file. Listing 3.1 shows an example of a sample /proc/meminfo
entry.

Listing 3.1:  The /proc/meminfo file output

$ cat /proc/meminfo
MemTotal: 1908188 kB
MemFree: 408188 kB
MemAvailable: 855432 kB
Buffers: 32544 kB
Cached: 514140 kB
SwapCached: 0 kB
Active: 1033464 kB
Inactive: 341712 kB
Active(anon): 829016 kB
Inactive(anon): 1120 kB
Active(file): 204448 kB
Inactive(file): 340592 kB
Unevictable: 16 kB
Mlocked: 16 kB
SwapTotal: 1165308 kB
SwapFree: 1165308 kB
Dirty: 2112 kB
Writeback: 0 kB
AnonPages: 828536 kB
Mapped: 199596 kB
Shmem: 1660 kB
Slab: 61352 kB
SReclaimable: 29656 kB
SUnreclaim: 31696 kB
KernelStack: 5680 kB
PageTables: 31972 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 2119400 kB
Committed_AS: 2673804 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 30256 kB
VmallocChunk: 34359699448 kB
HardwareCorrupted: 0 kB

98  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 98

AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 58748 kB
DirectMap2M: 1894400 kB
$

The MemTotal and MemFree lines show that this Linux server has 2 GB of physical mem-
ory, but that only about 408 MB is not currently being used (free). The output also shows
that about 1 GB of swap space memory is available on this system.

By default, each process running on the Linux system has its own private memory pages.
One process cannot access memory pages being used by another process. The kernel main-
tains its own memory areas. For security purposes, no processes can access memory used
by the kernel processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes
can read and write to and from a common shared memory area. The kernel maintains
and administers the shared memory areas, and it allows individual processes access to the
shared area.

The special ipcs command allows you to view the current shared memory pages on the
system. Here’s the output from a sample ipcs command:

$ ipcs -m

———Shared Memory Segments————
key shmid owner perms bytes nattch status
0xcf124bdc 0 root 600 1000 6
0x0b234bfc 32769 root 600 8 6
0x07021999 65538 root 644 1704 2
0x00000000 163843 rich 600 4194304 2 dest
0x00000000 262148 rich 600 1048576 2 dest
$

Each shared memory segment has an owner that created the segment. Each segment
also has a standard Linux permissions setting that sets the availability of the segment for
other users. The key value is used to allow other users to gain access to the shared memory
segment.

Software Program Management
The Linux operating system calls a running program a process. A process can run in the
foreground, displaying output on a display, or it can run in background behind the scenes.
The kernel controls how the Linux system manages all of the processes running on the
system.

What Is the Kernel?  99

c03.indd  09/14/2016  Page 99

The kernel creates the first process, called the init process, to start all other processes
on the system. When the kernel starts, it loads the init process into virtual memory. As the
kernel starts each additional process, it gives it a unique area in virtual memory to store the
data and code that the process uses.

Some Linux implementations contain a table of processes to start automatically upon
bootup. On Linux systems, this table is usually located in the special file /etc/inittab.

As discussed in Chapter 1, “Starting a System,” the Linux operating system uses an init
system that utilizes either runlevel (for the SysV init method) or targets (for the systemd
method) that determine which processes start. There are seven init run levels in the Linux
operating system.

At run level 1, only the basic system processes are started, along with one console termi-
nal process. This is called single-user mode. Single-user mode is most often used for emer-
gency filesystem maintenance when something is broken. Obviously, in this mode only one
person (usually the administrator) can log into the system to manipulate data.

For most Linux distributions, the standard init run level is 3. At this run level, most
application software, such as network support software, is started. Another popular run
level in Linux is run level 5. This is the run level where the system starts the graphical
X Window software, and it allows you to log in using a graphical desktop window.

Debian-based Linux distributions (such as Ubuntu) use run level 2 as
the standard run level for both console-based and graphical desktop
environments.

The Linux system can control the overall system functionality by controlling the init run
level. For example, by changing the run level from 3 to 5, the system can change from a
console-based system to an advanced, graphical X Window System.

The ps command allows you to view the processes currently running on the Linux sys-
tem. Listing 3.2 shows an example of what you’ll see using the ps command.

Listing 3.2:  The ps command output

$ ps ax
 PID TTY STAT TIME COMMAND
 1 ? S 0:03 init
 2 ? SW 0:00 [kflushd]
 3 ? SW 0:00 [kupdate]
 4 ? SW 0:00 [kpiod]
 5 ? SW 0:00 [kswapd]
 243 ? SW 0:00 [portmap]
 295 ? S 0:00 syslogd
 305 ? S 0:00 klogd
 320 ? S 0:00 /usr/sbin/atd
 335 ? S 0:00 crond
 350 ? S 0:00 inetd

100  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 100

 365 ? SW 0:00 [lpd]
 403 ttyS0 S 0:00 gpm -t ms
 418 ? S 0:00 httpd
 423 ? S 0:00 httpd
 424 ? SW 0:00 [httpd]
 425 ? SW 0:00 [httpd]
 426 ? SW 0:00 [httpd]
 427 ? SW 0:00 [httpd]
 428 ? SW 0:00 [httpd]
 429 ? SW 0:00 [httpd]
 430 ? SW 0:00 [httpd]
 436 ? SW 0:00 [httpd]
 437 ? SW 0:00 [httpd]
 438 ? SW 0:00 [httpd]
 470 ? S 0:02 xfs -port -1
 485 ? SW 0:00 [smbd]
 495 ? S 0:00 nmbd -D
 533 ? SW 0:00 [postmaster]
 538 tty1 SW 0:00 [mingetty]
 539 tty2 SW 0:00 [mingetty]
 540 tty3 SW 0:00 [mingetty]
 541 tty4 SW 0:00 [mingetty]
 542 tty5 SW 0:00 [mingetty]
 543 tty6 SW 0:00 [mingetty]
 544 ? SW 0:00 [prefdm]
 549 ? SW 0:00 [prefdm]
 559 ? S 0:02 [kwm]
 585 ? S 0:06 kikbd
 594 ? S 0:00 kwmsound
 595 ? S 0:03 kpanel
 596 ? S 0:02 kfm
 597 ? S 0:00 krootwm
 598 ? S 0:01 kbgndwm
 611 ? S 0:00 kcmlaptop -daemon
 666 ? S 0:00 /usr/libexec/postfix/master
 668 ? S 0:00 qmgr -l -t fifo -u
 787 ? S 0:00 pickup -l -t fifo
 790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
 791 pts/0 S 0:00 login—rich
 792 pts/0 S 0:00 -bash
 805 pts/0 R 0:00 ps ax
 $

What Is the Kernel?  101

c03.indd  09/14/2016  Page 101

The first column in the output shows the process ID (PID) of the process. Notice that the
first process is our friend the init process, and it is assigned PID 1 by the Linux system. All
other processes that start after the init process are assigned PIDs in numerical order. No
two processes can have the same PID.

The third column shows the current status of the process (S for sleeping, SW for sleeping
and waiting, and R for running). The process name is shown in the last column. Processes
that are in brackets have been swapped out of memory to the disk swap space due to inac-
tivity. You can see that some of the processes have been swapped out, but most of the run-
ning processes have not.

Hardware Management
Still another responsibility of the kernel is hardware management. Any device with which
the Linux system must communicate needs driver code inserted inside the kernel code.
The driver code allows the kernel to pass data back and forth to the device, acting as a go-
between for the applications and the hardware. There are two methods used for inserting
device driver code into the Linux kernel:

■■ Drivers compiled in the kernel

■■ Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel.
Each time you added a new device to the system, you had to recompile the kernel code.
This process became even more inefficient as Linux kernels supported more hardware.
Fortunately, Linux developers devised a better method to insert driver code into the
running kernel.

Programmers developed the concept of kernel modules to allow you to insert device
driver code into a running kernel without having to recompile the kernel. A module is a
self-contained driver library file that can be dynamically linked and unlinked with the ker-
nel. This means that you can remove a kernel module from the kernel when you’ve finished
using the device, something you can’t do with compiled kernel drivers. This greatly simpli-
fied and expanded using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There
are three classifications of device files:

■■ Character

■■ Block

■■ Network

Character device files are for devices that can handle data only one character at a time.
Most types of modems and terminals are created as character files. Block device files are
for devices that can handle data in large blocks at a time, such as disk drives.

The network device file types are used for devices that use packets to send and receive
data. These include network cards and a special loopback device that allows the Linux
system to communicate with itself using common network programming protocols.

Linux creates special files, called nodes, for each device on the system. All commu-
nication with the device is performed through the device node. Each node has a unique
number pair that identifies it to the Linux kernel. The number pair includes a major and

102  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 102

a minor device number. Similar devices are grouped into the same major device number.
The minor device number is used to identify a specific device within the major device
group. Listing 3.3 shows an example of a few device files on a Linux server.

Listing 3.3:  Displaying device nodes on a Linux system

$ cd /dev
$ ls -al sda* ttyS*
brw-rw----. 1 root disk 8, 0 Sep 10 16:27 sda
brw-rw----. 1 root disk 8, 1 Sep 10 16:27 sda1
brw-rw----. 1 root disk 8, 2 Sep 10 16:27 sda2
brw-rw----. 1 root disk 8, 3 Sep 10 16:27 sda3
brw-rw----. 1 root disk 8, 4 Sep 10 16:27 sda4
crw-rw----. 1 root dialout 4, 64 Sep 10 16:27 ttyS0
crw-rw----. 1 root dialout 4, 65 Sep 10 16:27 ttyS1
crw-rw----. 1 root dialout 4, 66 Sep 10 16:27 ttyS2
crw-rw----. 1 root dialout 4, 67 Sep 10 16:27 ttyS3
$

Different Linux distributions handle devices using different device names. In this dis-
tribution, the sda device is the first SCSI hard drive, and the ttyS devices are the standard
IBM PC COM ports. Listing 3.3 shows all of the sda devices that were created on the sam-
ple Linux system. Not all are actually used, but they are created in case the administrator
needs them. Similarly, the listing shows all of the ttyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices
have the same major device node, 8, while all of the ttyS devices use 4. The sixth column
is the minor device node number. Each device within a major number has its own unique
minor device node number.

The first column indicates the permissions for the device file. The first character of
the permissions indicates the type of file. Notice that the SCSI hard drive files are all
marked as block (b) devices, while the COM port device files are marked as character (c)
devices.

Filesystem Management
A filesystem defines how the operating system stores data on storage devices. Unlike
some other operating systems, the Linux kernel can support different types of filesys-
tems to read and write data to and from hard drives, CD or DVD devices, and USB flash
drives. Besides having over a dozen filesystems of its own, Linux can read and write
to and from filesystems used by other operating systems, such as Microsoft Windows.
The kernel must be compiled with support for all types of filesystems that the system
will use. Table 3.1 lists the standard filesystems that a Linux system can use to read and
write data.

What Is the Kernel?  103

c03.indd  09/14/2016  Page 103

Ta b le 3 .1     Linux filesystems

Filesystem Description

ext Extended filesystem—the original Linux filesystem

ext2 Second extended filesystem, provided advanced features over ext

ext3 Third extended filesystem, supports journaling

ext4 Fourth extended filesystem, supports advanced journaling

HPFS OS/2 high-performance filesystem

JFS IBM’s journaling filesystem

ISO 9660 ISO 9660 filesystem (CD-ROMs)

MINIX MINIX filesystem

msdos Microsoft FAT16

NCP NetWare filesystem

NFS Network File System

NTFS Microsoft NT filesystem

procfs Access to system information

ReiserFS Advanced Linux filesystem for better performance and disk recovery

SMB Samba SMB filesystem for network access

sysv Older Unix filesystem

UFS BSD filesystem

umsdos Unix-like filesystem that resides on top of MS-DOS

VFAT Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of the filesys-
tem types listed in Table 3.1.

104  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 104

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS).
This provides a standard interface for the kernel to communicate with any type of filesys-
tem. VFS caches information in memory as each filesystem is mounted and used.

Parts of the Kernel
When installing a new kernel (or updating an existing kernel) various components are avail-
able to install. This section walks through each of these components, and it describes what
they contribute to the kernel environment on your Linux system.

Kernel Binary
The kernel binary file is the actual kernel program itself. This is what the bootloader pro-
gram loads into memory, so it must be present on the Linux system for the system to boot
and start.

The kernel binary file can be somewhat large, depending on how many drivers are com-
piled into the kernel by default. Because of that, the kernel binary file is usually compressed
to save space in memory when the kernel is loaded. The name of the kernel file depends
on how the kernel binary file was compressed. Table 3.2 lists the different kernel binary
filenames that are used in Linux distributions.

Ta b le 3 . 2     Linux kernel binary filenames

Filename Description

bzImage A larger kernel binary file compressed using the GNU zip utility

kernel A generic name for an uncompressed kernel binary file

vmlinux An uncompressed kernel binary file, not usually used as the final
boot version

vmlinuz A generic compressed kernel binary filename

zImage A small kernel binary file compressed using the GNU zip utility

The bzImage file format is the most popular one used. However, many Linux distribu-
tions copy that file to the vmlinuz filename. When looking for the kernel binary file on your
Linux system, you’ll often see the main binary filename with the kernel version appended,
such as vmlinuz-4.3.3. This method allows you to maintain more than one kernel on your
system and boot using a different kernel version for different situations.

The kernel binary file must be accessible by the bootloader program, which is what loads
the kernel in memory at boot time. Because of that, the kernel binary files are normally
stored under the /boot directory structure in the filesystem, although some Linux distribu-
tions keep the kernel binary files directly under the root directory (/).

What Is the Kernel?  105

c03.indd  09/14/2016  Page 105

Most Linux distributions bundle the kernel binary file as a package that you can easily
install using a common package management system (such as Debian apt-get or Red Hat
yum). The package installs the kernel binary file in the correct location and makes the neces-
sary modifications to the GRUB bootloader menu to boot using the new kernel. This makes
installing a new kernel almost painless.

Kernel Modules
The Linux kernel needs device drivers to communicate with the hardware devices installed
on your Linux system. However, compiling device drivers for all known hardware devices
into the kernel would make for an extremely large kernel binary file.

To avoid that situation, the Linux kernel uses kernel modules, which are individual hard-
ware driver files that can be linked into the kernel at runtime. That way the system can link
only the modules that are needed for the hardware that’s present on your system.

If the kernel is configured to load hardware device modules, the individual module files
must be available on the system as well. If you’re compiling a new Linux kernel, you’ll also
need to compile any hardware modules along with the new kernel.

Module files may be distributed either as source code that needs to be compiled or as
binary object files on the Linux system that are ready to be dynamically linked to the main
kernel binary program. If the module files are distributed as source code files, you must
compile them to create the binary object file. The .ko file extension is used to identify the
module object files.

The standard location for storing module object files is in the /lib/modules directory.
This is where the Linux module utilities (such as insmod and modprobe) look for mod-
ule object library files by default. (See the “Maintaining the Kernel” section later in this
chapter.)

Some hardware vendors release only module object files for their hard-
ware modules without releasing the source code. This helps them pro-
tect the proprietary features of their hardware while still allowing their
hardware products to be used in an open source environment. While this
arrangement violates the core idea of open source code, it has become
a common ground between companies trying to protect their product
secrets and Linux enthusiasts who want to use the latest hardware on
their systems.

Kernel Source
If you plan to recompile the kernel binary file yourself, you’ll need to have the original
source code files for the Linux kernel. You can obtain the Linux kernel source code files
using two different methods:

■■ Download the kernel source code from the main Linux kernel development repository.

■■ Install the kernel source code from the software repository for your specific Linux
distribution.

106  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 106

The www.kernel.org website maintains the official repository for Linux kernel releases.
The repository maintains the current stable release of the kernel, which is recommended
for production use, plus the latest development release. If you’re looking for the most recent
kernel source code, this is the place to go.

As part of the open source requirements, individual Linux distributions also release the
Linux kernel source code as distribution packages, available for installation from their indi-
vidual software repository sites. This is the safest way to install the Linux kernel, because
each Linux distribution makes available only the Linux kernel source code that is known to
work correctly in the distribution’s environment.

Whether you download a Linux source code bundle from the www.kernel.org website
or install it from your distribution’s repository, you should extract the source code files into
the /usr/src/linux directory. This is where utilities look for the source code files.

Usually, it’s a good idea to install the Linux kernel source code into a
separate directory that identifies the kernel version, such as /usr/src/
linux-4.3.3. That way, you can maintain multiple versions of the kernel
source code at the same time. Just create a link from that directory to
the /usr/src/linux directory for the kernel version with which you want
to work. Also, the Red Hat–based Linux distributions use the /usr/src/
kernels folder instead of /usr/src/linux, so be careful when working in
those environments.

Kernel Patches
Linux kernel versions have incremental releases for bug fixes and security patches (such as
going from version 4.3.0 to 4.3.1). While you can recompile a new kernel by downloading
the full source code for the incremental release, if you already have the source code for the
original release, there’s an easier way to upgrade to the new version.

A patch release is a special source code package that contains only the changes applied
to the major kernel source code release to get to the incremental release (for example,
upgrading from kernel version 4.3.0 to patch release 4.3.1). You just download the patch
source code package, use the Linux patch command to apply the patch updates to the exist-
ing kernel source code files on your system, and then recompile the kernel.

When working with patches for later incremental releases (such as upgrading 4.3.1 to
4.3.2), you must first uninstall the previous patch (4.3.1) to go back to the original release
(4.3.0) and then apply the patch for the 4.3.2 incremental release, because each patch
release is based on updating the original release code. Uninstalling patches is also handled
by the patch command using the -R option.

Kernel Headers
The Linux kernel is written mostly using the C programming language. Part of the C pro-
gramming language is a feature called header files. The header files tell the C compiler what
library files are required to compile the kernel source code. These same library files are also
vital for compiling any module source code files.

http://www.kernel.org
http://www.kernel.org

What Is the Kernel?  107

c03.indd  09/14/2016  Page 107

If you need to just compile modules from source code, you don’t need to download the
full Linux kernel source code files, just the kernel header files. Fortunately, most Linux dis-
tributions include packages for just the kernel header files related to the installed kernel ver-
sion. This makes it easier to compile modules if you’re experimenting with new hardware.

The kernel header files are normally installed in the /usr/src/linux/ directory struc-
ture in Debian-based distributions or the /usr/src/kernels directory structure in Red
Hat–based distributions, and they use the .h file extension.

Kernel Documentation
Another important piece of the Linux kernel files is the kernel documentation. The kernel
documentation is split into lots of separate text files, detailing just what each source code
file does within the kernel structure. If you plan on doing any work with the Linux kernel
source code, it’s a good idea to have the kernel documentation files handy.

Because of the size of the files, the kernel documentation files are often installed sepa-
rately from the kernel source code package in distribution releases, but if you download the
kernel source code from the www.kernel.org website, they are included. The kernel docu-
mentation files are usually installed in the /usr/src/linux/Documentation directory struc-
ture but may be in the /usr/src/kernels directory structure for Red Hat–based systems.

Kernel Versions
One of the more confusing parts of working with the Linux kernel is the versioning system.
Throughout the history of the Linux kernel, six different system versions have been imple-
mented. This section walks through the different kernel version numbers, and it describes
how to interpret what each one means.

The Original Kernel Releases
When Linus released the original Linux kernel in September 1991, he assigned it version 0.01.
By starting with version 0, he indicated that it was mainly for testing and not intended to
be used as any type of production system for handling important data.

As the Linux system became popular and new additions were made, the updated versions
still kept the 0 main version number and incremented the part after the period to indicate
each newer version (such as 0.01, 0.02, and so on). This version method remained in use up
until version 0.95, which was released in March 1992.

The Linux Version 1 Series
In March 1994, Linus released the first production version of Linux as version 1.0. This
release started a standard versioning system that followed the format 1.x.y.

In this format, the x represents the major version release number. Odd-numbered major
version releases indicate a test (or development) release, while even-numbered version releases
indicate a production release. The y indicates incremental minor patch release levels within
the major releases. This version method was in use until version 1.3, released in May 1995.

http://www.kernel.org

108  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 108

The Linux Version 2 Series
After version 1.3, Linus determined that the next release version contained enough changes
to warrant a new major version number, and version 2.0 was released in June 1996. The
version 2 series kernels maintained the 2.x.y format just like the version 1 series, with odd-
numbered major releases indicating test releases and even-numbered major releases indicat-
ing production releases. This method was in use until version 2.4, released in January 2001.

The Linux Version 2.6 Series
In December 2003, Linus released version 2.6.0 of the Linux kernel and started yet another
new versioning system. He felt that the main Linux kernel was fairly stable, and he decided
to keep the 2.6 version number and start a new numbering format. Newer versions of the
Linux kernel used the format 2.6.x.y.

The 2.6 remained constant, shifting the major release number down a level to the third
number (the x) and the incremental minor patch number as the fourth number (the y).

Another thing that changed with the 2.6 version was that all releases were production
releases. Development releases used an -rc designation after the end of the kernel version (for
release candidate). When a release was deemed stable for production, the -rc was removed.
This method stayed in use until release 2.6.39 in May 2011.

The Linux Version 3 Series
In July 2011, Linus celebrated the 20th anniversary of the Linux kernel by starting the ver-
sion 3 series with version 3.0. The new version release reverted to using the three-digit 3.x.y
release system, with x representing major releases and y incremental minor patch releases.
However, the version 3 series maintained the -rc designation for development releases started
in the 2.6 version series. This method stayed in use until release 3.19 in February 2015.

The version 3 series also introduced a fourth digit, .z, as in 3.x.y.z, which
represented occasional special patch releases, mostly related to emer-
gency security fixes.

The Linux Version 4 Series
In April 2015, Linus determined that it was time for another major release version change,
and thus the version 4 series began with version 4.0. The version 4 series maintains the
4.x.y release system, and it also uses the -rc designation for test releases. This is the current
Linux kernel version used at the time of this writing.

Compiling a Kernel
Under most normal Linux environments, you’ll never need to worry about compiling a new
kernel. All of the major Linux distributions do that for you and release the new kernels as
software packages in their repositories. Updating the kernel is often automatic, handled by
the automatic software update process for the distribution.

Compiling a Kernel  109

c03.indd  09/14/2016  Page 109

However, there may be times when you want to experiment with a new kernel, such as
when implementing new hardware or testing new kernel features. If you decide to under-
take the task of compiling your own Linux kernel, there are five steps involved with the
process:

1.	 Obtaining the source code

2.	 Creating a configuration file based on the system hardware

3.	 Compiling the source code

4.	 Compiling and installing module files

5.	 Installing the new kernel binary file

Each of these steps can get somewhat complicated, and compiling a new Linux kernel is
not for the faint of heart. That said, if you do decide to compile a new kernel, the process is
outlined in the following sections.

With most Linux distributions, if you compile your own custom kernel, you
won’t be able to request support from the standard help infrastructure for
the distribution (such as support forums). You may find help in other Linux
forums available for kernel development, such as the vger.kernel.org
mailing list, but be prepared to provide lots of detailed information about
your exact environment and issue.

Obtaining Source Code
As mentioned in the “Kernel Source” section, there are two ways to obtain the Linux
kernel source code. You can download the most recent version directly from the official
www.kernel.org website, or you can obtain it with most Linux distributions, which include
a software package that contains the kernel source code for the most recently installed
kernel version.

If you’re just experimenting with different kernel features in your specific Linux distri-
bution, we recommend that you install just the kernel software package from your distri-
bution’s repository. This ensures that you’re working with a kernel that you know works
in your Linux environment. However, most Linux distributions are somewhat behind in
keeping up with the latest kernel releases. If you’re trying to work with the latest hardware
or kernel features, you may need to download and install the current stable or development
source code directly from the www.kernel.org website.

When you go to the www.kernel.org website, you’ll see a matrix of different kernel
versions available, along with different download options (such as downloading just the
incremental patch or the full source code). The most recent production version of the kernel
is labeled stable. Previous versions of the kernel are labeled longterm, while the most recent
development version is labeled mainline.

Source code packages are bundled using the tar archive utility and compressed using the
xz compression utility. You’ll need both of these utilities installed on your system to be able
to extract the source code files.

http://www.kernel.org
http://www.kernel.org
http://www.kernel.org

110  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 110

To download a full kernel source code package, click the tar.xz link for the version that
you need. The download filename will be in the format

linux-version.tar.xz

where version is the kernel version. To extract the source code file, use the following
command:

tar xvf linux-version.tar.xz

The tar command will extract all of the source code files into a folder named linux-
version, creating the necessary subfolders contained within the package automatically.

As you can probably guess, the Linux kernel source code creates many
files, and it takes up a lot of disk space. Make sure that you have at least
1 GB of disk space available on your system to extract the files.

You can extract the kernel source code files into a folder under your home directory if
you just want to peruse the files and documentation. However, if you plan on compiling
and installing the kernel on your Linux system, it’s best to extract the source code files
into the /usr/src/ folder structure. Don’t place the new source code files in the /usr/src/
linux folder directly; instead, create a link between the /usr/src/linux folder and the
source code folder that you created when extracting the files:

ln /usr/src/linux-4.3.3 /usr/src/linux

Creating the Configuration File
Before you can compile the new kernel from the source code, you need to determine just
which kernel features you want to include in your new kernel binary file. This is done using
a kernel configuration file.

The kernel configuration file is a text file that contains separate lines for each kernel
feature, showing the feature name and its setting. The kernel configuration file is stored in
the /usr/src/linux/.config file. If you already have the kernel source code installed, you
can look at this file to see what features are available for configuration. Listing 3.4 shows a
small snippet of a .config file from an Ubuntu system.

Listing 3.4:  The kernel .config configuration file

CONFIG_64BIT=y
CONFIG_X86_64=y
CONFIG_X86=y
CONFIG_INSTRUCTION_DECODER=y

Compiling a Kernel  111

c03.indd  09/14/2016  Page 111

CONFIG_PERF_EVENTS_INTEL_UNCORE=y
CONFIG_OUTPUT_FORMAT="elf64-x86–64"
CONFIG_ARCH_DEFCONFIG="arch/x86/configs/x86_64_defconfig"
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_HAVE_LATENCYTOP_SUPPORT=y
CONFIG_MMU=y
CONFIG_NEED_DMA_MAP_STATE=y
CONFIG_NEED_SG_DMA_LENGTH=y
CONFIG_GENERIC_ISA_DMA=y
CONFIG_GENERIC_BUG=y
CONFIG_GENERIC_BUG_RELATIVE_POINTERS=y
CONFIG_GENERIC_HWEIGHT=y
CONFIG_ARCH_MAY_HAVE_PC_FDC=y
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
...

You need to set many configuration options for the kernel. To create the .config file,
you don’t need to run through each line manually. Instead, you can use an automated script
that asks questions for each feature and creates the .config file for you based on your
answers to the questions.

The make utility runs the script contained in the source code. The make utility uses make
targets to determine just what script to run. There are lots of different targets that you can
use.

The make config target is the basic script to run to create the configuration file. It asks
many questions regarding every feature that you can include in the kernel. Listing 3.5
shows some of the questions that are asked.

Listing 3.5:  The make config output

$ make config
...
*
* Linux/x86 4.3.3 Kernel Configuration
*
64-bit kernel (64BIT) [Y/n/?] y
*
* General setup
*
Cross-compiler tool prefix (CROSS_COMPILE) []
Compile also drivers which will not load (COMPILE_TEST) [N/y/?]

112  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 112

Local version—append to kernel release (LOCALVERSION) []
Automatically append version information to the version string (LOCALVERSION_
AUTO) [N/y/?]
Kernel compression mode
> 1. Gzip (KERNEL_GZIP)
 2. Bzip2 (KERNEL_BZIP2)
 3. LZMA (KERNEL_LZMA)
 4. XZ (KERNEL_XZ)
 5. LZO (KERNEL_LZO)
 6. LZ4 (KERNEL_LZ4)
choice[1–6?]:
Default hostname (DEFAULT_HOSTNAME) [(none)]
Support for paging of anonymous memory (swap) (SWAP) [Y/n/?]
System V IPC (SYSVIPC) [Y/n/?]
POSIX Message Queues (POSIX_MQUEUE) [Y/n/?]
Enable process_vm_readv/writev syscalls (CROSS_MEMORY_ATTACH) [Y/n/?]
open by fhandle syscalls (FHANDLE) [Y/n/?]
uselib syscall (USELIB) [Y/n/?] (NEW)
Auditing support (AUDIT) [Y/?] y
Enable system-call auditing support (AUDITSYSCALL) [Y/n/?]
...

While most of the questions have default answers that you can usually use, going
through so many questions isn’t an efficient way to create the configuration file.
Fortunately, you can use some additional shortcut scripts by specifying different
targets:

■■ defconfig—Creates a default configuration file based on the system type detected

■■ oldconfig—Updates an existing configuration file with only the new features

■■ menuconfig—Uses a text-based menu system allowing you to select which features to
include

■■ xconfig—Creates a graphical menu allowing you to select which features to include

■■ gconfig—Uses the GTK graphical menu allowing you to select which features to
include

The xconfig target produces an easy-to-use menu for either the GNOME or KDE desk-
top system, as shown in Figure 3.3.

The graphical configuration menus are handy in that they divide the multitude of ques-
tions into categories to help make the changes more manageable. The left panel shows
the main categories of configuration settings, such as memory, filesystem, and network
features. When you click a main category topic, the top-right panel shows the sub-options
available within the category. When you click a sub-option, an explanation of the option
appears in the lower-right panel.

Compiling a Kernel  113

c03.indd  09/14/2016  Page 113

If you’ve created a configuration before but want to start over, use the
mrproper target. The mrproper target clears out all previous configuration
settings from the configuration file and removes all previously compiled
object files. However, it might be a good idea to copy the old configuration
file before using this target, just in case something goes wrong!

When you’ve completed filling out the category and sub-option settings, save the con-
figuration by clicking the disk icon in the toolbar at the top of the window. Once you’ve
created the /usr/src/linux/.config file, you’re ready to start compiling the new kernel.

E x e rc i s e 3 .1

Creating a Kernel Configuration File

In this exercise, you’ll download the latest Linux kernel code and take a look at the different
kernel features available for use when creating the kernel configuration file.

1.	 Log in as a normal user on your Linux system.

2.	 Open a browser window, and navigate to the www.kernel.org website.

F i gu r e 3 . 3     The make xconfig menu options

http://www.kernel.org

114  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 114

E x e r c i s e 3 .1   (c ont inue d)

3.	 Click the tar.xz link for the stable release of the Linux kernel to download to your
Downloads folder, and then close the browser window.

4.	 Open a terminal session on your desktop, and then navigate to the /usr/src folder
by typing cd /usr/src.

5.	 Expand the kernel source code into the /usr/src folder by typing sudo tar xvf
/home/userid/Downloads/linux-version.tar.xz, where userid is your user
name and version is the version of the Linux kernel that you downloaded.

6.	 Link the new source code folder to the /usr/src/linux folder by typing sudo ln
linux-version linux, where version is the version of the Linux kernel that you
downloaded.

7.	 Change to the /usr/src/linux folder by typing cd /usr/src/linux.

8.	 Make sure that your Linux distribution has the appropriate C and C++ compiler
packages installed. For RPM-based systems, type sudo yum groupinstall
"Development Tools". For DEB-based systems, type sudo apt-get install
pkg-config g++.

9.	 Make sure that your Linux distribution has the Qt development package installed. For
RPM-based systems, type sudo yum install qt-devel. For DEB-based systems,
type sudo apt-get install libqt4-dev.

10.	 Run the xconfig make target by typing sudo make xconfig.

11.	 Look through the categories in the left panel. Select a few categories, and observe
what sub-options appear for each category.

12.	 Click the Disk icon in the toolbar to create a .config file from the configuration
settings.

13.	 Exit the xconfig utility.

14.	 Use a text editor to view the /usr/src/linux/.config file that you generated to see
how the configuration settings match what you had set in the xconfig utility. Alterna-
tively, you can list the file from the command line by typing cat .config | less.

Compiling and Installing the Kernel
After you’ve created the configuration file for the kernel, you’re ready to start the compiling
process. Thanks to the make utility, this step is a breeze.

First, if you made any previous attempts to compile the kernel, you’ll want to remove the
old object files created by using the clean target:

make clean

Compiling a Kernel  115

c03.indd  09/14/2016  Page 115

Then, if you want to create an uncompressed kernel binary file, just enter the command

make

The script will then take over, compiling all of the kernel code to produce the new kernel.
(Be prepared; this process will take a very long time.) If you prefer to create a compressed
kernel file, just use the bzImage target:

make bzImage

As the compile process works, you’ll see lots of messages scroll past the console, such
as these:

 CC lib/list_sort.o
 CC lib/uuid.o
 CC lib/flex_array.o
 CC lib/iov_iter.o
 CC lib/clz_ctz.o
 CC lib/bsearch.o
 CC lib/find_bit.o
 CC lib/llist.o
 CC lib/memweight.o

The CC lines indicate object code files that are being created. The LD lines indicate object
code files that are being linked to create the executable file. When the process completes,
the final kernel binary file should be in the /usr/src/linux/arch/x86/boot folder as
bzImage.

After the compile process completes, you’re ready to install the new kernel binary file.
You can manually install the kernel binary file by simply copying the bzImage file to the
/boot folder on your system. You’ll want to add the version number to the file so that you
can distinguish it from the other kernel binary files. Name it using the vmlinuz filename,
which is recognized by most Linux distributions:

cp /usr/src/linux/arch/x86/boot/bzImage /boot/vmlinuz-4.3.3

Besides the kernel binary file, there’s also a System.map file in the /usr/src/linux
folder associated with the generated kernel binary file. The System.map file is used for
debugging the kernel, so it’s not required, but it can help to copy it into the /boot folder
as well. As with the kernel binary file, you’ll want to add the kernel version to the end of
the System.map filename:

cp /usr/src/linux/System.map /boot/System.map-4.3.3

As you can probably guess, there is also a make script target for installing the kernel
binary and System.map files automatically:

make install

116  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 116

This automatically copies the new kernel binary from the /usr/src/linux folder to the
appropriate location in the /boot folder for your bootloader. However, you will still need
to rename the new kernel binary file to add the kernel version to it, making it separate from
the older kernel files installed.

Compiling and Installing Modules
After you compile and install the kernel, you’ll want to compile and install the newer ver-
sion of the modules required for your system. Just as with the kernel compile, you use the
make utility to create and install the new module object library files.

First, you’ll need to create the module object library files by using the modules target:

make modules

After that completes, you can install them using the make_modules install target:

make modules_install

This script installs the modules into the /lib/modules/kernel-version/ folder, where
version matches the kernel version. The kernel will look in this folder by default when
it needs to load modules. This also applies to any command-line commands used to load
modules manually. (This is discussed in the “Working with Module Files” section later in
this chapter.)

Creating an Initial RAM Disk
One downside to using kernel modules is that the kernel must load each of the modules at
boot time to access the hardware devices. However, if there are modules that control how
the kernel reads the hard drive (such as with a RAID system) or modules for reading a spe-
cific filesystem (such as ReiserFS), that situation will cause a problem. (How can the kernel
load a module that’s required to read the filesystem on which the the module is stored?)

To solve that problem, Linux developers created the idea of an initial RAM disk (also
called initrd). The initial RAM disk is a filesystem contained in a file that the kernel loads
into memory at boot time as a disk. The kernel can read and load any files contained within
the initial RAM disk as it boots. All you need to do is to create an initial RAM disk file
that contains the required module files needed to boot the system. Once the system boots,
the initial RAM disk is removed from memory to free up memory space.

There are two common utilities used to create an initial RAM disk file, depending on
the Linux distribution you use. This section discusses both of them.

The mkinitrd Utility
Red Hat–based Linux distributions (such as Red Hat Enterprise Linux, Fedora, and CentOS)
use the mkinitrd utility to generate an initial RAM disk file and copy the module’s files into
it. The general format for the command is

mkinitrd outputfile version

Compiling a Kernel  117

c03.indd  09/14/2016  Page 117

where outputfile is the name of the initial RAM disk file to create, and version is the
kernel version for which the file is created. There are a few command-line options that
you can use for the mkinitrd command. They are shown in Table 3.3.

Ta b le 3 . 3     The mkinitrd command options

Option Description

--builtin=module Assume the module is built into the kernel, even if it’s not.

--force Allow the output file to be overwritten if it already exists.

--fstab=filename Determine what filesystem support is required to read the
specified filename.

--image-version Add the kernel version to the generated initial RAM disk image file.

--nocompress Force the image file to be uncompressed. The default is to create a
compressed image file.

--omit-lvm-modules Omit logical volume manager modules from the image.

--omit-raid-modules Omit RAID disk modules from the image.

--omit-scsi-modules Omit SCSI disk modules from the image.

--preload=module Load the specified module before the SCSI modules are loaded.

--verbose Display verbose information as each module is loaded.

--version Display the version of the mkinitrd program.

--with=module Load the specified module before the SCSI modules are loaded.

In most situations, you can run the mkinitrd command without any options to generate
the initial RAM disk image file:

mkinitrd /boot/initrd.img-4.3.3 4.3.3

Because the initial RAM disk file is used at boot time, most Linux distributions store it
in the same folder where the kernel binary file is located, usually the /boot folder.

The mkinitramfs Utility
Debian-based Linux distributions (such as Debian and Ubuntu) use the mkinitramfs utility
to generate the initial RAM disk file. The general format for the command is

mkinitramfs –o outputfile version

118  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 118

where outputfile is the image file to create and version is the kernel version. Table 3.4
lists the options that are available.

Ta b le 3 . 4     The mkinitramfs command options

Option Description

-c Create a compressed image file.

-d confdir Set the configuration directory.

-k Retain the temporary directory created to build
the initial RAM disk file.

-o outputfile Define the output image filename.

-r root Set the root partition used by the bootloader.

--supported-host-version=hversion Determine if it can create an image for the
specified running kernel version.

--supported-target-version=tversion Determine if it can create an image for the
specified kernel version.

In most situations, you can just use the -o option to specify the output image file:

mkinitramfs –o /boot/initramfs-4.3.3.img 4.3.3

Most Debian Linux distributions also store the initial RAM disk file in the same folder
as the kernel binary file, the /boot folder.

Booting the New Kernel
Once you have compiled and installed the kernel binary and initial RAM disk image files,
you’re ready to use them to boot your Linux system. These days, most Linux distribu-
tions use either the GRUB Legacy or GRUB2 bootloader program to boot the system. If
your Linux distribution uses the GRUB Legacy bootloader, you must manually update the
GRUB configuration file /boot/grub/menu.lst or /boot/grub/grub.conf to add a new
boot section for the new kernel. The new boot section should start with a title and include
the new kernel binary file and initial RAM disk image files:

title Test (4.3.3)
 root (hd0,0)
 kernel /vmlinuz-4.3.3 ro root=/dev/sda1
 initrd /initrd.img-4.3.3

Compiling a Kernel  119

c03.indd  09/14/2016  Page 119

If your Linux distribution uses the GRUB2 bootloader, after you install the new kernel
binary into the boot menu, you just need to run the update-grub command:

update-grub

The update-grub command scans the /boot folder and adds the new kernel binary to
the GRUB boot menu automatically. It also updates the grub.cfg configuration file to
include the new initial RAM disk file that you created and installed.

If for some reason the update-grub command doesn’t automatically detect the new ker-
nel binary file, you’ll have to add an entry manually to one of the boot option files in the
/etc/grub.d folder. You can pick one of the custom boot option files, such as the 40_custom
file. Just add the new entry pointing to the new kernel to the bottom of the existing entries:

menuentry "Test (4.3.3)"
 set root=(hd0,1)
 linux /vmlinuz-4.3.3 ro root=/dev/sda1
 initrd /initrd-4.3.3

After you add the new entry, save the file and then run the update-grub command. It
should add the new kernel option to the /boot/grub/grub.cfg configuration file.

When you reboot your Linux system, you should see the new kernel binary option listed
in the boot options. If you’re using a Linux distribution that hides the GRUB boot menu by
default, hold down the Shift key when you boot and it should appear. In the Ubuntu Linux
distribution, you’ll also need to select the Advanced options for Ubuntu menu entry to see
the list of available kernels to boot with; then just select your new kernel option.

Always add the new kernel binary as a new boot option and leave the old kernel
binary in the menu as a secondary boot option. That way, if the new kernel binary
doesn’t work, you can still boot from the old kernel binary file.

Creating a Kernel Package
If you’re in an environment that supports lots of Linux workstations, trying to compile and
copy a new kernel binary to all of the workstations can be somewhat tedious. Fortunately,
the kernel source code provides a few make targets that can help:

■■ rpm-pkg—Creates both source and binary RPM packages

■■ binrpm-pkg—Creates a binary RPM package

■■ deb-pkg—Creates a binary DEB package

After you run the make command with the appropriate target, the kernel binary file will
be included as part of the package generated. You can then use the standard software pack-
age management tool (rpm for Red Hat or dpkg for Debian) to install the new kernel binary
package on each workstation.

120  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 120

Maintaining the Kernel
Once you have a Linux kernel installed, there are a few steps you can take to make sure
things are operating properly. This section walks you through the command-line com-
mands that you should know to monitor the kernel operation, including tracking installed
modules, detecting hardware devices, and troubleshooting kernel issues.

Working with Module Files
You should be familiar with a few different files when working with modules. You’ve
already seen that the modules required to support a kernel are stored in the /lib/modules
folder. Each kernel has its own folder for its own modules (such as /lib/modules/4.3.3),
allowing you to create separate modules for each kernel version on the system if needed.

The modules that the kernel will load at boot time are listed in the /etc/modules file in
Debian systems or in separate text files in the /etc/modules-load.d folder for Red Hat–based
systems. Most hardware modules can be loaded dynamically, because the system automatically
detects hardware devices, so this file may not contain very many modules.

If needed, you can customize a kernel module to define unique parameters required, such
as hardware settings required for the device to operate. The kernel module configurations
are stored in the /etc/conf.modules configuration file.

Finally, some modules may depend on other modules being loaded first in order to oper-
ate properly. These relationships are defined in the modules.dep file and stored in the /lib/
modules/version/ folder, where version is the kernel version. The format for each entry is

modulefilename: dependencyfilename1 dependencyfilename2 ...

When you use the modules_install target to install the modules, it calls the depmod
utility, which determines the module dependencies and generates the modules.dep file auto-
matically. If you modify or add any modules after that, you must manually run the depmod
command to update the modules.dep file.

If you compile your own modules outside of the standard kernel modules, you have
another problem to consider. Since the modules are compiled for a specific kernel, each time
the system upgrades the kernel, you need to recompile your custom modules.

A solution to this problem is Dynamic Kernel Module Support (DKMS). The DKMS
system provides a way for you to register your custom modules and provide instructions
on how to compile and install them each time a new kernel is installed. The dkms program
monitors the kernel version and automatically runs scripts to recompile and install modules
when the kernel version changes.

Module Commands
You can use a host of command-line commands to help you troubleshoot and fix kernel
module issues. This section walks you through the different module commands that are
available to help with any module issues you might run into.

Maintaining the Kernel  121

c03.indd  09/14/2016  Page 121

Listing Modules
The first command is lsmod, which lists all of the modules installed on your system. Listing 3.6
shows an example of using the lsmod command on an Ubuntu system.

Listing 3.6:  The lsmod command output

$ lsmod
Module Size Used by
vboxsf 39706 1
snd_intel8x0 38153 2
snd_ac97_codec 130285 1 snd_intel8x0
ac97_bus 12730 1 snd_ac97_codec
snd_pcm 102099 2 snd_ac97_codec,snd_intel8x0
snd_page_alloc 18710 2 snd_intel8x0,snd_pcm
snd_seq_midi 13324 0
snd_seq_midi_event 14899 1 snd_seq_midi
snd_rawmidi 30144 1 snd_seq_midi
snd_seq 61560 2 snd_seq_midi_event,snd_seq_midi
snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi
snd_timer 29482 2 snd_pcm,snd_seq
rfcomm 69160 0
hid_multitouch 17407 0
joydev 17381 0
snd 69322 12
snd_ac97_codec,snd_intel8x0,snd_timer,snd_pcm,snd_seq,snd_rawmidi,snd_seq_
device,snd_seq_midi
bnep 19624 2
bluetooth 391136 10 bnep,rfcomm
serio_raw 13462 0
vboxvideo 12658 1
drm 303102 2 vboxvideo
vboxguest 276728 7 vboxsf
i2c_piix4 22155 0
soundcore 12680 1 snd
video 19476 0
mac_hid 13205 0
parport_pc 32701 0
ppdev 17671 0
lp 17759 0
parport 42348 3 lp,ppdev,parport_pc
hid_generic 12548 0

122  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 122

usbhid 52659 0
hid 106148 3 hid_multitouch,hid_generic,usbhid
psmouse 106692 0
ahci 34091 3
libahci 32716 1 ahci
e1000 145227 0
pata_acpi 13038 0
$

Notice that the lsmod command also shows which modules are used by other modules.
This can be crucial information when trying to troubleshoot hardware issues.

Getting Module Information
If you need more information about a specific module, use the modinfo command, as
shown in Listing 3.7.

Listing 3.7:  The modinfo command output

$ modinfo bluetooth
filename: /lib/modules/3.13.0–63-generic/kernel/net/bluetooth/bluetooth.ko
alias: net-pf-31
license: GPL
version: 2.17
description: Bluetooth Core ver 2.17
author: Marcel Holtmann <marcel@holtmann.org>
srcversion: 071210642A004CFE1860F30
depends:
intree: Y
vermagic: 3.13.0–63-generic SMP mod_unload modversions
signer: Magrathea: Glacier signing key
sig_key: E2:53:28:1F:E2:65:EE:3C:EA:FC:AA:3F:29:2E:21:2B:95:F0:35:9A
sig_hashalgo: sha512
parm: disable_esco:Disable eSCO connection creation (bool)
parm: disable_ertm:Disable enhanced retransmission mode (bool)
$

The modinfo command shows you exactly which module file is used to support the
module, along with detailed information about where the module came from.

Installing New Modules
If you need to install a new module manually, there are two commands to help with that:

■■ insmod

■■ modprobe

mailto:marcel@holtmann.org

Maintaining the Kernel  123

c03.indd  09/14/2016  Page 123

The insmod command is the most basic, requiring you to specify the exact module
file to load. As you’ve seen, the kernel module files are stored in the /lib/modules folder
structure, with each kernel version having its own folder. If you look in that folder on your
Linux system, you’ll see a folder tree structure for the different types of hardware.

For example, Ubuntu Linux desktop systems have the following folder for Bluetooth
hardware drivers:

/lib/modules/3.13.0–63-generic/kernel/drivers/bluetooth

This folder is for the currently installed Linux kernel on the system—3.13.0–63. Inside
that folder are many different device driver module files for various types of Bluetooth
systems:

$ ls -l
total 420
-rw-r--r--1 root root 23220 Aug 14 19:07 ath3k.ko
-rw-r--r--1 root root 14028 Aug 14 19:07 bcm203x.ko
-rw-r--r--1 root root 26332 Aug 14 19:07 bfusb.ko
-rw-r--r--1 root root 18404 Aug 14 19:07 bluecard_cs.ko
-rw-r--r--1 root root 19124 Aug 14 19:07 bpa10x.ko
-rw-r--r--1 root root 16964 Aug 14 19:07 bt3c_cs.ko
-rw-r--r--1 root root 38148 Aug 14 19:07 btmrvl.ko
-rw-r--r--1 root root 34204 Aug 14 19:07 btmrvl_sdio.ko
-rw-r--r--1 root root 17524 Aug 14 19:07 btsdio.ko
-rw-r--r--1 root root 14524 Aug 14 19:07 btuart_cs.ko
-rw-r--r--1 root root 53964 Aug 14 19:07 btusb.ko
-rw-r--r--1 root root 14188 Aug 14 19:07 btwilink.ko
-rw-r--r--1 root root 15572 Aug 14 19:07 dtl1_cs.ko
-rw-r--r--1 root root 74772 Aug 14 19:07 hci_uart.ko
-rw-r--r--1 root root 15156 Aug 14 19:07 hci_vhci.ko
$

Each .ko file is a separate device driver module file that you can install into the 3.13.0–63
kernel. To install the module, just specify the filename on the insmod command line. Some
modules also require parameters, which you must specify on the command line as well:

$ sudo insmod /lib/modules/3.13.0–49-generic/kernel/drivers/bluetooth/
btusb.ko
password:
$

The downside to using the insmod program is that you may run into modules that
depend on other modules, and the insmod program will fail if those other modules aren’t
already installed. To make the process easier, the modprobe command helps resolve module
dependencies for you.

124  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 124

Another nice feature of the modprobe command is that it understands module names, and it
will search the module library for the module file that provides the driver for the module name.

Because of this versatility, many options are available for the modprobe command.
Table 3.5 shows the command-line options that you can use.

Ta b le 3 .5     The modprobe command options

Option Description

-a Insert all modules listed on the command line.

-b Apply a blacklist command specified in the configuration file.

-C Specify a configuration file other than the default.

-c Display the current configuration used.

-d Specify the root directory to use for installing modules. The default is /.

-f Force the module installation even if there are version issues.

-i Ignore the install and remove commands specified in the configuration file for
the module.

-n Perform a dry run of the module install to see if it will work without actually
installing it.

-q Quiet mode; don’t display any error messages if the module installation or
removal fails.

-r Remove the module listed.

-s Send any error messages to the syslog facility on the system.

-V Display the program version and exit.

-v Provide additional information (verbose) as the module is processed.

As you can see, the modprobe command is a fully featured tool all by itself. Perhaps the
handiest feature is that it allows you to install modules based on the module name and not
have to list the full module filename:

$ sudo modprobe -iv btusb
insmod /lib/modules/3.13.0–63-generic/kernel/drivers/bluetooth/btusb.ko
$

Maintaining the Kernel  125

c03.indd  09/14/2016  Page 125

Notice that by adding the –v option for verbose mode, the output shows the insmod
command automatically generated by the modprobe command. The insmod command
shows the specific module file used to install the module.

Removing Modules
Normally, it does no harm to install a module in the system if the hardware device is not
present. The kernel just ignores unused modules. However, some Linux administrators
prefer to keep the kernel as lightweight as possible. Thus, the Linux developers created a
method for removing unnecessary modules—the rmmod command. The rmmod command
removes a module by specifying the module name.

However, your friend the modprobe command can also remove modules for you, so you
don’t really need to memorize another command. Instead, just use the –r option with the
modprobe command:

$ sudo modprobe -rv btusb
rmmod btusb
$

The modprobe –r command invokes the rmmod command automatically, removing the
module by name. You can verify that the module has been removed by using the lsmod
command.

Working with Hardware
Of course, modules work only when there’s hardware connected to the system. Sometimes,
you may run into an issue with matching the correct module with the correct hardware
device. There are a few commands that you can use to query the hardware devices on your
Linux system. These are discussed in this section.

Working with PCI Cards
The Peripheral Component Interface (PCI) is an old IBM-compatible PC standard for con-
necting hardware boards to PC motherboards. The standard has been updated a few times
to accommodate faster interface speeds, as well as increase data bus sizes on motherboards.
The PCI Express (PCIe) standard is currently used on most servers and desktop worksta-
tions to provide a common interface for external hardware cards, such as fast Ethernet and
external SCSI drive support.

The Linux kernel supports the PCI and PCIe standards, and it can usually detect and
interact with a PCI or PCIe board when the appropriate driver module is loaded.

The lspci command allows you to view the currently installed and recognized
PCI and PCIe cards on the Linux system. You can include several command-line
options with the lspci command to display various information about the PCI and
PCIe cards installed on the system. Table 3.6 shows the more common options that
come in handy.

126  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 126

Ta b le 3 .6     The lspci command-line options

Option Description

-A Define the method to access the PCI information.

-b Display connection information from the card point of view.

-k Display the kernel driver modules for each installed PCI card.

-m Display information in machine-readable format.

-n Display vendor and device information as numbers instead of text.

-q Query the centralized PCI database for information about the installed PCI
cards.

-t Display a tree diagram that shows the connections between cards and
buses.

-v Display additional information (verbose) about the cards.

-x Display a hexadecimal output dump of the card information.

The output from the lspci command without any options shows all of the devices
connected to the system, as shown in Listing 3.8.

Listing 3.8:  The lspci command output

$ lspci
00:00.0 Host bridge: Intel Corporation 440FX—82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox
Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
Controller (rev 01)
00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode] (rev 02)
$

Maintaining the Kernel  127

c03.indd  09/14/2016  Page 127

You can use the output from the lspci command to troubleshoot PCI card issues, such
as if a card isn’t recognized by the PnP system.

Working with USB Devices
By far the most popular standard used for devices today is the Universal Serial Bus (USB).
USB is both a protocol and a hardware standard for transferring data between hardware
devices. The original USB 1.0 standard provided for up to 127 hardware devices to share
the same communication channel and transfer at speeds up to 12 Mbps. All types of hard-
ware vendors rushed to implement the USB interface for their devices. Everything from key-
boards, mice, printers, and even external storage devices uses the USB standard.

While the original USB standard was a major breakthrough in hardware communica-
tions, it wasn’t long before the slower speeds started causing problems. The updated USB 2.0
standard provided for transfer speeds up to 480 Mbps, a significant increase in speed. The
current USB 3.0 standard provides an incredible 4.8 Gbps transfer speed, but unfortunately
it uses a different type of interface port, making it incompatible with older USB devices.

You can view the basic information about USB devices connected to your Linux system by
using the lsusb command. Table 3.7 shows the options that are available with that command.

Ta b le 3 .7     The lsusb command options

Option Description

-d Display only devices from the specified vendor ID.

-D Display information only from devices with the specified device file.

-s Display information only from devices that use the specified bus.

-t Display information in a tree format, showing related devices.

-v Display additional information about the devices (verbose mode).

-V Display the version of the lsusb program.

The basic lsusb output is shown in Listing 3.9.

Listing 3.9:  The lsusb command output

$ lsusb
Bus 001 Device 004: ID 1908:1320 GEMBIRD PhotoFrame PF-15–1
Bus 001 Device 003: ID 80ee:0022 VirtualBox
Bus 001 Device 002: ID 80ee:0021 VirtualBox USB Tablet
Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
$

128  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 128

Once you see the list of USB devices, you can obtain more information for a specific
device by using the –d and –v options.

Automatically Detecting Hardware
Computer hardware is generally categorized into two types:

■■ Coldplug devices

■■ Hotplug devices

Coldplug devices are hardware that can be connected to the system only when it is com-
pletely powered down. These usually include things commonly found inside the computer
case, such as memory, PCI cards, and hard drives. You can’t remove any of these things
while the system is running.

Conversely, you can usually add and remove hotplug devices at any time. These are
often external components, such as network connections, monitors, and USB devices. The
trick with hotplug devices is that somehow the Linux kernel needs to know when a hotplug
device is connected and automatically load the correct device driver module to support the
device.

The udev device manager is a program that runs in the background on Linux systems,
listening to kernel notifications about hardware devices. As new hardware devices are
plugged into the running system, or existing hardware devices are removed, the kernel
sends out notification event messages.

The udevd program runs in the background and listens to these notification messages.
The overall operation of the udevd program is controlled by settings in the /etc/udev/
udev.conf configuration file.

The udevd program matches the kernel messages against rules defined in a set of config-
uration files, normally stored under the /etc/udev/rules.d and /lib/udev/rules.d fold-
ers. If a device matches a defined rule, udevd acts on the event notification as defined by the
rule. Device rules define which kernel module to load to support the device and what device
name to assign to the device.

Each Linux distribution defines a standard set of rules for udevd to follow. Rules define
actions such as mounting USB memory sticks under the /media folder or assigning a USB
network card to the /dev/eth0 device.

You can modify the default rules defined by your Linux distribution, but it’s usually not
necessary.

Some Linux distributions include the udevmonitor program, which allows
you to display kernel device events to the standard output. This lets you
watch kernel events as you plug in new devices to help troubleshoot
issues. In some Linux distributions, this feature is part of the udevadmin
application, which allows you to control settings of the udevd program
dynamically and monitor the kernel messages it detects.

Maintaining the Kernel  129

c03.indd  09/14/2016  Page 129

Troubleshooting the Kernel
If things do go wrong with the kernel, a few tools are available to help you troubleshoot
things. This section goes through two of the more common tools that you’ll want to know
about.

Displaying the Kernel Version
Before you can do much troubleshooting, you’ll want to know just which kernel version your
system is booting. The uname command can provide quite a bit of useful information here.

By default, the uname command displays a string that isn’t overly useful:

$ uname
Linux
$

This is actually the name of the kernel that is running. For lots more information, use
the –a option:

$ uname -a
Linux ubuntu02 3.13.0–63-generic #103-Ubuntu SMP Fri Aug 14 21:42:59 UTC
2015 x86_64 x86_64 x86_64 GNU/Linux
$

Now that’s more useful. The information provided by the uname command is as follows:

■■ The kernel name (Linux)

■■ The system network hostname (ubuntu02)

■■ The kernel release (3.13.0–63-generic)

■■ The kernel version (#103 Ubuntu SMP Fri Aug 14 21:42:59 UTC 2015)

■■ The machine hardware name (x86_64)

■■ The processor type (x86_64)

■■ The operating system (GNU/Linux)

You can also display each value individually by using other command-line options, as
shown in Table 3.8.

Ta b le 3 . 8     The uname command options

Option Description

-a Display all values.

-s Display the kernel name.

130  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 130

Option Description

-n Display the network hostname.

-r Display the kernel release.

-v Display the kernel version.

-m Display the machine hardware name.

-p Display the processor type.

-o Display the operating system.

The uname command is the first place to go to when you need to check which kernel
loaded at boot time, especially if you have multiple kernels configured on your system.

The /proc Filesystem
The Linux kernel creates a dynamic pseudo directory named /proc that allows you to peek
at configuration and performance information related to the kernel while it’s running. The
/proc filesystem contains information on hardware, such as assigned interrupt requests
(/proc/interrupts), I/O ports (/proc/ioports), and direct memory access (DMA) chan-
nels (/proc/dma). Viewing this information is as easy as using the cat command to display
the file contents. Listing 3.10 shows the output from the /proc/interrupts file.

Listing 3.10:  The /proc/interrupts file contents

$ cat /proc/interrupts
 CPU0
 0: 129 XT-PIC-XT-PIC timer
 1: 986 XT-PIC-XT-PIC i8042
 2: 0 XT-PIC-XT-PIC cascade
 8: 0 XT-PIC-XT-PIC rtc0
 9: 4808 XT-PIC-XT-PIC acpi, vboxguest
 10: 9827 XT-PIC-XT-PIC eth0
 11: 32914 XT-PIC-XT-PIC ohci_hcd:usb1, ahci, snd_intel8x0
 12: 505 XT-PIC-XT-PIC i8042
 14: 2440 XT-PIC-XT-PIC ata_piix
 15: 0 XT-PIC-XT-PIC ata_piix
NMI: 0 Non-maskable interrupts
LOC: 119411 Local timer interrupts

Ta b le 3 . 8     The uname command options  (continued)

Maintaining the Kernel  131

c03.indd  09/14/2016  Page 131

SPU: 0 Spurious interrupts
PMI: 0 Performance monitoring interrupts
IWI: 19157 IRQ work interrupts
RTR: 0 APIC ICR read retries
RES: 0 Rescheduling interrupts
CAL: 0 Function call interrupts
TLB: 0 TLB shootdowns
TRM: 0 Thermal event interrupts
THR: 0 Threshold APIC interrupts
MCE: 0 Machine check exceptions
MCP: 9 Machine check polls
ERR: 0
MIS: 0
$

You can use the lsdev command to display hardware information found in the /proc
filesystem in one easy table, as shown in Listing 3.11. You may have to install the command
since many Linux distributions don’t install it by default.

Listing 3.11:  The lsdev command output

$ lsdev
Device DMA IRQ I/O Ports
————————————————————————
0000:00:01.1 0170–0177 01f0–01f7 0376–0376 03f6–03f6
0000:00:03.0 d010-d017
0000:00:04.0 d020-d03f
0000:00:05.0 d100-d1ff d200-d23f
0000:00:0d.0 d240-d247 d250-d257 d260-d26f
ACPI 4000–4003 4004–4005 4008–400b 4020–4021
ahci d240-d247 d250-d257 d260-d26f
ata_piix 14 15 0170–0177 01f0–01f7 0376–0376 03f6–03f6
cascade 4 2
dma 0080–008f
dma1 0000–001f
dma2 00c0–00df
e1000 d010-d017
eth0 10
fpu 00f0–00ff
i8042 1 12
Intel d100-d1ff d200-d23f
keyboard 0060–0060 0064–0064

132  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 132

PCI 0cf8–0cff
pic1 0020–0021
pic2 00a0–00a1
rtc0 8 0070–0071
rtc_cmos 0070–0071
snd_intel8x0 11
timer 0
timer0 0040–0043
timer1 0050–0053
vboxguest 9
vesafb 03c0–03df
$

You’ll find kernel information in the /proc/sys/kernel folder, which contains files that
you can read to obtain kernel information and write to set kernel parameters. Reading ker-
nel parameters is as easy as using the cat command:

$ cat /proc/sys/kernel/version
#103-Ubuntu SMP Fri Aug 14 21:42:59 UTC 2015
$

You can set kernel parameters either by writing to the /proc filesystem file directly or by
using the sysctl command. You can specify either the kernel parameter and value on the
sysctl command line, or you can specify a group of parameters and values in the /etc/
sysctl.conf configuration file, which the sysctl command will read and process. Most
Linux distributions also utilize a /etc/sysctl.d folder, which contains multiple files of
kernel parameter settings. This helps organize the settings based on the applications that
require them.

Summary
The Linux system consists of several layers of software. At the center of the Linux system is
the Linux kernel, which manages the system hardware, memory, and running applications.
The kernel is key to having a properly running Linux system.

The kernel consists of several parts—the actual kernel binary file, kernel modules for
managing hardware, the kernel source code, kernel patches for upgrading existing systems,
kernel headers used for compiling modules, and the kernel documentation. At a bare mini-
mum, your Linux system must have the kernel binary and module files installed. If you want
to experiment with creating a customized kernel, you’ll need the kernel source code files.

You can either download the kernel source code files from your Linux distribution repos-
itory or get the latest production and development versions from the www.kernel.org website.
Once you download and extract the kernel source code, you must create a configuration

http://www.kernel.org

Exam Essentials  133

c03.indd  09/14/2016  Page 133

file, which sets the kernel features that you need for your system. There are automated
scripts available to help with this process, including graphical menus for selecting which
features to include.

After configuring the kernel features, the next step is to compile the source code to
create a kernel binary file. The kernel binary file that is created is often a compressed file
named bzImage. You must copy this file to the bootloader folder (usually /boot), then com-
pile the module files included for the kernel, and create an initial RAM disk so that the ker-
nel can access the modules at boot time.

After you get the new kernel running, you’ll want to be able to monitor and troubleshoot
the kernel. Linux includes commands to display the hardware devices detected at boot
time and dynamically added as the system is running. There are also commands to work
with kernel modules, listing the modules installed and installing or removing modules as
necessary.

Finally, you can use the /proc filesystem to monitor hardware and kernel features, as
well as change kernel parameters while the system is running.

Exam Essentials
Describe the parts of the Linux kernel and where to find them.    The kernel binary file is
the program that runs at boot time. It’s normally stored in the /boot folder with the file-
name bzImage or vmlinuz. The kernel also uses module files, which are stored in the /lib/
modules folder. The kernel source code and documentation files are stored in the /usr/src/
linux folder structure (or are linked from another location to this folder).

Explain the different types of kernel images.    The vmlinux image is a non-compressed
image that’s not normally used for booting. The zImage image file is a small, compressed
image file, while the bzImage image file format creates a larger compressed image file. The
bzImage file format is the most popular, but it is often renamed to vmlinuz by most Linux
distributions.

Identify the kernel stable and development releases.    Kernels in the version 1 and 2 series
used an odd/even format of version numbering, where odd-numbered releases were develop-
ment and even number releases were stable. Kernels in the version 3 and 4 series append an
-rc to the end of the version number to indicate development releases.

Describe kernel modules.    Kernel modules allow you to load device drivers separately from
the main kernel executable file. This allows you to run a small kernel and load only the
modules required for the system devices. The module files are object files that can be either
loaded or unloaded during runtime. Kernel modules are found in the /lib/modules folder
structure.

Describe how to configure a kernel.    Once you download the kernel source code, you can
use the make utility with the config, menuconfig, xconfig, or gconfig target. The config
target asks questions to allow you to select the configuration and settings for the kernel.

134  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 134

The menuconfig target produces a text-based menu system for selecting configuration set-
tings. Both the xconfig and gconfig targets generate a graphical menu that allows you to
set configuration settings.

Explain how to compile a new kernel.    Once you download the kernel source code and
generate a configuration file, you can compile the kernel using the make utility. If you don’t
specify a target, the make utility will create an uncompressed kernel binary file. You can
specify the zImage or bzImage target to create a compressed kernel binary file. After you
compile the kernel, you’ll need to compile the associated modules by using the make utility
with the modules target.

Explain how to create an initrd image.    After you compile the kernel modules, you can
create an initial RAM disk image with the compiled module files. For Red Hat–based sys-
tems, you should use the mkinitrd command, while for Debian-based systems, you should
use the mkinitramfs command.

Describe how to install a new kernel.    You can manually copy the bzImage kernel binary
file to the /boot folder, along with the System.map file generated for the binary file and the
initial RAM disk created with the kernel modules. After you copy the files to the /boot
folder, you must either manually add a new entry to the GRUB Legacy boot menu or, for
GRUB2 systems, run the update-grub command to add the new kernel automatically to the
boot menu.

Explain how to query the kernel settings.    The /proc filesystem provides an interface
to the kernel settings and performance statistics. The /proc/sys/kernel folder contains
files for kernel settings that you can modify during runtime. You can also use the sysctl
command to modify kernel settings at any time. The /etc/sysctl.conf configuration file
allows you to specify multiple settings that can be applied when the sysctl program runs.

Explain how to work with modules for a kernel.    The lsmod command lets you view the
modules currently loaded into the kernel. The modinfo command provides detailed infor-
mation about the module and the module file with which it’s associated. The insmod and
modprobe commands allow you to insert new modules into the running kernel. The rmmod
command lets you remove a module from the running kernel.

Explain how Linux detects hardware and loads modules.    The udev system uses the udevd
program running in the background to listen to kernel hardware events. It matches the
kernel events against rules defined in the /etc/udev folder. When a kernel event matches
a rule, the rule specifies what module should be loaded and the device name to which the
device is assigned.

Review Questions  135

c03.indd  09/14/2016  Page 135

Review Questions
You can find the answers in the Appendix.

1.	 Which part of a Linux system manages system memory?

A.	 GNU utilities

B.	 Kernel

C.	 Graphical desktop

D.	 Application software

2.	 What is the area on the hard disk called that is used as memory storage?

A.	 Swap space

B.	 Virtual memory

C.	 Filesystem

D.	 Physical memory

3.	 What method does Linux use to load device drivers into the kernel?

A.	 DLL files

B.	 Virtual memory

C.	 Modules

D.	 Bootloader

4.	 Which kernel file type is used to boot the Linux system?

A.	 Binary file

B.	 Modules

C.	 Patch file

D.	 Source code

5.	 What type of release can you use to upgrade an existing kernel to a newer version?

A.	 Patch release

B.	 Modules

C.	 Binary files

D.	 Development release

6.	 Which make utility target uses text-based questions to configure the kernel?

A.	 xconfig

B.	 mrproper

C.	 clean

D.	 config

136  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 136

7.	 Which make utility target uses a graphical interface to configure the kernel?

A.	 config

B.	 mrproper

C.	 gconfig

D.	 clean

8.	 Which make utility target should you use to remove any old object files from a previous
compile?

A.	 gconfig

B.	 mrproper

C.	 bzImage

D.	 oldconfig

9.	 Which make utility target is commonly used to generate a compressed kernel binary file?

A.	 bzImage

B.	 kernel

C.	 config

D.	 clean

10.	 Which program should you use to create an initial RAM disk for a Debian-based system?

A.	 mkinitrd

B.	 make bzImage

C.	 mkinitramfs

D.	 make initrd

11.	 Which command should you use to list all of the installed modules?

A.	 modinfo

B.	 insmod

C.	 rmmod

D.	 lsmod

12.	 Which command should you use to install a module if you don’t know its filename?

A.	 insmod

B.	 rmmod

C.	 modprobe

D.	 lsmod

Review Questions  137

c03.indd  09/14/2016  Page 137

13.	 Which command should you use to display information about USB devices installed on the
system?

A.	 lsusb

B.	 lspci

C.	 lsmod

D.	 lsdev

14.	 Which option in the lsusb command displays detailed information about the USB devices?

A.	 –d

B.	 –s

C.	 –t

D.	 –v

15.	 Which type of hardware devices can you connect to the Linux system as it’s running?

A.	 Coldplug

B.	 Hotplug

C.	 PCI

D.	 PCIe

16.	 What program does Linux use to detect hotplug devices and load the appropriate modules?

A.	 lsusb

B.	 udevd

C.	 modprobe

D.	 insmod

17.	 Where are the udevd configuration settings stored?

A.	 /lib/modules

B.	 /boot

C.	 /etc/udev/rules.d

D.	 /etc/udev/udev.conf

18.	 Where are the udevd rules stored?

A.	 /etc/udev/udevd.conf

B.	 /etc/udev/rules.d

C.	 /boot

D.	 /lib/modules

138  Chapter 3  ■  Mastering the Kernel

c03.indd  09/14/2016  Page 138

19.	 Where is the dynamic pseudo-directory the kernel creates to peek at kernel settings and per-
formance statistics located?

A.	 /etc/kernel

B.	 /boot/kernel

C.	 /proc

D.	 /usr/src/linux

20.	 What command allows you to change kernel settings during runtime?

A.	 sysctl

B.	 lsmod

C.	 modprobe

D.	 lsdev

c04.indd  09/14/2016  Page 139

Chapter

4
Managing the
Filesystem

The following exam objectives are
covered in this chapter:

✓✓ 203.1 Operating the Linux filesystem

✓✓ 203.2 Maintaining a Linux filesystem

✓✓ 203.3 Creating and configuring filesystem options

c04.indd  09/14/2016  Page 140

Data is kept as ones and zeros on storage media, such as disk
drives and DVDs. A filesystem bridges the gap between the
ones and zeros stored on the media and the files you work

with in your applications. Managing a filesystem includes providing access to the stored
data as well as tuning, monitoring, and repairing filesystems in order to improve access
times and protect the data. This chapter covers all of these topics so that you can properly
manage your Linux filesystems.

Operating the Linux Filesystem
To manage and control a Linux filesystem, you need to know more than a general filesys-
tem definition. You should be aware of basic filesystem structures. It’s also important to
understand the various filesystem types that determine how the files are handled on stor-
age media. We cover several filesystem types and their descriptions in this chapter section.
Understanding these filesystem types and their schemes will assist you in picking the right
filesystem type for your data needs.

Be aware that some documentation spells the word filesystem as file
system.

Besides understanding the filesystem types, you must know how to attach a filesystem to
the Linux directory structure. Filesystems can be temporarily or persistently attached to the
directory structure. How to accomplish these tasks is also covered in this section.

Understanding Filesystem Structures
Hard disk drives and other storage media typically come with manufacturer low-level for-
matting applied. However, for many non-optical storage media devices, such as disks, par-
titioning and high-level formatting are still required.

Partitioning storage media, addressed in the LPIC-1 certification, is necessary prior to
high-level formatting. Typically, partitioning is logically dividing a storage media device
into individual sections called partitions. Be aware, however, that a single partition can
span a whole device, as well as multiple devices. Logical volume management, covered in
Chapter 5, allows multiple partitions to be logically grouped together into one partition,

Operating the Linux Filesystem  141

c04.indd  09/14/2016  Page 141

called a volume. Partitioning is accomplished via either GUI or command-line utilities,
such as parted, fdisk, and gdisk.

High-level formatting is often just called formatting or making the filesystem. This for-
matting is accomplished using utilities such as mkfs and was addressed in the LPIC-1 certi-
fication. It is also covered later in this chapter.

When a partition or volume is formatted, several structures are put into place, depend-
ing on the filesystem type selected. One partition area holds the actual file data. The other
area(s) hold structures containing items such as filesystem metadata, file metadata, journal
files (described later in this chapter), and so on.

File metadata is stored in an inode table. When a file is created on the partition or vol-
ume, a new entry in the inode table is created. The inode table is a table of index numbers,
called inodes. Typically, an inode is a number uniquely assigned to a file when it is created.
(There are exceptions to this, such as when a hard link is created to a file. The hard link
file and the original file share an inode number.) The inode and its assigned file’s metadata,
such as permissions, ownership, and pointers to the various file data locations, are stored in
the inode table.

A file’s name is not stored in the inode table. A file’s name is stored in its
directory. A directory is actually a file that contains a table. The table has
metadata on each file stored in that directory. Each file’s name and its
associated inode number are listed within the directory table.

Every partition or volume can have a different filesystem type. This allows a great deal
of flexibility for addressing your particular data needs.

Understanding Filesystem Types
A filesystem determines how the files are handled on physical media. Each type has its own
unique methods for accessing, updating, and protecting data integrity. Thus, your filesys-
tem type choice is an important selection.

The term filesystem is sometimes used to refer to the Linux directory
structure’s layout. For example, the Filesystem Hierarchy Standard pro-
vides a standard for key system file locations within the Linux directory
structure. Also, you will often read about two important filesystems in the
Linux directory structure, root (/) and /boot, which are required for a Linux
installation. The term filesystem in this chapter does not refer to directo-
ries within the Linux virtual directory structure.

Filesystems can be categorized in many different ways, such as to how they protect data
integrity, the physical medium on which they can be used, their original target operating
system, and so on. For our purposes here, they are split into native Linux filesystems and
non-native filesystems. Later in this chapter, we’ll cover network-based and optical filesystems.

142  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 142

Looking at Native Linux Filesystems
A native Linux filesystem is one that was originally designed to be used on Linux. Table 4.1
shows filesystems, in alphabetical order, that fall into this category.

Ta b le 4 .1     Native Linux filesystem types

Name Max File Size Max Filesystem Size Journaling Description

btrfs 16 EiB 16 EiB COW Newer, high-performance
filesystem that supports
large file and filesystem
sizes. Performs its own
form of Redundant Array of
Independent Disks (RAID)
as well as volume manage-
ment. Additional features
include built-in snapshots,
improved fault-tolerance,
compression on the fly, and
so on.

ext2 2 TiB 16 TiB No One of the original Linux
filesystems. Deprecated.

ext3 2 TiB 16 TiB Yes Created as an improvement
to ext2 with journaling added;
quicker startup and recovery.

ext4 16 TiB 1 EiB Yes Created as an improvement
to ext3 with larger file and
filesystem sizes supported
as well as performance
enhancements.

reiserFS 1 EiB 16 TiB Yes Created before ext3. Also
called Reiser3. Newer
version, Reiser4, not incor-
porated into Linux kernel.

You’ll notice in Table 4.1 that most modern filesystems use journaling, while Btrfs uses
COW instead. The difference between these two data integrity features is as follows. Journaling
is a method that tracks uncommitted (file metadata not yet updated) data changes in a log file,
called a journal. If the data commitment process is interrupted, say by a system crash, the jour-
nal is used to commit the intended data changes. This method provides effective data protection
in a system interruption event.

Operating the Linux Filesystem  143

c04.indd  09/14/2016  Page 143

The ext filesystem types are sometimes written with “fs” added to their
name to indicate that they are a filesystem type. For example, ext3 can be
written as ext3fs.

COW stands for Copy-On-Write, and it is another method used to protect data. To
understand it, you first need to understand how files are handled in non-COW filesystems.
When a file is created, it is written on the storage medium’s free space and the metadata is
created pointing to the file’s data location. In a non-COW filesystem, when that file’s data is
modified, the old data is overwritten with the new data.

On a COW filesystem, file creation is handled similarly. However, file data modification
is handled differently. For a COW filesystem, when a file’s data is modified, the new data
is written on the storage medium’s free space; the file’s metadata is updated to point to the
new data. Thus, if the data commitment process is interrupted, say by a system crash, the
original data still exists and is not lost.

On a COW filesystem, when a file is created, its metadata is not created
exactly as on a non-COW filesystem. For a COW filesystem, the filesys-
tem’s metadata’s new data is written on the storage medium’s free space.
Then pointers are updated to point to the new filesystem metadata. This
adds an extra layer of protection.

Looking at Non-native Linux Filesystems
There are additional filesystems to consider besides native Linux filesystems. These are non-
native filesystems, which are filesystems not originally created for Linux but which can be
handled by Linux. Table 4.2 shows several filesystems, in alphabetical order, that fall into
this category.

Ta b le 4 . 2     Non-native Linux filesystem types

Name Max File Size Max Filesystem Size Journaling Description/Features

ntfs 2 TiB 256 TiB Yes Read access is sup-
ported on Linux, but
software to do so
may not be installed
by default. For write
access, additional
software may also be
needed. Developed by
Microsoft.

vfat 4 GiB 2 TiB No Typically used on USB
flash drives. Developed
by Microsoft.

144  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 144

Name Max File Size Max Filesystem Size Journaling Description/Features

XFS 8 EiB 8 EiB Yes High-performance file-
system that supports
large file and filesys-
tem sizes. Developed
by Silicon Graphics.

ZFS 16 EiB 256 ZiB COW ZFS on Linux (ZoL) is
a high-performance
filesystem often
compared to Btrfs.
Developed by Sun
Microsystems (now
part of Oracle).

As you can see from Table 4.1 and Table 4.2, you can choose from a wide variety of file-
systems to use on your Linux system. Keep in mind that these two tables are not an exhaus-
tive list. There are many more filesystems to consider. These are simply a few of the more
popular ones. Use your favorite search engine or type man filesystems at the command
line to find additional filesystems for Linux.

The maximum file and filesystem sizes are theoretical limits. In practice,
you may find the filesystems to have lower thresholds than stated here.

A relatively new non-native filesystem created for Windows systems is ReFS (Resilient
File System). It currently has limited deployment, but it may be supported on Linux some-
time in the future.

Making a Filesystem
Once you have created a partition or volume and chosen a filesystem for it, you are ready to
format (make) a filesystem. As mentioned earlier, this sets up various structures on the par-
tition (volume) for proper data management.

The primary tool to format a filesystem is mkfs, and you need super user privileges to
use it. The mkfs utility is actually a front end to various other utilities used for each filesys-
tem type.

The desired filesystem type can be chosen via the command mkfs.fstype or mkfs -t
fstype. The fstype is a special code that represents the filesystem type being selected. For
example, ext4 is the type code to select an ext4 (ext4fs) filesystem type.

Ta b le 4 . 2     Non-native Linux filesystem types  (continued)

Operating the Linux Filesystem  145

c04.indd  09/14/2016  Page 145

Another command that you can use to make ext2, ext3, or ext4 filesystems
is mke2fs. It is simply a pointer to the mkfs.ext2 utility, which will create
an ext2 filesystem. Used with the -t fstype option, you can make an ext3
or ext4 filesystem, depending on which fstype you select.

The following is an example of using the mkfs utility to format a partition to the ext4
filesystem type. It was completed on an Ubuntu distribution. Therefore, sudo is used to
gain the necessary super user privileges.

$ sudo mkfs.ext4 /dev/sdb1
[sudo] password for christine:
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131072 inodes, 524288 blocks
26214 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=536870912
16 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: 0/1done

$

Notice from the preceding example’s output that several structures were set up as the
/dev/sdb1 partition formatting was processing. These structures include inodes, inode
tables, and a journal. Recall from earlier in this chapter that each filesystem type will have
both common and unique structures created during formatting in order to manage the
filesystem. Each filesystem type has its own unique methods for accessing, updating, and
protecting data integrity.

Using the command mkfs -t ext4 /dev/sdb1 in the preceding example
would have accomplished the exact same result.

146  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 146

You can check the filesystem type created using the parted utility and super user privi-
leges, as shown in this snipped example on an Ubuntu system:

$ sudo parted -l
[...]
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 4295MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 1049kB 2149MB 2147MB primary ext4

$

The filesystem on /dev/sdb1 is indeed an ext4 filesystem. This is a handy way to double-
check your mkfs formatting.

You can also use the blkid utility to check the filesystem type, as shown in this snipped
example from an Ubuntu system:

$ sudo blkid
/dev/sda1: [...] TYPE="ext4"
/dev/sda5: [...] TYPE="swap"
/dev/sdb1: [...] TYPE="ext4"
$

This output also shows that the filesystem on /dev/sdb1 is an ext4 filesystem. Neither
the blkid nor the parted utility requires the partition to be attached to the Linux directory
system in order to display its filesystem type.

Attaching a Filesystem
Once you make your filesystem, it’s important to know how to attach the filesystem to the
Linux directory structure. Linux uses a method to store files within a single directory struc-
ture called a virtual directory. At the base of this virtual directory is the root directory (/),
and directories and files beneath the root directory are listed based on the directory path.
You can attach filesystems to the virtual directory structure either temporarily or persis-
tently, depending on your present needs. After you’ve attached a filesystem to the virtual
directory structure, you can store and access data on that filesystem.

Attaching a Filesystem Temporarily
Attaching a filesystem to the Linux virtual directory is called mounting, and temporary
mounting is done via the mount command. To mount a filesystem, you must have super user
privileges (though there are exceptions, as you’ll read about later.) The basic command for
mounting a filesystem is

mount -t fstype device mount_point

Operating the Linux Filesystem  147

c04.indd  09/14/2016  Page 147

The fstype is the filesystem type that you are mounting. The same fstype codes used in
the mkfs command are used here, such as xfs. The fstype must be supported by the Linux
kernel on your distribution in order to be mounted.

You can easily determine the filesystem types supported by your Linux
distribution’s kernel by viewing the /proc/filesystems file.

The device is an absolute path name to the partition or volume holding this filesystem,
such as /dev/sdb1. (Later in this chapter, you will read how other items besides device can
be used instead.)

The mount_point in the mount command is the location within the virtual directory
where the filesystem will reside, such as /home/christine/Temp. The following example
demonstrates mounting a filesystem on an Ubuntu distribution:

$ mkdir /home/christine/Temp
$
$ sudo mount -t ext4 /dev/sdb1 /home/christine/Temp
[sudo] password for christine:
$
$ ls -F /home/christine/Temp
lost+found/
$

Once the filesystem is mounted, you can store, modify, and access data using the mount_
point as a reference. Here is an example using the previously mounted filesystem:

$ touch /home/christine/Temp/a_file.txt
$
$ ls -F /home/christine/Temp
a_file.txt lost+found/
$

Notice that when the filesystem was mounted, a lost+found directory already existed in
the mount_point directory. The lost+found directory is used for recovering files on ext2,
ext3, and ext4 filesystems. If a file residing on this filesystem is not closed properly, such
as when a system crash occurs or a software bug is encountered, it is stored in this direc-
tory. Also, the fsck command, covered later in this chapter, stores recovered files in the
lost+found directory. Keep in mind that a file located here may not be fully intact, depend-
ing on the problem encountered by the file.

If any files exist in the mount_point prior to mounting the filesystem, they
will no longer be accessible after the filesystem is mounted.

148  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 148

The mount command, when used with no options or parameters, pulls the data it displays
directly from the /etc/mtab file. The /etc/mtab file contains a list of all of the currently
mounted filesystems. Thus, you can easily check that your filesystem was properly mounted
to the desired location using the mount command. Here is an example with snipped output
shown on the Ubuntu distribution used previously:

$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
[...]
/dev/sdb1 on /home/christine/Temp type ext4 (rw)
$

The example’s output shows that the /dev/sdb1 partition is mounted at the /home/
christine/Temp mount point. It also shows that the filesystem type is ext4.

The data in the files /etc/mtab and /proc/mounts is nearly identical, with a
few exceptions. First, if a filesystem was attached with mount using the -n
option, the /etc/mtab file will not contain information on that filesystem.
Also, the /proc/mounts file is typically more up to date than /etc/mtab.

The mount command has several useful options. A few are listed in Table 4.3.

Ta b le 4 . 3     mount command options

Parameter Description

-a Mounts all of the filesystems specified in the /etc/fstab file.

-F Used with the -a option. Mounts all of the filesystems at the
same time.

-f Simulates mounting a filesystem but does not mount it.

-L label Mounts the filesystem with the specified label.

-l Adds filesystem labels automatically. Only for ext2, ext3, or
XFS filesystems.

-n Mounts the filesystem without registering it in the /etc/mtab
file.

-o opts Adds specified opts string to the filesystem.

-r Mounts the filesystem as read-only.

Operating the Linux Filesystem  149

c04.indd  09/14/2016  Page 149

Parameter Description

-s Ignores mount options not supported by the filesystem.

-t fstype Mounts the filesystem as the filesystem type, fstype.

-U uuid Mounts the filesystem with the specified uuid.

-v Explains all of the steps required to mount the filesystem
(verbose).

-w Mounts the filesystem as read/write.

The -o option allows you to mount the filesystem with one or more comma-separated
opts. A few of the more popular opts selections are listed here:

check=none: Mounts the filesystem without performing an integrity check.

exec: Permits binary file execution.

group: Allows a non–super user to mount the filesystem, if the user belongs to the
specified group.

owner: Allows a specified non–super user to mount the filesystem.

ro: Mounts the filesystem as read-only.

rw: Mounts the filesystem as read-write.

sync: Forces filesystem buffers to write from memory to the media for every write to
the filesystem. No effect on XFS.

user: Allows a specified non–super user to mount the filesystem.

users: Allows all users to mount the filesystem.

To see all of the various mount command options and the -o option’s opts selections
available, type man mount at the command line.

For a ZFS on a Linux (ZoL) filesystem, no mount command is needed. It is auto-
matically mounted. Find out more about ZoL at http://zfsonlinux.org/.

Detaching a Filesystem
You can detach a filesystem from the Linux virtual directory structure with the umount
command. Be careful here! There is no “n” in the umount command, and you’ll need super
user privileges to use it, as shown on this Ubuntu system:

$ ls -F /home/christine/Temp
a_file.txt lost+found/

http://zfsonlinux.org/

150  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 150

$
$ sudo umount /home/christine/Temp
[sudo] password for christine:
$
$ ls -F /home/christine/Temp
$

Notice in the previous directory that the directory mount point, /home/christine/Temp,
is used with the umount command instead of the device filename, /dev/sdb1. While you
could use the device filename, it’s a best practice to use the directory mount point in case
the device is mounted in multiple locations.

Non–super users cannot detach a filesystem from the directory structure
unless the filesystem was mounted with special options. Those special
options include group, owner, user, and users.

Be aware that if the filesystem that you wish to unmount is being used by a process or
has open files on it, you cannot detach it from the directory structure. The following exam-
ple shows a filesystem mounted on an Ubuntu system that cannot be unmounted because
the filesystem is in use:

$ sudo mount -t ext4 /dev/sdb1 Temp
[sudo] password for christine:
$
$ sudo umount Temp
umount: /home/christine/Temp: device is busy.
 (In some cases useful info about processes that use
 the device is found by lsof(8) or fuser(1))
$

Fortunately, the umount command gives some helpful tips. You can use the lsof or fuser
command to determine what is keeping the filesystem busy, as shown here:

$ lsof Temp
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 1580 christine cwd DIR 8,17 4096 2 Temp
nano 5008 christine cwd DIR 8,17 4096 2 Temp
$
$ fuser Temp
/home/christine/Temp: 1580c 5008c

In the preceding example, the lsof command shows the details of the processes cur-
rently using the Temp directory. The details indicate that the user christine is using the
nano text editor on a file within the Temp directory. The fuser has a brief output displaying

Operating the Linux Filesystem  151

c04.indd  09/14/2016  Page 151

the process PIDs and a code (c) indicating that the processes’ current directory is /home/
christine/Temp. You can find a complete description of various fuser codes by typing man
fuser at the command line. Once these processes are no longer keeping the directory busy,
the filesystem can be successfully detached from the Temp directory.

Attaching Removable Media Manually
Many distributions detect and automatically mount removable media. (See this chapter’s
“Understanding Auto-mounting” section for details on how this occurs.) There are times,
however, when either the system does not automatically mount removable media or you
do not want the media mounted at default mount points. In these cases, you can manually
mount the removable media.

Keep in mind, if the system does automatically mount the media, you will
need to use umount to detach it from the virtual directory structure before
you manually mount it to your desired location.

To mount removable media manually, the command is no different from the command
that you use for temporarily mounting a filesystem. Just be sure that the mount point pre-
exists, and use the correct filesystem type as shown here:

$ sudo mount -t vfat /dev/sdd1 Temp
[sudo] password for christine:
$
$ ls Temp
AAA_Work_ToDo peazip-5.9.0.LINUX.GTK2.tgz
curl-7.46.0.tar.gz Shell_Scripts
[...]
$

Depending on your distribution, you may be able to unmount the remov-
able media, which was automatically mounted without using super user
privileges. However, you might find that you must use super user privi-
leges to mount and unmount the device manually.

Flash drives are often formatted as vfat or ntfs. The ext2 filesystem is also popular for
flash drives. Optical storage has different filesystems, as covered later in this chapter.

If you don’t know the filesystem type or the device name for your removable media, you
can use either the dmesg or the blkid command (or both). A snipped example of these two
commands in action is shown here:

$ dmesg
[...]
[3882.584572] sdd: sdd1

152  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 152

[3882.635207] sd 6:0:0:0: [sdd] No Caching mode page found
[3882.635211] sd 6:0:0:0: [sdd] Assuming drive cache: write through
[3882.635213] sd 6:0:0:0: [sdd] Attached SCSI removable disk
[...]
$
$ sudo blkid
[...]
/dev/sdd1: SEC_TYPE="msdos" LABEL="TRAVELDRIVE" UUID="65AA-9655"
 TYPE="vfat"
$

Using these commands allows you to find that the flash drive device filename is /dev/
sdd1 and that it is formatted as a vfat filesystem type. Notice that the blkid command also
provides UUID and label information for the removable media.

A handy utility to use with removable media is the sync command. The sync command
allows you to “flush” the filesystem buffers. In other words, any filesystem metadata updates
residing in memory are written to the filesystem structures on the media. The sync utility
forces the data commitment process to take place immediately. This allows you to detach
removable media safely from the directory structure without worrying about corruption. An
example of using sync is shown here:

$ cp Documents/Listing_c04_Ubuntu_mount-t.odt Temp/
$
$ sync
$ echo $?
0
$ sudo umount Temp
[sudo] password for christine:
$

In the preceding example, a file is copied to the manually mounted USB flash drive at
Temp. The sync command is used to flush filesystem buffers. The sync utility provides an
exit status, which you can view using the echo $? command. A zero (0) indicates all is
well, whereas a one (1) indicates that a problem has occurred. Because there were no errors
reported by sync, the flash drive was safely unmounted using the umount command.

In Exercise 4.1, you’ll experiment with manually attaching a USB flash drive to your
Linux system.

E x e rc i s e 4 .1

Manually Mount a USB Flash Drive

To experiment with temporarily attaching and detaching a filesystem, follow these steps:

1.	 Log in as an ordinary user, and open a command-line terminal.

2.	 If it doesn’t already exist, create a temporary directory in your home directory by
typing mkdir Temp at the command line and pressing Enter.

Operating the Linux Filesystem  153

c04.indd  09/14/2016  Page 153

3.	 Attach a USB flash drive to the Linux system by plugging it into one of the USB ports.
(If you are using a virtualized system, you may have additional steps here.)

4.	 Determine the USB flash drive device name by typing dmesg and pressing Enter. Look
for the key phrase Attached SCSI removable disk or something similar.

5.	 Determine the exact device name and the USB flash drive’s filesystem by using super
user privileges (this may require that you precede the command with sudo or log into
a super user account), typing blkid, and pressing Enter.

6.	 Record your USB flash drive’s name. It will be something similar to /dev/sdb1,
depending on its formatting and your Linux system.

7.	 Record your USB flash drive’s filesystem. It will be something similar to vfat, nfts, or
ext2, depending on its formatting.

8.	 Type mount and press Enter. If your USB flash drive was automatically mounted, you
will see it listed here. If you see it listed, record its mount point. If you do not see it
listed, skip to step 10.

9.	 Because the system automatically mounted your USB flash drive, you will need to
detach it from the directory structure before you try to mount the flash drive manu-
ally. Type umount mount-point, where mount-point is the USB flash drive’s mount
point that you recorded in the previous step. (If you receive a permissions error, retry
the command using super user privileges).

10.	 Now attempt to mount your USB flash drive manually. Type mount -t fstype
drive-name Temp, where fstype is the filesystem type that you recorded in step 7
and drive-name is the drive name that you recorded in step 6. (If you receive a
permissions error, retry the command using super user privileges). Be aware that if
it is an NTFS-formatted drive, your distribution may not have the software installed
to handle this type of drive format.

11.	 Once you have the USB flash drive successfully mounted, type ls -F Temp and press
Enter. Do you see your flash drive files? If you mounted the USB flash drive correctly,
you should see them.

12.	 Type mount and press Enter. See if you can find your manually mounted USB flash
drive in the command’s output. You should be able to find it.

13.	 Type mountpoint Temp and press Enter. You should receive the message Temp is a
mountpoint.

14.	 Flush the filesystem buffers by typing sync and pressing Enter. (Although you didn’t write
anything to the USB flash drive, syncing the drive before you detach it is still a good habit.)

15.	 Detach the USB flash drive by typing the command umount Temp and pressing Enter.
(If you receive a permissions error, retry the command using super user privileges.
If you get a command not found message, double-check that you typed the umount
command and not “unmount.”)

154  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 154

E x e r c i s e 4 .1   (c ont inue d)

16.	 Type mount and press Enter. See if you can find your manually mounted USB flash
drive in the command’s output. You should not be able to find it because you
unmounted it from the system.

17.	 Type ls -F Temp and press Enter. If you created this directory as part of this exercise,
you should not see any files and get only a prompt back. If it was previously created, you
should see any files originally stored there.

Attaching a Filesystem Persistently
Instead of manually attaching your filesystems after every system reboot, you can have
them attached by the system when it boots. This is done via a record placed in the /etc/
fstab file, which is appropriately named the Filesystem Table.

Generally speaking, each /etc/fstab record consists of six fields. Any record preceded
by a hash mark (#) is considered a comment line. The following items describe these fields.

Partition or Volume    A device partition, such as /dev/sda1, is usually listed here. A logical
volume (covered in Chapter 5) could be listed here as well. Logical volumes start with /dev/
mapper/.

Another method for identifying a device partition or volume is by using a label. The labels
can be set to user-friendly names, such as TmpDir, on partitions whose device filename may be
easy to forget, such as /dev/sdf3. A label is assigned when the partition or volume is format-
ted using mkfs. You can possibly determine a filesystem’s label using the e2label command.

Instead of a device partition or volume, a Universally Unique IDentifier (UUID) may be used,
and they are becoming the preferred method for partition identification within /etc/fstab.
A UUID, as its name implies, is a unique identification number. This number is assigned when
the partition or volume is formatted using mkfs. You can determine a filesystem’s UUID using
the blkid command. This number is persistent, and it is especially useful if you have a large
number of partitions attached to your system.

Mount Point    The mount point is the absolute directory reference for where the partition
or volume is to be attached to the Linux directory structure. This is the same mount_point
you would use with the mount command, if you were to mount the filesystem temporarily.
For a swap filesystem, you will see the keyword swap here. Swap filesystems are covered in
more detail later in this chapter.

Filesystem Type    The filesystem type is the filesystem type code used to identify the parti-
tion or volume’s filesystem format. It is the same fstype that you would use with the mount
command if you were to mount the filesystem temporarily.

For a swap filesystem, you will see the keyword swap here. Swap filesystems are covered in
more detail later in this chapter.

Mount Options    The comma-separated keywords listed here are the various mount options
that you can set on the filesystem. They are the same opts that you would use with the

Operating the Linux Filesystem  155

c04.indd  09/14/2016  Page 155

mount -o command if you were to mount the filesystem temporarily. To see the more popu-
lar mount options, look back to the “Attaching a Filesystem Temporarily” section, and to
see all the various mount options, type man mount at the command line.

Backup Selection    This field is a Boolean field in that it can be set to either 0 (false) or 1
(true). A 0 indicates that the dump utility will not conduct a backup on this filesystem. A 1
indicates that the dump utility will conduct a backup. If the dump backup utility is not used
on the system, this setting is ignored. It has no effect on other backup utilities.

Integrity Check Order    This field can be set to a blank, 0, 1, or 2, and it is used by the
fsck utility (covered later in this chapter) at system boot. A blank or 0 indicates that fsck
should never be run on the filesystem at system boot.

A 1 indicates that this filesystem takes priority, and it should be checked, if needed, before
any other filesystems. Typically, the filesystem mounted at root (/) is the only filesystem set
with this indicator.

A 2 indicates that this filesystem should be checked, if needed, at system boot. However, it
and any other filesystem due for a check and set to 2 will be checked after the filesystem(s)
set to 1 is checked.

Should you need to mount any filesystems recently added to the /etc/
fstab manually, you can simply type mount -a at the command line using
super user privileges. The command mounts all of the filesystems listed
in /etc/fstab that are not currently attached to the virtual directory
structure.

A sample /etc/fstab file is shown in Listing 4.1. This sample file is not from any par-
ticular distribution, but instead it was created for educational purposes only.

Listing 4.1: Sample /etc/fstab file

#partition mount point fs type options dump fsck
/dev/sda1 / ext4 defaults 0 1
UUID=7e32f35e-[...] /boot xfs defaults 0 0
Label=Temp /home/temp ext4 users, noauto 0 0
/dev/sdb3 /var ext4 defaults 0 2
server01:/nfsshare /tmp/share nfs users 0 0
/dev/mapper/a-swap swap swap defaults 0 0

Let’s look at the sample /etc/fstab file line by line.

Line 1    Any line preceded by a hash mark (#) in this file is a comment line. You’ll typically
find the column headers listed as a comment, which is handy.

Line 2    The partition, /dev/sda1, is to be mounted at root (/) in the virtual directory
structure. It is an ext4 filesystem, and all of the default mount options (rw, suid, dev,
exec, auto, nouser, and async) are to be used. The dump backup utility is not used on this

156  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 156

system, and therefore a zero (0) is listed in the dump column for this filesystem. Since this
is the root directory, this filesystem takes priority and should be checked, if needed, before
any other filesystems. Thus, a one (1) is listed in the fsck column.

Line 3    This partition is identified in the /etc/fstab by its UUID number. The number is
snipped in the listing, and the full UUID for this partition is 7e32f35e -c9e1–4aa9–8bab-
df362221d706. A UUID number is long, because it is a unique identification number. Even
with their long length, UUIDs are becoming the preferred method for partition identification
within /etc/fstab. This partition is an xfs filesystem type, and it is mounted at the /boot
mount point. The fsck utility does not run on XFS filesystems, and therefore a zero (0) is
listed in the fsck column for this filesystem.

Line 4    This particular partition uses a label for identification, Label=Temp. Also, notice
that it has a few options set, users and noauto. The users option allows any user autho-
rized to use this system, not just those with super user privileges, to mount or unmount this
labeled partition. Also, the noauto option keeps the partition from being mounted at boot
time or when a mount -a command is issued.

Line 5    The /dev/sdb3 partition is mounted at /var. Note that in its fsck column, a num-
ber two (2) is used. This means that this filesystem should be checked, if needed, at system
boot. However, if /dev/sda1 is due for a check, /dev/sdb3 will be checked after /dev/sda1
has been checked.

Line 6    The server01:/nfsshare is a Network File System (NFS) share. NFS is dis-
cussed in detail in Chapter 10. However, it is briefly covered later in this chapter as well.
For the first LPIC-2 exam, be aware of what an NFS share partition looks like within the
/etc/fstab file.

Line 7    The last line in the sample /etc/fstab listing, /dev/mapper/a-swap, is a logi-
cal volume. Logical volumes are covered in detail in Chapter 5. This particular volume is
mounted as the swap filesystem. The swap filesystem is covered later in this chapter.

When the system reboots, it will issue the mount -a command. Every filesystem listed in
/etc/fstab, which does not have the noauto option set, will be mounted to its designated
mount point in the system’s virtual directory structure.

In recent years, a few /etc/fstab alternatives have been considered.
One alternative was the /etc/fstab.d/ directory. It was proposed in
January 2012, and then after many concerns were raised, the proposal
was dropped.

Looking at systemd Mount Units
Distributions using systemd have additional options for persistently attaching filesystems.
Filesystems can be specified either within the /etc/fstab file (covered earlier) or within a

Operating the Linux Filesystem  157

c04.indd  09/14/2016  Page 157

mount unit file. A mount unit file provides configuration information for systemd (covered
in Chapter 1) to mount and control designated filesystems.

On Linux servers using systemd, if you only use the /etc/fstab file, systemd
still manages these filesystems. The mount points listed in /etc/fstab are
converted into native units when either the server is rebooted or systemd is
reloaded. In fact, using /etc/fstab for persistent filesystems is the preferred
method over manually creating a mount unit file. For more information on
this process, type man systemd-fstab-generator at the command-line.

A single mount unit file is created for each mount point, and the file name contains
the mount point’s absolute directory reference. However, the absolute directory reference
has its preceding forward slash (/) removed; subsequent forward slashes are converted to
dashes (-); and any trailing forward slash is removed. Mount unit file names also have a
.mount extension. For example, the mount point, /home/temp/, would have a mount unit
file named home-temp.mount.

A mount unit file’s contents mimic other systemd unit files, with a few special sections
and options. Using the /home/temp/ mount point, here is an example mount unit file for it:

cat /etc/systemd/system/home-temp.mount
[Unit]
Description=Test Mount Units

[Mount]
What=/dev/sdo1
Where=/home/temp
Type=ext4
Options=defaults
SloppyOptions=on
TimeOutSec=4

[Install]
WantedBy=multi-user.target
#

There are three sections needed at a minimum for this particular mount point: [Unit],
[Mount], and [Install]. The What option within the [Mount] section can use the device file
name or a UUID, such as /dev/disk/by-uuid/UUID.

The SloppyOptions is helpful, in that if set to on, it ignores any mount options not sup-
ported by a particular filesystem type. By default, it is set to off. Another helpful option
is the TimeOutSec. If the mount command does not complete by the number of designated
seconds, the mount is considered a failed operation.

Be sure to include the [Install] section and set either the WantedBy or the RequiredBy
options. If you do not do this, the filesystem will not be mounted upon a server reboot.

158  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 158

Any newly configured mount unit file should be tested, especially prior to conducting a
system reboot. First test a manual mounting of the file system as shown snipped here:

blkid | grep /dev/sdo1
/dev/sdo1: UUID="474c1322-[...] TYPE="ext4"
#
mkdir /home/temp
#
touch /home/temp/test_mount_units.txt
#
ls /home/temp
test_mount_units.txt
#
mount -t ext4 /dev/sdo1 /home/temp
#
ls /home/temp
lost+found
#
umount /home/temp
#
ls /home/temp
test_mount_units.txt
#

Once you have tested the new filesystem via manually mounting and unmounting it, the
mount unit file is tested. Using the example mount unit file, the following demonstrates
testing it on a CentOS distribution:

systemctl daemon-reload
#
systemctl start home-temp.mount
#
ls /home/temp
lost+found
#

In the preceding example, the first command reloads systemd and the second com-
mand has systemd mount the filesystem using the home-temp.mount mount unit file. The
second systemctl command is similar to how a service is started, in that it uses the start
command.

Next make sure that the filesystem is properly mounted. The mount command works in
this situation, and so does the systemctl command. Like a service, you use the systemctl
command to obtain a mounted filesystem’s status as shown snipped here:

Operating the Linux Filesystem  159

c04.indd  09/14/2016  Page 159

mount | grep /home/temp
/dev/sdo1 on /home/temp type ext4 (rw,relatime,data=ordered)
#
systemctl status home-temp.mount
• home-temp.mount - Test Mount Units
 Loaded: loaded (/etc/systemd/system/home-temp.mount; [...]
 Active: active (mounted) since Sat 2017-06-11 16:34:2[...]
 Where: /home/temp
 What: /dev/sdo1
 Process: 3990 ExecMount=/bin/mount /dev/sdo1 /home/temp[...]
[...]
#

There is one additional step required. To ensure systemd will mount the filesystem per-
sistently, the mount unit file must be enabled as shown here:

systemctl enable home-temp.mount
Created symlink from
/etc/systemd/system/multi-user.target.wants/home-temp.mount to
/etc/systemd/system/home-temp.mount.
#

Keep in mind that you should only use mount unit files if you need to tweak the persis-
tent filesystem configuration. If you do not, it’s best to use a /etc/fstab record to mount
the filesystem persistently. For more mount unit file information, see the systemd.mount
man pages.

Viewing Attached Filesystems
If you want to view your system’s current filesystem attachment structure or view various
block device’s attributes, several handy tools are available. Each provides a different view-
point of the virtual directory structure and its underlying storage media.

A simple command to start with is the mountpoint command. It requires no super user
privileges. Just type in mountpoint directory_reference at the command line, and if you
receive the message is a mount point, then a filesystem has been mounted at that particu-
lar directory location, as shown on the Ubuntu distribution here:

$ mountpoint /
/ is a mountpoint
$

$ mountpoint /home
/home is not a mountpoint

Another nice command is blkid. With the blkid command, you can view the various
block devices and their attributes. Super user privileges are not required to see some of the

160  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 160

information; however, accounts without super user privileges receive unverified cached
information or none at all. Here is a snipped example of using the blkid command on an
Ubuntu distribution:

$ blkid
$
$ sudo blkid
[sudo] password for christine:
/dev/sda1: UUID="0dc214d2-[...] TYPE="ext4"
/dev/sda5: UUID="1b0f22a2-[...] TYPE="swap"
/dev/sdb1: UUID="06c41b8c-[...] TYPE="ext4"
/dev/sdc1: UUID="14ca54ba-[...] TYPE="ext4"
/dev/sdc2: LABEL="Extra" UUID="82558d44-[...] TYPE="ext4"
$
$ sudo blkid -L Extra
/dev/sdc2
$

$ sudo blkid -U 14ca54ba-ee44–4588-a32c-dee848a0435f
/dev/sdc1
$

Notice in the previous example that using super user privileges with the blkid com-
mand typically gives more thorough information (and therefore it’s a good idea to use
it with super user privileges). Also notice that you can display information concerning a
particular block device using either its label (-L option) or its UUID (-U option). If desired,
you can specify a single device file name with the blkid command, as shown here on a
CentOS distribution:

blkid /dev/sda1
/dev/sda1: UUID="7e32f35e-[...] TYPE="xfs"
#

When temporarily mounting a partition or volume, which was covered earlier
in this chapter, you can use the mount command with the -L option to specify
the device’s label, instead of using its partition or volume designation.

You can also use the -U option with the mount command to specify the
device’s UUID, instead of using its partition or volume designation. The
UUID may need to be encased in a set of double quotation marks. Also,
because it is easy to mistype the UUID number, be sure to use the shell’s
tab command completion feature when entering it.

The lsblk command can also be a helpful utility. It works in a similar manner to the
blkid command in that it also displays block device information. Since some of its options

Operating the Linux Filesystem  161

c04.indd  09/14/2016  Page 161

pull information from the blkid command, it’s best to have super user privileges when
employing it. Here are two snipped lsblk command examples on a CentOS distribution:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk
├─sda1 8:1 0 500M 0 part /boot
└─sda2 8:2 0 7.5G 0 part
 ├─centos-root 253:0 0 6.7G 0 lvm /
 └─centos-swap 253:1 0 820M 0 lvm [SWAP]
[...]
#
lsblk -f
NAME FSTYPE LABEL UUID MOUNTPOINT
sda
├─sda1 xfs 7e32f35e-[...] /boot
└─sda2 LVM2_member YlVA3C-[...]
 ├─centos-root
 xfs 1ea0c68f-[...] /
 └─centos-swap
 swap 09502922-[...] [SWAP]
[...]
#

The -f option used with lsblk will display the block device’s UUIDs and labels, if used.
Note that not all distributions display block device UUIDs with the lsblk -f command and
option.

Another utility that you may find helpful is the e2label command. With this utility, you
can view any filesystem label for an ext2, ext3, or ext4 filesystem, as shown here on an
Ubuntu distribution:

$ sudo e2label /dev/sdc2
[sudo] password for christine:
Extra

Notice that super user privileges are required to use the e2label command. You can also
change the label by passing a new label name after the device name in this command string.

You can also change the label as well as the UUID of a filesystem by using
the tune2fs command. This utility is covered later in this chapter.

The findfs utility can also be helpful in managing your filesystems. It allows you to
view the block device associated with a particular UUID or label, as shown on an Ubuntu
system here:

162  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 162

$ findfs LABEL=Extra
/dev/sdc2
$
$ findfs UUID="82558d44–16af-4f2c-8670–6f54732bb31b"
/dev/sdc2
$

The findfs command does not require super user privileges. However, unfortunately,
when typing in a filesystem UUID for the findfs command, the shell’s tab command com-
pletion is not available.

Besides the utilities mentioned thus far, other utilities can be useful, including these:

findmnt: Displays mounted filesystems in a tree format.

df: Displays mounted filesystem disk space usage, and it includes the filesystem’s mount
point.

mount: Displays mounted filesystems, and it includes the filesystem’s mount point.

You can use the -l option on the mount command to show labels and you can use the
-t fstype command to narrow your list to only certain filesystem types, as shown in this
snip from a CentOS distribution:

$ mount -t xfs
/dev/mapper/centos-root on / type xfs [...]
/dev/sda1 on /boot type xfs [...]
$

All of these utilities are very helpful in managing your filesystems. You may not need
them in every situation, but they are handy to know for the various circumstances that you
may encounter on your Linux systems.

Exploring Additional Filesystem Topics
Certain filesystem topics require additional discussion. These include looking at filesystems,
such as memory-based, swap, Btrfs, and so on. Also, filesystems that can be automatically
mounted (outside the /etc/fstab file) are a special topic that requires additional detail.

Looking at Memory-Based Linux Filesystems
When covering filesystems, a topic that deserves some special attention is virtual or memory-
based Linux filesystems. These filesystems are unique in that their data resides within system
memory, but you can view their data using their mount points.

You’ll often find these memory-based filesystems mounted at /dev, /proc, /sys, and
/run or one of their subdirectories. A few memory-based filesystem examples are devpts,
proc, sysfs, and tmpfs.

Exploring Additional Filesystem Topics  163

c04.indd  09/14/2016  Page 163

To understand this a little better, let’s look at proc files. Files in the proc filesystem are
memory based (virtual), typically contain system information, and are continually updated,
though they show no size information in their file listings. A virtual proc file’s long listing
on a CentOS system example is shown here:

$ ls -l /proc/cpuinfo
-r--r--r--. 1 root root 0 Jan 13 13:12 /proc/cpuinfo

Even though the /proc/cpuinfo file resides in memory, by using the filesystem’s mount
point, the data can be accessed or viewed. Here is a snipped example of displaying the
/proc/cpuinfo file’s data, which resides in memory:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
[...]
power management:

$

These filesystems are created when the system boots and are often automatically mounted
by the system. However, if special options are needed for these memory-based filesystems,
you’ll see them listed in the /etc/fstab file.

Because these filesystems are memory based, when a system shuts down, all of the data
residing in these filesystems is deleted. Therefore, they are a great means for storing system,
process, and other temporary information.

Looking at the Btrfs Filesystem
The Btrfs filesystem takes a unique approach to how high-level formatting and mounting is
accomplished. It deserves some special attention.

A relatively newer filesystem, Btrfs was created to handle large file and filesystem sizes
as well as the needed scalability. The Btrfs filesystem uses a B-tree data structure, thus its
name. This data structure provides a proficient method for accessing and updating large
data blocks stored on the filesystem. This method can also stay proficient as the filesystem
size grows.

The Btrfs filesystem provides data integrity through COW (described earlier in this
chapter). This COW implementation, in addition to protecting metadata, provides snap-
shots, allowing you to move the filesystem back to a previous snapshot should a disaster
occur. The term snapshot, as used here, refers to a distinct unit. It shares the data and
metadata with the original snapshot partition, but it acts as its own partition by allow-
ing files to be added (which won’t appear on the original partition), and it can be mounted
independently.

Btrfs also provides data integrity via a checksum feature and its own integrated RAID
functionality. You can set up RAID 0, RAID 1, or RAID 10 configurations using Btrfs.

164  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 164

Performance and scalability attributes of Btrfs include its own integrated logical volume
management (logical volumes are covered in detail within Chapter 5). It also provides data
compression and defragmentation.

A few simple examples will help in your understanding of the Btrfs filesystem. All of the
examples shown in this section were performed on a CentOS distribution using super user
privileges.

Before you attempt any of these commands on your system, determine if
the Btrfs filesystem type is supported by your Linux distribution’s kernel
by typing grep btrfs /proc/filesystems at the command line. If nothing
displays, Btrfs is not supported. If you get the word btrfs back, then the
Btrfs filesystem is supported by your system.

First, formatting partitions with the Btrfs filesystem is similar to doing other high-level
formatting using the mkfs command. The example shown here is done on two partitions,
because you will need at least two partitions to implement Btrfs RAID:

mkfs -t btrfs /dev/sdb /dev/sdc
Btrfs v3.16.2
See http://btrfs.wiki.kernel.org for more information.

Turning ON incompat feature 'extref':
increased hardlink limit per file to 65536
adding device /dev/sdc id 2
fs created label (null) on /dev/sdb
 nodesize 16384 leafsize 16384 sectorsize 4096 size 8.00GiB
#

In the preceding example, because no options besides -t btrfs were used and two parti-
tions were included, Btrfs is set up to use RAID 0 (disk striping) for data and RAID 1 (mir-
roring) for its metadata. Other options will allow you to set up different RAID types. Also,
you can include more than two partitions.

You can then mount the Btrfs filesystem. However, you only need to mount one of the
partitions in order to mount the Btrfs filesystem RAID volume, as shown here:

mkdir BTrial
#
mount /dev/sdb BTrial
#
ls BTrial
#
touch BTrial/file_b.txt
#
ls BTrial
file_b.txt
#

http://btrfs.wiki.kernel.org

Exploring Additional Filesystem Topics  165

c04.indd  09/14/2016  Page 165

Once the Btrfs filesystem volume is mounted, you can use it like any other filesystem, as
shown in the preceding example. Notice, though, that there is no lost+found directory as
you would see on an ext4 filesystem mount point.

A handy command to help you with your Btrfs filesystem is the btrfs filesystem show
command. An example of this command is shown here:

btrfs filesystem show
Label: none uuid: 5125431c-37c3–4d70-aa85–42b8b4fea161
 Total devices 2 FS bytes used 384.00KiB
 devid 1 size 4.00GiB used 847.12MiB path /dev/sdb
 devid 2 size 4.00GiB used 827.12MiB path /dev/sdc
Btrfs v3.16.2
#

Exploring Btrfs Subvolumes
Another interesting Btrfs feature is subvolumes. Btrfs subvolumes can act like subdirec-
tories of a mounted Btrfs filesystem. They are not true subdirectories in that they can
be mounted separately from their parent volume. Even though a Btrfs subvolume can be
mounted, it is not a block device. A Btrfs subvolume is an organizational structure.

A Btrfs subvolume structure is similar to a POSIX namespace. This
namespace type is used in programming, and it is sometimes called a
naming system. The structure uses names to refer to particular resources.
These names are organized in a manner to avoid collisions. Name colli-
sion has many illustrations. For example, when referring to a city, if we
refer to a city named Carmel, a collision occurs, because there are many
cities named Carmel. To avoid collisions, often the city and an additional
name (such as a state and/or country name) is used to avoid confusion
(collisions). For example, in the United States of America, Carmel, Indiana
is a different city from Carmel, New York, and they are both different from
Carmel, California. Namespace structures often employ such methods to
avoid resource name collisions.

Btrfs subvolumes are useful in certain situations. For example, you can maintain a pool
of subvolumes, mounting them as the data they contain is needed.

To create a subvolume, the parent Btrfs volume must first be mounted. The basic syntax
to create a subvolume is as follows.

btrfs subvolume create Mount_Point/Subvolume_Name

The Mount_Point is the current parent Btrfs volume’s mount point. The Subvolume_Name
is the subvolume’s name.

166  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 166

To demonstrate creating a subvolume, we’ll use the Btrfs filesystem created earlier.
Before creating a subvolume, the Btrfs filesystem (parent volume) must be mounted as
shown here on a CentOS distribution using super user privileges:

mount /dev/sdb BTrial
#
ls BTrial/
file_b.txt
#
btrfs subvolume create BTrial/subvolume_1
Create subvolume 'BTrial/subvolume_1'
#

Once the subvolume is created, named subvolume_1 in the preceding example, the sub-
volume is accessed via a directory reference. You can create additional files, subdirectories,
and even additional subvolumes within the subvolume.

You check subvolumes via the subvolume list command along with the parent volume’s
mount point. The -t option is handy in that it displays the information in table format as
shown here:

btrfs subvolume list BTrial
ID 258 gen 13 top level 5 path subvolume_1
#
btrfs subvolume list -t BTrial
ID gen top level path
-- --- --------- ----
258 13 5 subvolume_1
#

To access the subvolume, you use a directory reference that includes its parent volume’s
mount point and the subvolume name. In essence, the subvolume is accessed as a subdirec-
tory of the parent volume’s mount point. Here is an example:

cd BTrial/subvolume_1
#
pwd
/root/BTrial/subvolume_1
#
touch file_b_subvol.txt
#
ls
file_b_subvol.txt
#
cd
#

Exploring Additional Filesystem Topics  167

c04.indd  09/14/2016  Page 167

pwd
/root
#
ls -R BTrial/
BTrial:
file_b.txt subvolume_1

BTrial/subvolume_1:
file_b_subvol.txt
#

By default, to mount a Btrfs parent volume and subvolume, you only need to mount the
parent volume:

umount BTrial
#
mount /dev/sdb BTrial
#
btrfs subvolume list -t BTrial
ID gen top level path
-- --- --------- ----
258 14 5 subvolume_1
#

Once the parent volume is mounted, any mounted subvolumes can be checked. This is
done via the subvolume list command, as shown in the preceding example.

If you have either an ext2, ext3, or ext4 filesystem, you can convert it to a
Btrfs filesystem without losing any data! Just employ the btrfs-convert
utility. Once converted, the original filesystem image is stored in a subvo-
lume named ext2_subvol by default. For more details, enter man btrfs-
convert at the command line.

Access to Btrfs parent volumes and subvolumes are via an entry point. This entry point
is called the default level, and it is typically set to the top level (sometimes called the top
level subvolume). The standard top level has an ID number of 5, as shown in the preceding
example.

You can determine a subvolume’s default level via the subvolume get-default com-
mand. The example shown here confirms that the current default level is the top level
(ID 5):

btrfs subvolume get-default BTrial
ID 5 (FS_TREE)

168  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 168

A subvolume can be mounted independently of its parent volume. However, if the
subvolume’s default level is set to ID 5 (top level), data in the parent volume can still be
accessed. Remember that Btrfs subvolumes are not true block devices.

There are two methods to mount a subvolume and not allow access to the parent vol-
ume. For the first method, you must modify your mount command options. In the following
example, the parent and subvolume are unmounted, and then the subvolume is mounted in
a manner to prevent access to the parent volume:

umount BTrial
#
mkdir BTrial_subvol
#
mount -o subvol=subvolume_1 /dev/sdb BTrial_subvol
#
ls BTrial_subvol/
file_b_subvol.txt
#
umount BTrial_subvol
#

After the parent volume is unmounted, a new directory (mount point) is created,
BTrial_subvol. Next, the subvolume is mounted using a special mounting option -o
subvol=subvolume_name, where subvolume_name is subvolume_1, the name of the example
subvolume. A directory listing shows only the subvolume’s data, and there is no access pro-
vided to the parent volume.

The second method for mounting a subvolume and blocking parent volume access is to
change the subvolume’s default level ID number. The default level ID number is changed
from 5 to the subvolume’s ID number. The subvolume must be mounted, because the mount
point is used in the command that changes this ID number. The subvolume set-default
command is used to accomplish this task, as shown here:

mount /dev/sdb BTrial
#
btrfs subvolume list -t BTrial
ID gen top level path
-- --- --------- ----
258 14 5 subvolume_1
#
btrfs subvolume get-default BTrial/subvolume_1
ID 5 (FS_TREE)
#

Exploring Additional Filesystem Topics  169

c04.indd  09/14/2016  Page 169

btrfs subvolume set-default 258 BTrial/subvolume_1
#
btrfs subvolume get-default BTrial/subvolume_1
ID 258 gen 14 top level 5 path subvolume_1
#
umount BTrial
#

Once the subvolume’s default level is changed, only a simple mount command is used.
No access is granted to the parent volume. An example of this is shown here:

mount /dev/sdb BTrial_subvol
#
ls BTrial_subvol/
file_b_subvol.txt
#
btrfs subvolume get-default BTrial_subvol
ID 258 gen 14 top level 5 path subvolume_1
#
btrfs subvolume list -t BTrial_subvol
ID gen top level path
-- --- --------- ----
258 14 5 subvolume_1
#
umount BTrial_subvol
#

If you need to remove a subvolume, it must be mounted. The command
to remove the subvolume after it is mounted is btrfs subvolume delete
Mount_Point.

Exploring Btrfs Snapshots
Once you understand Btrfs subvolumes, you can further explore Btrfs snapshots, because
snapshots are also subvolumes. Snapshots are fairly easy to create and manage (once you
understand Btrfs subvolume concepts).

To create a snapshot, the parent volume or subvolume must be mounted. The btrfs
command to use is subvolume snapshot. The basic syntax for this command is as follows:

btrfs subvolume snapshot Volume_Mount_Point Snapshot_Name

170  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 170

The Volume_Mount_Point in the subvolume snapshot command designates what
mounted volume or subvolume to snapshot. The Snapshot_Name in the command designates
the snapshot subvolume mount point.

Building on the previous Btrfs examples, a snapshot is created of the subvolume
mounted at BTrial_subvol. The snapshot command is broken onto two lines for clarity
and shown in the example here:

mount /dev/sdb BTrial_subvol
#
ls BTrial_subvol/
file_b_subvol.txt
#
btrfs subvolume snapshot BTrial_subvol \
> BTrial_subvol/my_snapshot
Create a snapshot of 'BTrial_subvol' in 'BTrial_subvol/my_snapshot'
#
ls -RF BTrial_subvol/
BTrial_subvol/:
file_b_subvol.txt my_snapshot/

BTrial_subvol/my_snapshot:
file_b_subvol.txt
#

Recall that the Btrfs filesystem has its own integrated RAID functionality.
Therefore, even though the snapshot is a subvolume, the data can be pro-
tected via the chosen RAID structure.

Because a snapshot is a subvolume, you can view its details via the subvolume list
command. An example is shown here, using the previously created snapshot:

btrfs subvolume list BTrial_subvol
ID 258 gen 27 top level 5 path subvolume_1
ID 259 gen 26 top level 258 path my_snapshot
#

Just like regular subvolumes, snapshot subvolumes can be mounted with or separately
from their parent volume. Also, it is fairly simple to create a system snapshot subvolume.
Creating a snapshot subvolume prior to software upgrade allows an easy rollback to the
earlier software version, should the need arise.

Obviously, there is a lot to the Btrfs filesystem. If you desire further information, type
man btrfs-filesystem at the command line or use your favorite web search engine. You
may see Btrfs listed as experimental, which is no longer true.

Exploring Additional Filesystem Topics  171

c04.indd  09/14/2016  Page 171

Looking at Optical Filesystems
Optical filesystems are typically used for CD-ROM and DVD storage media. Besides the
popular ISO-9660 filesystem, there are several others used on Linux systems, as shown in
Table 4.4.

Ta b le 4 . 4     Optical filesystem types

Name Description/Features

El Torito An ISO-9660 extension that allows a system to boot from optical
media with an ISO-9660 filesystem and this extension. Up to 63
different El Torito boot images can be stored on a single optical
disk. This extension is recognized by Linux.

HFS Hierarchical File System (HFS) created by Apple for use on its Mac
OS devices. It can be used on partitions as well as optical media.
As of Mac OS X v10.6, HFS filesystems are read-only and cannot
be created or updated. On Linux, HFS filesystems are read-only.

HFS+ An extended HFS version created by Apple for use on its Mac
OS devices. It can be used on partitions as well as optical media.
HFS+ filesystems are read/write on Mac OS. On Linux, HFS+ file-
systems are read-only, unless HFS+ journaling is disabled; then
writing is allowed.

ISO-9660 A cross-platform filesystem standard published by the Interna-
tional Organization for Standardization (ISO) for optical media.
Many CDs and DVDs have traditionally been formatted with this
filesystem. It does have some limitations, which can be overcome
by various extensions.

Joliet A series of ISO-9660 extensions created by Microsoft, which
enable the support of longer filenames and allow the use of Uni-
code for internationalization purposes. These extensions are rec-
ognized by Linux.

Rock Ridge A series of ISO-9660 extensions (sometimes called attributes),
which enable the support of longer filenames (up to 255 bytes),
symbolic links, more than eight levels of directory hierarchy, and
so on. These extensions are recognized by Linux.

UDF Universal Disk Format (UDF) is a cross-platform specification ISO/
IEC 13346 standard primarily for DVDs. On Linux, it is considered
an alpha product, and it is part of the UDFtools package.

Often, you’ll have preformatted optical media that automatically mounts when loaded
onto a Linux system. However, if you need to mount it manually, similar to manually mount-
ing USB flash drives covered earlier in this chapter, you’ll need to know its device name.

172  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 172

Typically, optical media can be accessed via the /dev/cdrom device name. Older distribu-
tions may also use the /dev/dvd device name. In addition, your system may use device names
such as /dev/cdrw and /dev/dvdrw to indicate a read/write optical media device.

An example of automatically mounting a DVD on an Ubuntu distribution, then
unmounting it, and then manually mounting it to a subdirectory is shown here:

$ mount
[...]
/dev/sr0 on /media/christine/STAR_TREK__INTO_DARKNESS type udf
(ro,nosuid,nodev,uid=1001,gid=1001,iocharset=utf8,umask=0077,
uhelper=udisks2)
$
$ ls -l /dev/cdrom
lrwxrwxrwx 1 root root 3 Jan 19 15:29 /dev/cdrom -> sr0
$
$ sudo umount /media/christine/STAR_TREK__INTO_DARKNESS
[sudo] password for christine:
$
$ sudo mount -t udf /dev/cdrom Temp
mount: block device /dev/sr0 is write-protected,
mounting read-only
$
$ ls -F Temp
VIDEO_TS/
$
$ blkid
/dev/sr0: LABEL="STAR_TREK__INTO_DARKNESS" TYPE="udf"
$
$ mount | grep udf
/dev/sr0 on /home/christine/Temp type udf (ro)
$
$ sudo umount Temp
$
$ ls Temp
$

In the preceding example, notice that the /dev/cdrom device file is symbolically linked
to the /dev/sr0 device file. The mount command was used with the -t udf filesystem type
option to mount the video DVD manually to the Temp subdirectory. Besides that slightly
different mount command, the same commands that you use to mount and unmount a USB
flash drive manually are used on the video DVD.

Exploring Additional Filesystem Topics  173

c04.indd  09/14/2016  Page 173

A handy utility for use with optical media and an ISO image file, known as an ISO
image, is the mkisofs command. An ISO image (ISO for short) is a single file that contains
all of a CD/DVD device’s files. ISOs are often used to create bootable optical disks for
operating system installation.

The mkisofs utility has been replaced on recent distributions by the gen-
isoimage utility. Not to worry. The genisoimage utility is an exact duplicate
of mkisofs. However, you may find that mkisofs does not exist on your
system or within its man pages. Simply substitute genisoimage in place of
mkisofs. Keep in mind that the certification objectives mention mkisofs
and not the genisoimage utility.

You can create an ISO from a directory of files using mkisofs. You can also copy files
from an optical disk to create an ISO image on your system. An example of creating an
ISO image file from a bootable optical disk’s files on a CentOS distribution is shown
here:

mount -t iso9660 /dev/cdrom Temp
mount: /dev/sr0 is write-protected, mounting read-only
#
ls Temp
AUTORUN.INF initrd.trk memdisk syslinux.cfg
boot.cat isolinux.bin memtest.x86 trinity.ico
bootlogo.jpg isolinux.cfg pxelinux.0 trk3
disableautorun.exe kernel.trk pxelinux.cfg vesamenu.c32
#
mkisofs -o my.iso Temp/
I: -input-charset not specified, using utf-8 [...]
Using TRSRU000.EXE;1 for Temp/trk3/t[...]
 6.47% done, estimate finish Tue Jan 19 10:35:05 2017
[...]
Total translation table size: 0
Total rockridge attributes bytes: 0
Total directory bytes: 10240
Path table size(bytes): 82
Max brk space used 1b000
77335 extents written (151 MB)
#
ls my.iso
my.iso
#

174  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 174

file my.iso
my.iso: # ISO 9660 CD-ROM filesystem data 'CDROM [...]
#
eject /dev/cdrom
#

There are a great many options and a good deal of flexibility associated with the
mkisofs command. If used without any other options besides -o, the mkisofs utility
will make a pure and unbootable ISO-9660 ISO file. Table 4.5 shows a few of the more
relevant options associated with the topic covered here. However, to review all of the vari-
ous mkisofs options, type either man mkisofs or man genisoimage, depending on your
distribution.

Ta b le 4 .5     A few mkisofs command options

Option Description

-b ISO_file Enables the El Torito extension to make the resulting ISO bootable.
The bootable ISO file is passed to mkisofs via this option.

-boot-info-table Option used with El Torito bootable ISO files. Inserts a boot infor-
mation table in the ISO file.

-boot-load-size
size

Specifies how many 512-byte virtual sectors to load when using
the -no-emul-boot option. Best to set to 4 (or a multiple of 4),
because some BIOSes may have problems if it is not.

-c catalog Required for an El Torito bootable CD. It specifies a boot catalog
file (catalog). If not in the local directory, the pathname must be
relative to the source path specified.

-hfs Makes an ISO9660/HFS hybrid ISO file. Best to use with either the
-map or -magic option.

-J Enables Joliet extensions, which allows support for other OSs. If
another OS does not handle Joliet extensions, the disk can still be
read by the OS.

-magic file Indicates the magic file (file) to set creator and type information
needed for various Apple/Unix encoded files. Necessary with -hfs
option if -map option is not used.

-map file Indicates the map file (file) to set creator and type information
needed for various Apple/Unix encoded files. Necessary with -hfs
option if -magic option is not used.

Exploring Additional Filesystem Topics  175

c04.indd  09/14/2016  Page 175

Option Description

-no-emul-boot Used for an El Torito bootable CD. It specifies that the boot
image used is a “no emulation” image, so when the system
loads and executes this ISO, it will do so without executing any
disk emulation.

-o filename Specifies the ISO file (filename) to be created.

-R Enables Rock Ridge extensions, which allows support for other
OSs. It does not change file ownership or file permissions.

-r Enables Rock Ridge extensions, which allows support for other
OSs. It also changes file ownership to root, enables read access to
all users, and removes write permissions.

-udf Enables support for the UDF filesystems. Typically used on video
DVDs.

You’ll often see combinations of extension support given to ISO images. For example, to
create an ISO image to be shared with a Windows OS, you might use the -JR options with
your mkisofs command.

Making a bootable ISO image copy takes a little more work than the previous mkisofs
example. As shown in the following CentOS distribution example, using super user privi-
leges you must first unmount the disk if it is automatically mounted and then mount it as
a loopback device using the -o loop option, which will allow the system to access the files
more readily:

umount /run/media/chris/TRK_3.4/
#
blkid
[...]
/dev/sr0: UUID="20[...] LABEL="TRK_3.4" TYPE="iso9660"
#
mount -o loop /dev/cdrom Temp
#

Once it is mounted as a loopback device, you can then employ the tar command (cov-
ered in Chapter 2) to carry out a recursive copy of the files to a newly created directory,
DiskCopy, without creating an intermediate tar file, as shown here:

mkdir DiskCopy
#
tar -cvf - Temp | (cd DiskCopy && tar -xvf -)

176  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 176

Temp/
[...]
#

You can certainly use other methods besides tar to copy the files to a new directory.
Once the files are copied, the mkisofs command can be put to use with several options.
This will create a bootable ISO file called myBoot.iso and place it two directories above
where the copied files are located (DiskCopy/Temp), as shown here:

cd DiskCopy/Temp
#
ls
AUTORUN.INF initrd.trk memdisk syslinux.cfg
boot.cat isolinux.bin memtest.x86 trinity.ico
[...]
#
mkisofs -b isolinux.bin -c boot.cat -no-emul-boot \
> -boot-load-size 4 -boot-info-table -JR \
> -o ../../myBoot.iso ../Temp
I: -input-charset not specified, using utf-8
(detected in locale settings)
Using TRSRU000.EXE;1 for ../Temp/trk3/trsrun-1_0-nq.exe
 (trsrun-1_0.exe)
Size of boot image is 4 sectors -> No emulation
 6.47% done, estimate finish Tue Jan 19 11:36:06 2017
[...]
Total translation table size: 2048
Total rockridge attributes bytes: 3217
Total directory bytes: 10240
Path table size(bytes): 82
Max brk space used 1c000
77349 extents written (151 MB)
#

Notice in the preceding example that the -JR options were used with the mkisofs com-
mand, which enables both Joliet and Rock Ridge extensions on this ISO file. You can see
in the mkisofs command’s output that the total Rock Ridge attribute bytes are displayed
(3217). Refer back to Table 4.5 if you need a refresher on all of the mkisofs options and
parameters used.

You can double-check that the ISO file is bootable by using the file command, as
shown here:

cd
file myBoot.iso

Exploring Additional Filesystem Topics  177

c04.indd  09/14/2016  Page 177

myBoot.iso: # ISO 9660 CD-ROM filesystem data
'CDROM ' (bootable)
#

Now that the ISO file is ready to go, you can record it onto another optical device using
the cdrecord utility. Here is a snipped example of using the cdrecord utility to record the
ISO file onto a CD:

umount Temp
#
cdrecord -tao speed=0 dev=/dev/cdrom myBoot.iso
Device type : Removable CD-ROM
Version : 5
[...]
Device seems to be: Generic mmc2 DVD-R/DVD-RW.
Using generic SCSI-3/mmc CD-R/CD-RW driver (mmc_cdr).
Driver flags : MMC-3 SWABAUDIO BURNFREE
[...]
Track 01: Total bytes read/written:
158410752/158410752 (77349 sectors).
[...]
#

If the cdrecord utility is not available on your system, you can install it via
the CDRTools package.

The options used with the cdrecord utility include the -tao option, which sets the Track
At Once (TAO) writing mode that is required here, and the speed=0 option, which allows
the lowest possible speed for an MMC-compliant driver’s optical drive and media. Now
that these steps are complete, a bootable image, which can be used on various OSs, resides
on the CD.

There are many ways to use optical media and various optical media utilities available
on Linux. Hopefully, this section ignited some useful ideas that you can explore on your
Linux system.

Looking at Swap Filesystems
The term swap filesystem is really inaccurate. A swap partition doesn’t hold a filesystem,
but instead it is a special location on the disk that acts as the system’s swap space (also
called virtual memory). Understanding swap space was covered in Chapter 2.

Typically, a swap partition is created, formatted, and added to the /etc/fstab configu-
ration file at system installation. However, you may need to create and manage additional
swap partitions, for example, if you increase your system’s RAM.

178  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 178

You aren’t limited to swap disk partitions. You can set up your swap space
on a logical volume (covered in Chapter 5) and increase the size as needed
using logical volume resizing tools. You can also create a file using the dd
command to make it the proper size and then turn it into a swap file to be
used as swap space.

A couple of useful utilities are available for checking your current swap space. Most
likely, you’re already familiar with the free command. But you may not be familiar
with using the swapon command for swap space statistics, as shown here on a CentOS
distribution:

free -m
 total used free shared buff/cache available
Mem: 993 467 136 7 390 365
Swap: 819 0 819
#
swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 839676 0 -1
#

In the preceding example, the -m option is used with the free command in order to show
the memory statistics in megabytes. Notice that this is a pretty quiet system, memory-wise.
Also, the -s option is used with the swapon command to show swap space statistics. On
some distributions, you can get the same information from the /proc/swaps file.

The Priority column within the preceding example’s swap space statistics is shown as
a negative one (-1). The priority number determines which swap space is used first (if there
are multiple swap spaces). If you do not set the priority number, it is created by the Linux
kernel, and it will be set to a negative number. You can set the priority yourself and, if you
do, it must be a positive number. Higher numbers get higher use preference.

You can have more than one system swap space. In fact, in many cases, it
is desirable to do so. The Web has some great discussions on this perfor-
mance issue. Open your favorite search engine, and type in purpose of
multiple Linux swap partitions to find a few.

Once you’ve created a new disk partition, the mkswap command is used to “format” the
partition into a swap partition. An example on a CentOS system, using super user privi-
leges, is shown here:

mkswap /dev/sdd1
Setting up swapspace version 1, size = 838652 KiB
no label, UUID=3297cded-69e9–4d35-b29f-c50cf263fb8b
#

Exploring Additional Filesystem Topics  179

c04.indd  09/14/2016  Page 179

blkid
[...]
/dev/sdd1: UUID="3297cded-[...]-c50cf263fb8b" TYPE="swap"
#

Now that the swap partition has been properly prepared, you can activate it using the
swapon command, as shown here:

swapon /dev/sdd1
#
swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 839676 0 -1
/dev/sdd1 partition 838652 0 -2
#
free -m
 total used free shared buff/cache available
Mem: 993 581 66 8 345 249
Swap: 1638 0 1638
#

You can see that the swap space size has increased significantly due to adding a second
swap partition. If desired, the new swap partition’s use priority can be changed from its
current negative two (-2) to a higher priority using the swapon command, as shown here:

swapoff /dev/sdd1
#
swapon -p 0 /dev/sdd1
#
swapon -s
Filename Type Size Used Priority
/dev/dm-1 partition 839676 4 -1
/dev/sdd1 partition 838652 0 0
#

You must first use the swapoff command on the swap partition before changing its
priority and then use the swapon -p priority command to change the preference priority.
You can set priority to any number between 0 and 32767. For the various options avail-
able with the swapon command, type man swapon at the command line.

If you want to move your system to a new swap space, do not use the
swapoff command on the current swap space until your new swap parti-
tion is set up and ready to go. Otherwise, you may end up with a hung
system.

180  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 180

If all is well with your new swap partition, you should add it to the /etc/fstab file so
that it will be persistent. You can closely mimic the current swap partition’s record settings,
but be sure to change the partition name to your new swap partition.

Looking at Network-Based Filesystems
Some filesystems are not locally attached, but instead they physically reside on network-
attached storage media. These network-based filesystems are shared across the network.

Filesystems that can be included in this category are NFS (covered in Chapter 10) and
Common Internet File System (CIFS), which is implemented via Samba (also covered in
Chapter 10) and is called SMBFS on older systems.

You can stretch the filesystem definition a bit to include Network Attached Storage (NAS),
which has entire Linux distributions available to implement it, such as OpenMediaVault
(http://www.openmediavault.org/). NAS typically uses NFS or CIFS at its core. While
we’re stretching definitions, let’s include Storage Attached Networks (SANs). You can imple-
ment a SAN with the iSCSI protocol on Linux.

You need a brief introduction to network-based storage because, even though NFS and
Samba are handled in Chapter 10 and are part of the second certification exam objectives,
the first certification exam objectives require you to know AutoFS. The AutoFS service is
covered in the next section.

Understanding Auto-Mounting
Many distributions automatically mount removable media, such as USB flash drives and
DVDs, to a Linux virtual directory. Typically, on various current distributions, removable
media are automatically mounted to the /run or /media directory. Dynamic device manage-
ment (udev, covered in Chapter 3) is responsible for handling these devices’ auto-mounting
functions. Older Linux distributions used the Hardware Abstraction Layer Daemon (HALd),
and they often mounted removable media to the /mnt directory.

Exploring AutoFS
Another type of auto-mounting is geared to network-based filesystems. For example,
the automounter service, AutoFS, can manage NFS filesystems’ auto-mounting functions, as
well as those of other network-based filesystems. You can put NFS filesystems in the/etc/fstab
configuration file so that they are automatically mounted upon system boot. However, in some
cases, the system can experience performance problems using this arrangement. By allowing
AutoFS to manage mounting NFS filesystems, you avoid these problems. For example, one way
that AutoFS helps with system performance is that NFS filesystems are mounted when they are
accessed instead of at system boot time. This makes the boot process much faster.

If not currently installed on your system, the AutoFS service and various
required files are in the autofs package. Also, if you’d like to follow along
with the commands, it’s suggested that you read about NFS in Chapter 10
and set up a simple NFS filesystem that you can use with AutoFS.

http://www.openmediavault.org/

Exploring Additional Filesystem Topics  181

c04.indd  09/14/2016  Page 181

AutoFS uses the /etc/auto.master file, also called the master map, as its primary
configuration file for managing automatically attached network storage. The master map
file gives the AutoFS service information concerning network-based filesystems, including
where they are currently located, where they are to be mounted, and options to use.

You can define a different master map in the AutoFS configuration file,
/etc/sysconfig/autofs or /etc/default/autofs (depending on your
distribution). The configuration file also contains other settings, such as
how long a mounted filesystem can be inactive before it is detached (time-
out value). However, the currently defined master map file works in most
cases, so there is rarely a need to change it.

Except for comment lines that are preceded with a hash mark (#), each master map entry
has this basic format:

mount-point map-name [ mount-options ]

Entries in the master map are one of three different map types. Each map type deter-
mines the exact syntax of the master map entry. These maps are described here:

Built-in Map    The built-in map file is triggered by having -hosts in a master map’s
map-name field. It has AutoFS mount all of the NFS filesystems available from any NFS
server listed within a special directory, /net. (This is sometimes called lazy mounting, but
built-in mapping sounds better.)

For example, if you wanted the NFS filesystem from the NFS server, Server01, to be mounted,
you would need the directory, /net/Server01, along with the built-in map entry in the mas-
ter map file. The NFS filesystem from Server01 would be automatically mounted at /net/
Server01. Thus, the directories not only serve as a trigger for the built-in map, but they also
serve as a mount point. You can have multiple directories under /net, one for each NFS
server. For example, if you also have NFS filesystems on Server02 and Server03, the /net/
Server02 and /net/Server03 directories would act as triggers for the built-in map and
mount points too.

A typical built-in map entry in the master map file looks like this:

/net -hosts

Direct Map    A direct map entry is simply a pointer to another file. The other file is
/etc/auto.direct. This entry is typically not in the master map by default, so if you
desire it, you will have to add it. A typical direct map entry in the master map file looks
like this:

/- /etc/auto.direct

Within the /etc/auto.direct file, absolute directory path names are listed for the mount
points as well as options and their associated servers. Two typical entries in the direct map
file may look like this:

182  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 182

/home/bucket server01.acme.com:/home/bucket
/mnt/nfs/var/nfsshare 192.168.56.101:/var/nfsshare

Indirect Maps    An indirect map entry is also a pointer to another file. The other file is
/etc/auto.directory (listed in the certification objectives as /etc/auto.[dir]), where
directory matches the mount point. For example, the typical default indirect map entry in
the master map file looks like this:

/misc /etc/auto.misc

The /etc/auto.misc file is typically used for mounting removable media, such as optical
filesystems or USB flash drives. It also has several entries available for you to use if they
include no preceding hash mark, such as this one:

cd -fstype=iso9660,ro,nosuid,nodev :/dev/cdrom

Because this file is an indirect map, this entry will cause any CDs to mount under the
/misc directory, specifically using the mount point /misc/cd. Thus, the term indirect map
is applied here. Whereas a direct map file indicates an absolute directory reference, such as
/home/bucket, an indirect map file only lists a relative map point, such as cd, which will be
mounted under the directory listed in its master map entry, such as /misc.

You can have additional indirect map files as needed. For example, if your company had
special projects called ProjectX and ProjectY, which required temporary (but not backed
up) work space under the /tmp directory for several systems, you could set up two NFS
filesystems and then add an entry as such in your master map:

/tmp /etc/auto.tmp

Continuing this example, you would then create the file /etc/auto.tmp. This indirect map
file could contain the following two entries:

projectx -fstype=nfs4,rw :/tmp/projectx
projecty -fstype=nfs4,rw :/tmp/projecty

An older version of a map file, which is often still found on some systems,
is the /etc/autofs.net file. However, this file is a script and not a true
map file. It has been replaced within AutoFS by the built-in map within the
master map file.

Additional sub-master maps can also be included, which are handy if you have a large-
scale network-based filesystem deployment. This entry in the master map includes any maps
(whose entries must follow the same formatting as those in the master map file) located in
the /etc/auto.master.d/ directory:

+dir:/etc/auto.master.d

Exploring Additional Filesystem Topics  183

c04.indd  09/14/2016  Page 183

When you modify the AutoFS configuration and map files, you will need to restart your
AutoFS service. Also, remember that you will need to access the directory to be automati-
cally mounted via AutoFS (an ls command will suffice) to trigger the auto-mount of that
directory. You can check that the directory is mounted using the df command. If the direc-
tory is not mounting, check the /var/log/messages file for any pertinent error messages.

If you are using AutoFS for NFS filesystems and get an error similar to
unable to read auto.master, then you may need to comment out the
+auto.master line, by putting a hash mark (#) in front of it.

AutoFS and its maps allow a great deal of flexibility for auto-mounting network-based
filesystems. If you decide to set up AutoFS and add any network-based filesystems to it that
currently are mounted via the /etc/fstab file, be sure to remove them from /etc/fstab or
you’ll have some interesting situations during your next system reboot!

Exploring Automount Units
If your Linux server has systemd, you can configure on-demand mounting as well as
mounting in parallel using automount units. In addition, you can set filesystems to
unmount automatically upon lack of activity.

An automount unit configuration file operates very similarly to a mount unit file (cov-
ered earlier in this chapter). The naming convention is the same, except that the file exten-
sion is .automount.

Within an automount unit configuration file, there are only three options available. The
Where option is a required option, and it is configured the exact same way as it is in mount
unit files.

The DirectoryMode option is not a required option. The option’s setting determines the
permissions placed on any automatically created mount point and parent directories. By
default, it is set to the 0755 octal code.

The TimeOutIdleSec option is also not required. This particular option allows you to
configure the amount of time (in seconds) a mounted filesystem has been idle. Once the
time limit is reached, the filesystem is unmounted. By default this option is disabled.

Looking at Encrypted Filesystems
One more filesystem group that deserves a look is the encrypted filesystems. Encryption is the
process of turning text that a human or machine can read (plaintext) into text that a human
or machine cannot read (cipher text) and vice versa, using an algorithm (cipher). Decryption
reverses the process, allowing you to access/read the text and it usually requires a key (or set
of keys) by the algorithm. The key(s) is often a passphrase, which is similar to a password.

A couple of Linux-encrypted filesystems can be used on Linux and include the following:

dm-crypt    The dm-crypt encryption can be implemented using the cryptsetup utility. This
type can be a little confusing, because the software behind cryptsetup is called dm-crypt,
and it’s very basic encryption type is also called dm-crypt.

184  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 184

The dm-crypt encrypted filesystems use Device Mapper (which is also used in LVM and
covered in Chapter 5). This allows plaintext to be used by applications, while any writes to
the volume are encrypted.

Unless you have a good grasp on encryption, it is not recommended that you use the dm-
crypt type. It uses an unsalted passphrase hash for its single key, and it maintains no meta-
data on the volume.

eCryptfs    A newer encrypted filesystem type, eCryptfs, is actually a pseudo-filesystem in that
it is layered on top of a current filesystem. The layer provides encryption capabilities, which
include picking which cipher algorithm to use, such as AES, Blowfish, des3_ede, and so on.

One of the nicest things about eCryptfs is that there are no new utility commands to learn.
As long as you have the software package ecryptfs-utils on your system, you simply use
the mount command with eCryptfs as follows:

mount -t ext4 /dev/sdd1 /home
mount -t eCryptfs /home /home

The first mount command attaches the partition to the Linux virtual directory structure.
The second mount command layers the eCryptfs filesystem on top of it. It’s that easy!

The eCryptfs filesystem encrypts a partition or volume on a file-by-file basis. Also, encrypted
files can be copied between various systems, because eCryptfs metadata is stored in each file’s
header.

You can add options such as key byte size, cipher choice, file name encryption, and so on
via the mount command’s -o option. In addition, eCryptfs volumes can be automatically
mounted at system boot via entries in the /etc/fstab file.

You may not be able to find eCryptfs documentation in your system’s man pages. To
explore the various eCryptfs options and additional details, see http://linux.die.net/
man/7/ecryptfs.

Linux Unified Key Setup (LUKS)    LUKS is an improved dm-crypt encrypted filesystem
type. It also can be implemented using the cryptsetup utility and uses the Device Mapper.
It is the preferred method over the basic dm-crypt type.

LUKS uses a master key and multiple user keys. It maintains metadata on the volume, and
it provides improved anti-forensic features.

Keep in mind that encryption does not mean protection from hardware disasters. It only
helps to protect data from those who should not have access to it. You still need to employ
all of the other important items and methods in order to protect your data’s integrity.

Certification objectives may refer to the LUKS encrypted filesystem type
as dm-crypt/LUKS.

http://linux.die.net/man/7/ecryptfs

Maintaining Linux Filesystems  185

c04.indd  09/14/2016  Page 185

Maintaining Linux Filesystems
Part of managing a Linux system includes properly maintaining its filesystems via various
system utilities available for this purpose. Filesystem maintenance comprises manipulat-
ing standard filesystems via utilities such as tune2fs, monitoring a filesystem’s health, and
repairing filesystems when problems are encountered.

The monitoring of SMART devices is also included in this section. We cover various
utilities that can assist in this necessary task.

Adjusting a Filesystem
Adjusting a filesystem may be required for various reasons, and these can include many dif-
ferent items. For example, you may decide to change a filesystem’s label because it no longer
reflects the filesystem’s purpose.

Utilities for adjusting filesystems are often specific to a certain filesystem or group of file-
systems. For the extended filesystems ext2, ext3, and ext4, you can use the utilities shown
in Table 4.6 to modify them.

Ta b le 4 .6     Adjustment utilities for ext2, ext3, ext4 filesystems

Utility Description

debugfs An interactive utility that can be used to modify metadata

e2label Modifies a filesystem label

resize2fs Enlarges or shrinks an unmounted filesystem

tune2fs Tunes filesystem attributes, including UUIDs and labels

The tune2fs command is a very versatile utility. Here is an example on an Ubuntu dis-
tribution of changing an unmounted disk partition’s UUID with super user privileges:

$ sudo blkid /dev/sdc1
[sudo] password for christine:
/dev/sdc1: UUID="14ca54ba-ee44–4588-a32c-dee848a0435f" TYPE="ext4"
$
$ uuidgen
b77a195a-e5a8–4810–932e-5d9adb97adc6
$
$ sudo tune2fs /dev/sdc1 \
> -U b77a195a-e5a8–4810–932e-5d9adb97adc6
tune2fs 1.42.9 (4-Feb-2014)

186  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 186

$
$ sudo blkid /dev/sdc1
/dev/sdc1: UUID="b77a195a-e5a8–4810–932e-5d9adb97adc6"
TYPE="ext4"
$

Notice that in the preceding example, the uuidgen command was used to generate a new
UUID. It’s a good idea to generate a UUID with this utility because the UUID needs to be
unique, and this utility can produce a reasonably unique number. The tune2fs command
was then used to change the /dev/sdc1 partition’s UUID via the -U option. The tune2fs
command in the previous code snippet was split into two lines so it would display properly
in the example, but you can put it all on one line if desired.

With some distributions moving to XFS as their default filesystem, understanding the
various XFS utilities has become even more important. Utilities used to modify the XFS
filesystem are shown in Table 4.7.

Ta b le 4 .7     Adjustment utilities for an XFS filesystem

Utility Description

xfs_admin Tunes filesystem attributes, including UUIDs and labels

xfs_fsr Improves filesystem file layout

xfs_growfs Expands filesystem size

The newer Btrfs filesystem is likely to show up on a distribution that you are managing.
Therefore, we’ve included utilities to modify the Btrfs filesystem in Table 4.8.

Ta b le 4 . 8     Adjustment utilities for a Btrfs filesystem

Utility Description

btrfs balance Reallocates and balances data across the filesystem. (It often has
the side benefit of reducing the filesystem reserved for metadata.)

btrfs-convert Converts an extended filesystem (ext2, ext3, or ext4) into a Btrfs
filesystem and vice versa.

btrfstune Tunes filesystem attributes and enables/disables extended
features.

btrfs property set Sets various filesystem properties, such as the label.

Maintaining Linux Filesystems  187

c04.indd  09/14/2016  Page 187

The format of the Btrfs commands varies in where you place options and parameters.
Therefore, it’s always a good idea to check their man pages prior to using them. However,
that can be tricky too. For example, to view the man pages for the btrfs balance command,
you must type in man btrfs-balance at the command line. If you can’t find what you are
looking for, then try typing in man -k btrfs to view the various Btrfs man pages available.

Keep in mind that you can also adjust a filesystem’s behavior via its mount options. The
man pages for the mount command have a special section, called FILESYSTEM SPECIFIC
MOUNT OPTIONS, which contains rather useful information concerning this topic.

Checking and Repairing a Filesystem
Protecting, monitoring, and repairing a filesystem all go hand in hand. Fortunately, there
are many tools in this category that you can employ.

You’ll notice that some utilities listed in an earlier section in the chapter are
also listed in the tables provided here. This is because many of these utili-
ties serve the multiple purposes of checking and repairing a filesystem as
well as adjusting it in some way.

For extended filesystems, the utilities shown in Table 4.9 can be used to check and repair
the filesystems.

Ta b le 4 . 9     Check/repair utilities for ext2, ext3, and ext4 filesystems

Utility Description

fsck.* Checks and optionally repairs Linux filesystems. Replace the * with
the filesystem type that you wish to check, such as fsck.ext4.

debugfs An interactive utility that can be used to extract data in order to
move it to a new location.

dumpe2fs Displays filesystem information.

tune2fs Displays filesystem attributes with the -l option.

The fsck.* utilities use the lost+found directories, covered earlier in the chapter. If
fsck is used to repair a filesystem and it finds files that are not complete (such as a data-
filled file that has an inode number but has no name in any directory table), it will attempt
to restore these files and place them in the lost+found directory for that filesystem.

The fsck command is a just a front end for all of the various fsck filesystem check
utilities, such as fsck.fstype, where fstype is ext4, xfs, brtfs, and so on. However, the
fsck.xfs and fsck.btrfs utilities do nothing. Because the XFS and Btrfs filesystems have
their own repair utilities and do not operate in the same fashion as extended filesystems,
these fsck utilities are just stubs.

188  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 188

You can check all of the filesystems listed within the /etc/fstab file by issuing
the fsck command using super user privileges at the command line. Be aware,
though, this is of no value for certain filesystems, such as XFS and Btrfs.

Utilities used to check and repair the XFS filesystem are shown in Table 4.10.

Ta b le 4 .10     Check/repair utilities for an XFS filesystem

Utility Description

xfs_check Checks filesystem’s consistency but does no repairs. Considered
the “dry run” of an xfs_repair. No longer included in many cur-
rent distributions.

xfsdump Creates a backup (dump) of the filesystem’s data and its attributes,
which can be directed to either storage media, a file, or standard
output.

xfs_info Displays and checks filesystem information. Equivalent to running
xfs_grow -n.

xfs_metadump Copies filesystem metadata to a file.

xfs_repair Checks filesystem’s consistency and does any needed repairs. If
the xfs_check command is not on your system, use xfs_repair
-n to perform a “dry run” instead.

xfsrestore Restores filesystem’s data and its attributes from a backup dump
created by the xfsdump utility.

The XFS filesystem has many wonderful utilities to assist you in keeping it up and running.
At the command line, type man -k xfs to see a list of XFS utility man pages on your system.

The Btrfs filesystem has several utilities for checking and repairing a filesystem. A few
are shown in Table 4.11.

Ta b le 4 .11     Check/repair utilities for a Btrfs filesystem

Utility Description

btrfs check Checks and optionally repairs an unmounted (offline) filesystem.

btrfs get property Gets various filesystem properties, such as the label.

btrfs rescue Recovers a damaged filesystem.

Maintaining Linux Filesystems  189

c04.indd  09/14/2016  Page 189

Utility Description

btrfs restore Restores files from a damaged filesystem. This is the most power-
ful of the three repair utilities (check, rescue, and restore).

btrfs scrub Reads all data from disk and checks for consistency. Can adversely
affect system load when running.

btrfsck Replaced by the btrfs check utility, but may call it on some
distributions.

A Btrfs filesystem also has the btrfs filesystem utility, which has useful subcommands
such as show and df. These subcommands provide filesystem information, such as device
UUIDs and disk usage information.

Using SMART
The acronym SMART stands for “Self-Monitoring Analysis and Reporting Technology.”
SMART devices are typically hard or solid-state disk drives. However, they can also be
SCSI attached tape drives.

A SMART device has a built-in system that allows the device to communicate with soft-
ware on your system. This communication includes providing disk health information—
potentially looming disk failure warnings and self-test results.

On Linux, the software for communicating with SMART devices comes
from the smartmontools package. This package may not be installed on
your system by default.

When Filesystems Go Bad

It’s not a case of if it will happen. It’s a case of when it will happen. Filesystems will have
problems and, more than likely, it will be up to you to fix things.

It’s a mistake to handle filesystem repairs on the fly or look up utility information as a prob-
lem is occurring. Properly maintaining a filesystem includes implementing plans for these
minor calamities, so that they don’t turn into major disasters. In addition, these recorded
plans should be reviewed and tested on a regular basis, just like any other disaster plans.

Of course, data backups (covered in Chapter 2) and disaster plans are vitally important,
but you need planned preventive practices as well. These should include regularly sched-
uled maintenance for all of your filesystems, along with continual filesystem health moni-
toring. The filesystem utilities covered in this section can be of assistance to you as you
implement these practices.

190  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 190

The smartd daemon enables monitoring on any attached SMART devices that have
SMART capability. It can check the devices every so many minutes and log errors via its
configured log file, by default either /var/log/smartd.log, /var/log/messages, or /var/
log/syslog, depending on your distribution.

You can configure smartd using its configuration file. Depending on your distribution,
the file is either /etc/smartd.conf or /etc/smartmontools/smartd.conf.

You can directly interact with SMART devices using the smartctl command. To view
an individual device’s information, you can use the smartctl -i device command, where
device is the device’s filename. Here’s a snipped example of using this command on a
Debian-based distribution, showing a USB-attached drive without SMART capabilities:

$ sudo smartctl -i /dev/sda1
[...]
Vendor: Maxtor
Product: OneTouch II
[...]
Device does not support SMART
$

The device does not have to be mounted on the system in order to obtain its SMART
information. It only needs to be attached to the system, which can be handy.

Many hard drives have SMART capabilities. Here’s a snipped example of using the
smartctl command on an Ubuntu distribution, showing an older hard drive that has
SMART capabilities:

$ sudo smartctl -i /dev/sda6
[...]
=== START OF INFORMATION SECTION ===
Model Family: Seagate Momentus 5400.6
[...]
SMART support is: Available—device has SMART capability.
SMART support is: Enabled

Notice in the preceding example not only that the drive has SMART capabilities but also
that SMART support is enabled. If your disk does not have SMART support enabled, you
can enable it using the smartctl -s on device command.

Even if your device does have SMART capabilities, it may not be sup-
ported by the smartctl command. To see what device types are sup-
ported, type smartctl -P showall | less at the command line. This is
a long list, so you do need to pipe (|) the output into the less utility if you
desire to peruse the information. You can also visit the website https://
www.smartmontools.org/wiki/Supported_USB-Devices to see what USB
devices are supported by the smartctl command.

https://www.smartmontools.org/wiki/Supported_USB-Devices
https://www.smartmontools.org/wiki/Supported_USB-Devices

Maintaining Linux Filesystems  191

c04.indd  09/14/2016  Page 191

You can conduct a number of tests on your hard drive via the -t option on the smartctl
command. The option takes different arguments to determine which test type to conduct.
For instance, you can conduct a selftest, short, or long test. Both the selftest and short
test options are fairly quick. The long test option can be rather lengthy, as shown in this
snipped example:

$ sudo smartctl -t long /dev/sda6
[...]
=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===
[...]
Testing has begun.
Please wait 74 minutes for test to complete.
Test will complete after Fri Jan 22 12:44:10 2017

Use smartctl -X to abort test.

In the preceding example, you can see that the test will take 74 minutes to complete.
Some drives can take even longer! No output will be shown on your terminal when the test
is complete. However, you can check on the test’s progress, as shown here:

$ sudo smartctl -a /dev/sda6 | grep -A1 "Self-test execution"
Self-test execution status: (249)Self-test routine in progress
 90% of test remaining.
$

Don’t let the term Self-test routine in the preceding listing confuse you. All of the
tests are self-tests, and the long test is an extended self-test.

Once the test is done, you can see the results by using the smartctl -a device com-
mand. In fact, you can use this command at any time to determine the current overall health
of your drive. The smartctl -a option shows a great deal of information. Therefore, it may
be a good idea to redirect the output to a file or pipe it into the less utility. A snipped exam-
ple of this command on an Ubuntu distribution is shown here:

$ sudo smartctl -a /dev/sda6
[...]
Self-test execution status: (0) The previous self-test routine
 completed without error or
 no self-test has ever been run.
[...]
$

You can get a summary of the SMART device’s health by asking for its health status.
The status information is derived from various tests. Here’s a snipped example of a drive’s
summary health status:

192  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 192

$ sudo smartctl -H /dev/sda6
[...]
SMART overall-health self-assessment test result: PASSED
$

In the preceding example, the status of PASSED means that all is well with the drive.
 If for some reason a failing status is reported, this means that the drive has already failed
or will fail shortly. You can view the device’s error logs by typing in smartctl -l error
device, using super user privileges.

A SMART device is not smart. Be aware that any strange error rates pro-
vided from a SMART device may indicate a looming disk failure. This is
true even though a SMART device does not indicate a future drive failure
may occur in its health status.

Using smartctl and smartd to assess various devices’ health are helpful additions to the
utilities used in maintaining filesystem health. Of course, like many other things in life, if
you don’t use them, they’re of no benefit.

Summary
Filesystems provide a link between your system’s data and its various applications.
Understanding how different filesystems work and are managed is critical to protect-
ing data and its integrity. In addition, you need to understand the different utilities used
to maintain the various filesystems. You must avoid disasters by tuning and monitoring
filesystem health. However, when problems do occur, it’s important to know just how to
repair or restore a filesystem.

Exam Essentials
Describe /etc/fstab configuration file entries.    The /etc/fstab configuration file, also
called the Filesystem Table, is the primary configuration file for mounting filesystems at
system boot time. File entries contain the filesystem identification, which may be a device’s
partition filename, volume, UUID, label, network-based filesystem id, or swap filesystem.
Mount points are included along with various mount options, filesystem types, and indica-
tors for dump backups and filesystem checks. No filesystems handled by AutoFS should have
entries in this file.

Explain how to handle swap partitions and files.    While a swap partition is typically cre-
ated, formatted, and added to the /etc/fstab configuration file at system installation, you
may need to create and manage additional swap space. Swap space can be set up on a disk
partition, logical volume, and even a file. Once a new disk partition (or file) is created,
the mkswap command is used to enable the partition to be used as swap space. It is then

Exam Essentials  193

c04.indd  09/14/2016  Page 193

activated using the swapon command. The swap space status can be checked via the swapon
-s command or cat /proc/swaps. The swapoff command deactivates the designated swap
space.

Summarize the use of filesystem UUIDs.    A UUID is a unique identification number assigned
when the partition or volume is formatted using mkfs. You can determine a filesystem’s UUID
using either the blkid or the lsblk -f command. Filesystems can be mounted either persis-
tently in the /etc/fstab file using their UUID or temporarily using the -U uuid option on
the mount command. An unmounted filesystem’s UUID can be changed using the tune2fs -U
new-uuid command. Be sure to obtain the new-uuid from the uuidgen command.

Describe the AutoFS configuration files.    Used for the automatic mounting of network-
based filesystems, the AutoFS service uses several configuration files. The primary AutoFS
configuration file, which controls its behavior, is either /etc/sysconfig/autofs or /etc/
default/autofs, depending on the distribution being used. AutoFS uses the /etc/auto
.master file, called the master map, for managing automatically attached network storage.
Within the master map are records that either activate automatic mounting of filesystems
or call other configuration files (maps). A direct map entry points to the file /etc/auto
.direct, which directs AutoFS to mount the designated network-based filesystems to
mount points via absolute directory references. An indirect map points to various files,
/etc/auto.directory, where directory matches the mount point. These maps designate
network-based filesystems to mount points via relative directory references under the
directory.

Explain UDF and ISO9660 tools.    A utility used with optical media is the mkisofs com-
mand that can create an ISO image. It is often used to create bootable optical disks for
operating system installation. The mkisofs utility has been replaced on recent distributions
by the genisoimage utility. You can create a bootable ISO from a directory of files using
mkisofs and check that the ISO file is bootable using the file command. The ISO image
can be burned onto another optical device using the cdrecord utility.

Summarize the Linux encrypted filesystems.    A very basic encryption type, dm-crypt
encryption, can be implemented using the cryptsetup utility. It uses an unsalted passphrase
hash for its single key and maintains no metadata on the volume. LUKS is an improved
dm-crypt encrypted filesystem type, which can also be implemented using cryptsetup. It is
preferred over the basic dm-crypt type. LUKS uses a master key and multiple user keys, and
it maintains metadata on the volume.

A newer encrypted filesystem type, eCryptfs, is layered on top of a current filesystem. The
layer provides the encryption capabilities and provides various cipher algorithm choices to
use. It requires two mounts. The first mount command attaches a partition or volume to the
Linux virtual directory structure, and the second layers the eCryptfs filesystem on top of it.
The eCryptfs filesystem encrypts on a file-by-file basis, and it stores metadata in each file’s
header.

Describe the various extended filesystem utilities.    Tools that are used to modify the
extended filesystems, ext2, ext3, and ext4, include debugfs, e2label, resize2fs, and
tune2fs. Utilities that can check on, report on, repair, or back up extended filesystems

c04.indd  09/14/2016  Page 194 c04.indd  09/14/2016  Page 195

194  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 194

include the debugfs, dumpe2fs, and tune2fs -l commands. Also, the fsck utility is a front
end that checks and optionally repairs extended filesystem types. The command format is
fsck.fstype, where fstype is ext2, ext3, or ext4.

Explain the XFS filesystem tools.    Some distributions now use XFS as their default file-
system. Therefore, understanding the various XFS utilities has become even more impor-
tant. Utilities that are used to check on, display information concerning, and repair XFS
filesystems include the xfs_check, xfsdump, xfs_info, xfs_metadump, xfs_repair, and
xfsrestore commands. The tools that modify XFS filesystem attributes or increase its size
include the xfs_admin, xfs_fsr, and xfs_growfs utilities.

Summarize the Btrfs filesystem.    The newer Btrfs filesystem provides data integrity
through COW, which, in addition to protecting metadata, provides snapshots, allowing
you to move the filesystem back to a previous snapshot. Data integrity is also provided via
a checksum feature and an integrated RAID feature, which allows RAID 0, RAID 1, or
RAID 10 configurations.

Review Questions  195

c04.indd  09/14/2016  Page 194 c04.indd  09/14/2016  Page 195

Review Questions
You can find the answers in the Appendix.

1.	 Assuming that you have or can obtain super user privileges, which of the following commands
would allow you to make an ext2 filesystem on the /dev/sdd2 partition? (Choose all that apply.)

A.	 mkfs -t ext2 /dev/sdd2

B.	 mkfs -t extended2 /dev/sdd2

C.	 mkfs.ext2 /dev/sdd2

D.	 mke2fs.ext2 /dev/sdd2

E.	 mke2fs /dev/sdd2

2.	 Which one of the following files contains a list of all of the filesystems your system supports?

A.	 /proc/filesystems

B.	 /etc/mtab

C.	 /proc/mounts

D.	 /proc/swaps

E.	 /proc/cpuinfo

3.	 Assuming that you have (or have access to) super user privileges to temporarily attach a
formatted filesystem to the Linux virtual directory structure, which of the following should
you do? (Choose the best answer.)

A.	 Issue the mkfs command, using super user privileges, on the filesystem.

B.	 Run the e2label utility on the filesystem.

C.	 Nothing. The AutoFS service will automatically attach it.

D.	 Add an entry for this filesystem in the /etc/fstab configuration file.

E.	 Use the mount command with the proper options and parameters.

4.	 The number c344d0f9–6d54–4a92-ad4d-c5a44fac2eeb identifies a filesystem that needs
to be temporarily mounted. Which option for the needed command should you choose?
(Choose the best answer.)

A.	 -o

B.	 -L

C.	 -U

D.	 -a

E.	 -n

5.	 Which command should be used to force filesystems to write metadata residing in memory
to the filesystem media structures? (Choose the best answer.)

A.	 unmount

B.	 fuser

C.	 lsof

D.	 sync

E.	 dmesg

c04.indd  09/14/2016  Page 196 c04.indd  09/14/2016  Page 197

196  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 196

6.	 Each entry in the /etc/fstab has several required fields. Which of the following could
describe one of the fields? (Choose all that apply.)

A.	 Mount point

B.	 Filesystem type

C.	 cpio backup option

D.	 Filesystem check priority

E.	 AutoFS identifier

7.	 You need to determine a filesystem’s UUID. Which utility can help you do this? (Choose the
best answer.)

A.	 findmnt

B.	 blkid

C.	 e2label

D.	 findfs

E.	 mount

8.	 Using a Btrfs filesystem, which RAID configurations can be implemented? (Choose all that
apply.)

A.	 RAID 0

B.	 RAID 1

C.	 RAID 5

D.	 RAID 6

E.	 RAID 10

9.	 Which of the following are considered extensions of the ISO9660 standard? (Choose all
that apply.)

A.	 UDF

B.	 btrfs

C.	 El Torito

D.	 Joliet

E.	 Rock Ridge

10.	 Which command should be used to create an ISO? (Choose the best answer.)

A.	 mkfs

B.	 mkfs -t iso

C.	 mkisofs

D.	 cdrecord

E.	 mount -t iso9660

Review Questions  197

c04.indd  09/14/2016  Page 196 c04.indd  09/14/2016  Page 197

11.	 You’ve just created a new disk partition, /dev/sde3, and want to prepare it as swap space.
Which command do you use? (Choose the best answer.)

A.	 mkfs -t swapon /dev/sde3

B.	 mkswap /dev/sde3

C.	 swapon /dev/sde3

D.	 swapoff /dev/sde3

E.	 swapon -s

12.	 Which of the following map types can be found in the /etc/auto.master file? (Choose all
that apply.)

A.	 Built-in

B.	 Direct

C.	 Indirect

D.	 SMART

E.	 Road

13.	 You want to change the AutoFS service’s master map to a different configuration file than
the /etc/auto.master file. Which configuration file might you edit to accomplish this,
depending on your distribution? (Choose the best answer.)

A.	 /etc/auto.direct

B.	 /etc/auto.misc

C.	 /etc/autofs.net

D.	 /etc/auto.tmp

E.	 /etc/sysconfig/autofs

14.	 Which of the following encrypted filesystems is a layered filesystem? (Choose the best answer.)

A.	 XFS

B.	 dm-crypt

C.	 eCryptfs

D.	 LUKS

E.	 Btrfs

15.	 Which of the following is not a utility for adjusting the ext2, ext3, and ext4 filesystems?
(Choose the best answer.)

A.	 debugfs

B.	 e2label

C.	 resize2fs

D.	 uuidgen

E.	 tune2fs

198  Chapter 4  ■  Managing the Filesystem

c04.indd  09/14/2016  Page 198

16.	 You have generated a new UUID and want to assign it to an unmounted ext4 filesystem.
Which utility do you use? (Choose the best answer.)

A.	 debugfs

B.	 e2label

C.	 resize2fs

D.	 blkid

E.	 tune2fs

17.	 You have super user privileges, and you type the command fsck.xfs to run a filesystem
check on an XFS filesystem. What will happen? (Choose the best answer.)

A.	 You corrupt the filesystem, because you did not unmount it first.

B.	 You only receive a report on filesystem health.

C.	 No information is displayed, but if errors are found, you are asked if you would like to
attempt a repair.

D.	 You only receive a report on filesystem health, and if errors are found, you are asked if
you would like to attempt a repair.

E.	 Nothing.

18.	 You have a Btrfs filesystem that has performed well for a long time. However, for some
reason, it has suffered a catastrophic problem and you need to restore files. Which utility
should you use? (Choose the best answer.)

A.	 btrfs check

B.	 btrfs get property

C.	 btrfs rescue

D.	 btrfs restore

E.	 btrfs scrub

19.	 Which of the following commands checks for inconsistencies but does not conduct any
repairs for an XFS filesystem? (Choose the best answer.)

A.	 xfs_check

B.	 xfsdump

C.	 xfs_info

D.	 xfs_metadump

E.	 xfsrestore

20.	 You have a disk drive partition /dev/sdc3 that supports SMART and has it enabled. Assum-
ing that you have super user privileges, which command will show you a quick summary
status, including whether or not it has passed the overall health self-assessment test? (Choose
the best answer.)

A.	 smartctl -t short /dev/sdc3

B.	 smartctl -H /dev/sdc3

C.	 smartctl -i /dev/sdc3

D.	 smartctl -a /dev/sdc3

E.	 smartctl -t long /dev/sdc3

c05.indd  09/15/2016  Page 199

Chapter

5
Administering
Advanced Storage
Devices

The following exam objectives are
covered in this chapter:

✓✓ 204.1 Configuring RAID

✓✓ 204.2 Adjusting Storage Device Access

✓✓ 204.3 Logical Volume Manager

c05.indd  09/15/2016  Page 200

RAID and logical volumes are considered advanced storage
device configurations, because of their complicated structures
and the many confusing terms surrounding them. These con-

figurations can assist in protecting your data as well as improving your overall data access
speeds. In addition, as your data’s storage needs increase, these storage structures offer rather
seamless storage media progression. Various utilities can help in setting up kernel options to
support and configure these advanced devices. Some of these utilities are also helpful in moni-
toring the devices. Understanding these devices and their configuration and administration is
important for your data’s management. All of these topics are covered in this chapter.

Configuring RAID
For system data protection and performance reasons, many companies and individuals turn
to RAID. Redundant Array of Independent Disks (RAID) is a set of multiple physical disk
partitions combined in a virtual single drive. Depending on the chosen RAID structure,
this logical drive can achieve improved access performance, increased data protection, and
reduced down time.

The RAID acronym used to stand for Redundant Array of Inexpensive
Disks.

In this section, the various RAID structures are explored. Picking the correct structure
is critical for achieving your desired results. In addition, getting a drive ready for RAID
membership, setting up a RAID array, and managing that array are covered so that you
are ready to implement RAID on your Linux server(s).

Understanding RAID
RAID arrays come in various structures (sometimes called RAID levels). Each structure is
denoted by a number, and it provides particular benefits. While not a substitute for backups,
some RAID structures can improve data protection. Other structures may improve read
times. First, determine your particular data needs for each system and application. Once you
have those requirements in hand, review these various RAID structures to choose the best
ones for meeting your data needs.

Configuring RAID  201

c05.indd  09/15/2016  Page 201

RAID 0    This RAID structure is also called disk striping. Each data file is spread across
multiple disks in the array. For example, if you have two disks, then a file’s data is broken
into chunks between the two disks. A two-disk RAID 0 diagrammed example is shown in
Figure 5.1.

F i gu r e 5 .1     RAID 0 diagram

Disk A

RAID 0

Data Chunk 1

Data Chunk 3

Data Chunk 5

Disk B

Data Chunk 2

Data Chunk 4

Data Chunk 6

Reading and writing to the different file chunks can occur in parallel, which can potentially
speed up reads and writes to the file. This RAID structure is typically used for swap space
or graphics applications. The downside is that there is no fault tolerance. If any drives in
the RAID array go bad, you lose the whole array.

RAID 1    Disk mirroring is the other name for this RAID structure type. The same data
is written to two different disks, which provides an original and a mirrored backup copy.
The structure requires a minimum of two disks, and the disks must always be in multiples
of two: one disk for the data and one disk for the data copy (mirror). A two-disk RAID 1
example is shown in Figure 5.2.

F i gu r e 5 . 2     RAID 1 diagram

Disk A
(Original Data)

RAID 1

Data Chunk 1

Data Chunk 2

Data Chunk 3

Data Chunk 4

Disk B
(Data Copy)

Data Chunk 1

Data Chunk 2

Data Chunk 3

Data Chunk 4

202  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 202

This RAID structure provides high fault tolerance. If you lose a disk, you have a backup
copy that is immediately accessible. The main problem with this RAID structure is its cost.
You must purchase a duplicate drive for every drive to be included in the array.

RAID 10    Also called disk mirroring and striping or RAID 1+0, this RAID structure is
a combination of RAID 1 (mirroring) and RAID 0 (striping). It needs a minimum of four
disks: two disks for striping and two disks to mirror the striping disks. A four-disk RAID 10
example is shown in Figure 5.3.

F i gu r e 5 . 3     RAID 10 diagram

RAID 10

(Original Data) (Data Copy)

Disk A

Data Chunk 1

Data Chunk 3

Data Chunk 5

Disk C

Data Chunk 1

Data Chunk 3

Data Chunk 5

Disk D

Data Chunk 2

Data Chunk 4

Data Chunk 6

Disk B

Data Chunk 2

Data Chunk 4

Data Chunk 6

While this array structure provides fault tolerance, including very fast regeneration of any
failed disk, the cost is high. You need to have double capacity for the mirroring structure
portion.

RAID 2, 3, 4    These three RAID structures are typically no longer used, though you may
find a few RAID 4 arrays still around. RAID 2 is a form of RAID 0, which provided spe-
cialized error checking that is now handled by the disk drives themselves.

RAID 3 is also a form of RAID 0, but it adds parity data and uses a minimum of three
disks. The parity data is stored on a designated disk, called the parity disk. Other data,
such as file data, is stored on the other two disks. A minimum of three disks is required. If
a single data disk fails, the data can be regenerated using the other data disk and the parity
disk. However, there is no regeneration if the parity disk fails.

RAID parity is a special checksum. A checksum is produced when a certain
mathematical algorithm is used on data. You can try out a cyclic redundancy
check (CRC) checksum algorithm using the cksum utility on Linux. The RAID
parity process uses regular data on the drives, and it runs it through the
designated mathematical algorithm to produce parity data. This produced
parity data is also stored on the drives. Where the parity is stored depends
on the RAID array structure. If a drive fails, by using the data on the good
drive(s) and its corresponding parity, the original data can be rebuilt.

Configuring RAID  203

c05.indd  09/15/2016  Page 203

The RAID 4 structure is a form of RAID 3, and it also requires a three-disk minimum. The
difference is that it provides faster access than RAID 3, because RAID 3 processes bytes of
data, while RAID 4 processes blocks of data. The RAID 4 structure still has the fatal flaw
of no original data regeneration if the parity disk fails.

RAID can be implemented via software, hardware, and even firmware. The
certification focuses on the utilities used for software-controlled RAID.

RAID 5    This RAID structure is also called disk striping with parity, because it stripes
both data and parity. The parity data is not written to a single drive, as in RAID 3 or
RAID 4, but it is instead spread across the disks. A three-disk RAID 5 example is shown
in Figure 5.4.

F i gu r e 5 . 4     RAID 5 diagram

RAID 5

Disk A

Data Chunk 1

Data Chunk 3

Parity Gamma

Disk C

Parity Alpha

Data Chunk 4

Data Chunk 6

Disk B

Data Chunk 2

Parity Beta

Data Chunk 5

RAID 5 can be implemented either by software or hardware controllers, but hardware con-
trollers are typically recommended for large RAID 5 implementations. With a hardware
controller, write performance can be improved by adding extra cache memory.

For RAID 5, a minimum of three disks is required. With parity spread among the drives,
there is improved fault tolerance over RAID 3 and RAID 4, and it achieves better data read
times. However, if a single drive fails, it takes time to rebuild the lost drive’s data. In that
time, if another drive fails (and it can) you’ve lost the entire RAID array. For this reason,
many companies with large data installations do not recommend a RAID 5 structure.

RAID 6    This RAID array structure is also called disk striping with double parity. It
stripes both data and parity, like RAID 5, except the same parity data chunk is written
two times, each on a different disk. This allows two drives to fail with no problems, and
it increases its fault tolerance. A four-disk RAID 6 example is shown in Figure 5.5.

204  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 204

F i gu r e 5 .5     RAID 6 diagram

RAID 6

Disk A

Data Chunk 1

Parity Alpha

Data Chunk 6

Parity Gamma

Disk C

Parity Alpha

Data Chunk 5

Data Chunk 7

Data Chunk 10

Disk D

Data Chunk 3

Parity Beta

Data Chunk 8

Parity Gamma

Disk B

Data Chunk 2

Data Chunk 4

Parity Beta

Data Chunk 9

There is a four-disk minimum requirement for RAID 6, which makes it a little more expen-
sive than RAID 5. Also, writes are slightly slower due to the double parity. However, this
structure provides faster reads, so it’s useful for large data applications.

It’s nice to have choices, and the various RAID array structures provide several. With
an understanding of these RAID varieties and your particular data requirements, you can
choose the most applicable structure to meet your systems’ needs.

Implementing RAID on Linux
This section focuses on implementing and maintaining a Linux RAID structure via software.
Linux software RAID arrays are implemented through the Multiple Devices (md) device
driver, and it supports RAID 0, 1, 10, 4, 5, and 6.

Before you set up a RAID array on Linux, you need to check some things on your system.
In addition, you must get any needed drives ready for RAID array membership. Once you’ve
handled these preliminaries, you can create your RAID array. After the RAID array is created,
several utilities are involved in managing it. We cover each item involved in this process in
this section.

Checking Your System
The first item to check on your system is whether the kernel supports RAID. The Linux
kernel v2.6 and up can support all RAID levels. You can check your kernel version using
the uname -r command, as shown here on an Ubuntu distribution:

$ uname -r
3.13.0–71-generic
$

Configuring RAID  205

c05.indd  09/15/2016  Page 205

In addition, check to see if your system has the /proc/mdstat file. This useful file pro-
vides current system RAID status information. Just its presence is another positive indica-
tor that RAID is supported on your system:

$ ls /proc/mdstat
/proc/mdstat
$

Another check uses the modprobe command to see if you can load various RAID kernel
modules. Using super user privileges, type modprobe raid6 at the command line, as shown
here:

$ sudo modprobe raid6
[sudo] password for christine:
$

No error message after issuing this modprobe command is a good sign. However, double-
check that it worked by displaying the current contents of the /proc/mdstat file:

$ cat /proc/mdstat
Personalities: [raid6] [raid5] [raid4]
unused devices: <none>
$

Notice that the Personalities line in this Ubuntu distribution’s /proc/mdstat file
shows three different RAID levels: 6, 5, and 4. This indicates that this system supports
those RAID levels.

We’ll cover the /proc/mdstat file in greater depth later in this chapter. For
now, it’s useful for checking your system.

At this point, you can check additionally supported RAID levels by continuing to issue
modprobe raid#, where # is the RAID level that you want to check. Typically, you will find
that RAID levels 0, 1, 10, 4, 5, and 6 are supported on current Linux distributions without
any modifications. If a level is not presently supported, you’ll get an error message similar
to the following:

$ sudo modprobe raid3
[sudo] password for christine:
modprobe: FATAL: Module raid3 not found.
$

206  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 206

Once you know that your Linux system can support the desired RAID level, you need to
see if your system has the Multiple Disk or Device Administration (mdadm) utility installed.
On this Ubuntu distribution, it is not installed by default:

$ dpkg -s mdadm
dpkg-query: package 'mdadm' is not installed and
 no information is available
[...]
$

However, on this CentOS system, the mdadm utility is installed by default:

rpm -qa | grep mdadm
mdadm-3.3.2–2.el7_1.1.x86_64
#

If you do not have the mdadm utility and need to install it, its package is conveniently named
mdadm. So, for example, on an Ubuntu system you can install it via the sudo apt-get install
mdadm command, assuming that you have super user privileges.

You may have heard of managing RAID on a Linux system using an
old utility called raidtools2, which has an even older version named
raidtools. Current distributions use the mdadm utility. It is a single pro-
gram, as opposed to the raidtools2 program collection.

Once these system checks are completed and any needed changes are made, you can con-
tinue toward implementing a RAID array. The next step involves disk drives.

Getting a Drive Ready for RAID Membership
Before creating a RAID array, you need to partition the various drives that will have mem-
bership in the array. But before you start partitioning, you need to think through a few
important issues, such as the partition type code to use as well as the partition size and
how much disk space you will leave unpartitioned.

Some individuals create the RAID array and then perform partitioning.
However, this can cause problems, especially when recovering data due
to a failed disk. It is best to partition the drives first and to create the RAID
array afterward.

A regular data drive partition typically has a partition type code of 83 (for MBR partitions)
or 8300 (for GPT partitions). For a RAID array member, the partition type code can be set
either to da (MBR partitions only) or fd.

Configuring RAID  207

c05.indd  09/15/2016  Page 207

Partition type codes are sometimes written using their hex code equiva-
lent. The hex value for partition type code fd is 0xFD (MBR partitions) or
0xFD00 (GPT partitions). The certification lists the 0xFD hex value in its
objectives.

You will need to choose the correct type code based on the partition table and the md
superblock, sometimes called metadata. When a RAID array is created, by default the md
superblock is written to a particular location on all disks in the array. Currently, Linux
recognizes two md superblock version groups, v0.90 and v1.0 and up. The primary differ-
ence between these two version groups is the superblock’s location on the disk. They also
help to determine what partition type code to use.

If you are using a GPT partition table, then the fd type code (0xFD00) is recommended,
because the Linux system can automatically detect RAID. If your system is using md super-
block v1.0 or higher (which it typically is, if you have not created a RAID array using this
partition) and it’s an MBR partition, use the da partition type code (0xDA).

Optimally, all of your RAID array drives and spare drives will be the same size, but this
isn’t always the case. In situations where your drives are not equally sized, it may be a good
idea to leave some space unpartitioned. This can be helpful if your spare disks are slightly
smaller than the RAID array drive members and you need to use them to replace a failed
array drive.

A spare drive is one that is not currently an active RAID array member, but
instead it is added to the RAID array as a spare. Typically, this spare drive is
automatically moved into full RAID array membership should a drive mem-
ber fail. A spare drive can also be automatically moved from one array in
the same spare group or domain to another array that needs a spare due to
a failed drive.

For drives that will be used in the same RAID array (members and spares), make them
all the same partition size. The md device driver can deal with different partition sizes in a
RAID array by ignoring the excess. However, you will be wasting that mismatched space.

Now with your partition type code and size determined, you are ready to partition your
drives. Use the appropriate partition tool, such as fdisk or parted, to create your needed
partitions. (The LPIC-1 certification focused on partitioning storage media.) In the snipped
example here, five drives are partitioned on a CentOS distribution using super user privi-
leges to prepare them for RAID array membership:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk
├─sda1 8:1 0 500M 0 part /boot
└─sda2 8:2 0 7.5G 0 part
[...]

208  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 208

sde 8:64 0 1G 0 disk
sdf 8:80 0 1G 0 disk
sdg 8:96 0 1G 0 disk
sdh 8:112 0 1G 0 disk
sdi 8:128 0 1G 0 disk
[...]
#

fdisk /dev/sde
[...]
Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): p
Partition number (1–4, default 1): 1
First sector (2048–2097151, default 2048):
Using default value 2048
[...]
Command (m for help): t
Selected partition 1
Hex code (type L to list all codes): da
Changed type of partition 'Linux' to 'Non-FS data'

Command (m for help): w
[...]
fdisk /dev/sdf
[...]
fdisk /dev/sdg
[...]
fdisk /dev/sdh
[...]
fdisk /dev/sdi
[...]
#

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk
├─sda1 8:1 0 500M 0 part /boot
└─sda2 8:2 0 7.5G 0 part
[...]

Configuring RAID  209

c05.indd  09/15/2016  Page 209

sde 8:64 0 1G 0 disk
└─sde1 8:65 0 1023M 0 part
sdf 8:80 0 1G 0 disk
└─sdf1 8:81 0 1023M 0 part
sdg 8:96 0 1G 0 disk
└─sdg1 8:97 0 1023M 0 part
sdh 8:112 0 1G 0 disk
└─sdh1 8:113 0 1023M 0 part
sdi 8:128 0 1G 0 disk
└─sdi1 8:129 0 1023M 0 part
[...]
#

In this example, the lsblk command is used to display all of the various block devices
currently attached to the system. The fdisk utility is employed to make whole disk parti-
tions on five drives. (These rather small disks are being used for example purposes only.)
Notice that the partition type code used is da (0xDA).

Once you have checked your system for RAID support, installed any needed packages,
and prepared the needed drives for RAID array membership, you are ready for the next
task: creating a RAID array.

Creating a RAID Array
To set up a RAID array, you need to employ the Multiple Disk or Device Administration
(mdadm) utility. The basic syntax of this flexible tool is

mdadm [--mode] raid-device [options] component-devices

The mdadm utility is a single program that conducts many jobs related to RAID arrays.
It requires super user privileges and has several operating modes. Each operating mode is
designed for a particular function, such as creating a RAID array. Also, each mode has its
own specific mdadm command options. You can choose the operating mode with the --mode
option, and the mode choices are shown in Table 5.1.

Ta b le 5 .1     The mdadm utility’s modes

Mode (long option) Mode (short option) Description

--assemble -A Assemble mode: Assembles previously
created RAID array members into an active
array.

210  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 210

Mode (long option) Mode (short option) Description

--auto-detect none Auto-detect mode: Asks the Linux ker-
nel to activate any auto-detected RAID
arrays. Several requirements must be
met for this to work properly, such as
RAID array members must have a v0.90
superblock.

--build -B Build mode: Builds a RAID array of drives
that have no superblocks.

--create -C Create mode: Creates a new RAID array by
adding superblocks to each drive member
and then assembling the members into an
active array.

--follow -F Follow mode: Monitors md drives and, if
an event or alert occurs, performs a desig-
nated action, such as sending an email or
running a program. Useless for a RAID 0
array.

--grow -G Grow mode: Grows (or shrinks) or reshapes
a RAID array.

--incremental -I Incremental assembly mode: Adds a single
drive to designated RAID array, and if the
added drive allows the array to be activated,
the array is automatically activated. Similar
to assemble mode but for one drive at a
time.

--manage none Manage mode: Manages RAID array mem-
bers, such as adding a new spare drive to a
RAID array.

--misc none Miscellaneous mode: Includes RAID array
operations that do not fall into any other
mode category, such as deleting a drive’s
superblock.

--monitor -F Monitor mode: Operates exactly like fol-
low mode.

Ta b le 5 .1      The mdadm utility’s modes  (continued)

Configuring RAID  211

c05.indd  09/15/2016  Page 211

The focus here is on the mdadm create mode. Because the drives partitioned earlier did
not have superblocks, the superblocks need to be created on them. After that is completed,
the drives are assembled into the desired RAID configuration.

The mdadm utility has an excellent man page, and it is worth taking the
time to peruse all of the information contained within it. Access the man
page by typing man mdadm at the command line. Also, you can view some
good examples from the mdadm -h command. There are numerous exam-
ples, so you should pipe the command’s output into the less pager utility.

In following snipped example, four (-n 4) of the disks previously partitioned are
created (-C) into a sample RAID level 6 array (-l 6), designated by /dev/md0, on a CentOS
distribution. The example command here is broken onto multiple lines for clarity:

mdadm -C /dev/md0 -l 6 -n 4 \
> /dev/sdf1 /dev/sdg1 /dev/sdh1 /dev/sdi1
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
#

If the utility finds anything on the partitions that is a potential problem, it displays a
message about the potential problem along with the question, Continue creating array?.
If you encounter any problem messages from the mdadm utility, thoroughly investigate them
prior to proceeding with creating the RAID array.

Make a grievous mistake creating your RAID array? No need to worry. You
can essentially erase it and start over. See the “Removing a RAID Array”
section later in this chapter.

Notice that in the preceding example, when the mdadm utility creates a superblock
on the new RAID array members, it defaults to version 1.2 metadata (superblock).
Also, once a superblock is written to the partitions, the new RAID array, /dev/md0, is
started.

If your partitions already have a superblock created on them by the mdadm
utility, you’ll use the --assemble or -A option to select assemble mode
instead of using create mode.

When the RAID level 6 array was created in the previous example, short options were
used on the mdadm command. You can use the long options, if desired.

212  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 212

Earlier, we mentioned that each mdadm utility mode has its own set of options. You can
quickly view these options at the command line by entering the mode and then typing --help,
as shown here:

mdadm --create --help
Usage: mdadm --create device -chunk=X --level=Y --raid-devices=Z devices
[...]
Options that are valid with --create (-C) are:
 --bitmap= : Create a bitmap for the array with the given filename
 or an internal bitmap is 'internal' is given
 --chunk= -c : chunk size in kibibytes
 --rounding= : rounding factor for linear array (==chunk size)
 --level= -l : raid level: 0,1,4,5,6,10,linear,multipath and synonyms
 --parity= -p : raid5/6 parity algorithm: {left,right}-{,a}symmetric
 --layout= : same as --parity, for RAID10: [fno]NN
 --raid-devices= -n : number of active devices in array
 --spare-devices= -x : number of spare (eXtra) devices in initial array
 --size= -z : Size (in K) of each drive in RAID1/4/5/6/10 - optional
 --data-offset= : Space to leave between start of device and start
 of array data.
 --force -f : Honour devices as listed on command line. Don't
 insert a missing drive for RAID5.
 --run -R : insist of running the array even if not all
 devices are present or some look odd.
 --readonly -o : start the array readonly - not supported yet.
 --name= -N : Textual name for array - max 32 characters
 --bitmap-chunk= : bitmap chunksize in Kilobytes.
 --delay= -d : bitmap update delay in seconds.

#

This --help option is handy if you need to recall quickly a particular mode’s option syn-
tax. Be aware that the auto-detect mode has no options, so using --help with it will display
only general mdadm help information.

Several long options need an equals sign between themselves and their setting,
while short options often need a space. For example, --raid-devices=6 is
equivalent to -n 6.

Checking a RAID Array
Once you create a RAID array, you should immediately check to make sure that all is
well. The /proc/mdstat file is helpful here, because it contains any running RAID array’s

Configuring RAID  213

c05.indd  09/15/2016  Page 213

current status. In this example, the sample /dev/md0 RAID level 6 array’s current status
information is shown:

cat /proc/mdstat
Personalities: [raid6] [raid5] [raid4]
md0: active raid6 sdi1[3] sdh1[2] sdg1[1] sdf1[0]
 2093056 blocks super 1.2 level 6, 512k chunk, [...]

unused devices: <none>
#

The /dev/md0 RAID array’s status looks good. The four partitions are actively partici-
pating. You can also see information concerning the array’s RAID level (level 6) and its
chunk size (512k).

Data is broken up over the RAID array drives into stripes, and those stripes
are further broken into chunks. The mdadm utility typically sets these
chunks’ size to 512 KiB each by default.

Another good check requires the use of the mdadm utility’s miscellaneous mode. Here is
an example of checking the sample /dev/md0 RAID array:

mdadm --misc --detail /dev/md0
/dev/md0:
 Version: 1.2
 Creation Time: Tue Feb 9 14:05:42 2017
 Raid Level: raid6
 Array Size: 2093056 (2044.34 MiB 2143.29 MB)
 Used Dev Size: 1046528 (1022.17 MiB 1071.64 MB)
 Raid Devices: 4
 Total Devices: 4
 Persistence: Superblock is persistent

 Update Time: Tue Feb 9 14:05:54 2017
 State: clean
 Active Devices: 4
Working Devices: 4
 Failed Devices: 0
 Spare Devices: 0

 Layout: left-symmetric
 Chunk Size: 512K

214  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 214

 Name: localhost.localdomain: [...]
 UUID: 38edfd0d:45092996:954b269a:9e919b3a
 Events: 17

Number Major Minor RaidDevice State
 0 8 81 0 active sync /dev/sdf1
 1 8 97 1 active sync /dev/sdg1
 2 8 113 2 active sync /dev/sdh1
 3 8 129 3 active sync /dev/sdi1
#

This command provides a large amount of helpful information. Notice in the preceding
example that not only is state information given, but identification information, such as the
UUID, is displayed as well. This data can help you diagnose any problems that occurred
during the RAID array’s creation.

When using the mdadm utility for miscellaneous mode, you do not have to
include the --misc option. The utility automatically recognizes miscella-
neous mode options.

Format and Mount the RAID Array
Once a RAID array has been created (or assembled) and checked, it can be treated like any
other partition: formatting it with a filesystem and mounting it. In the snipped example
here, you can see that the sample RAID 6 array, /dev/md0, is formatted with an ext4 file-
system and then mounted to a temporary directory:

mkfs -t ext4 /dev/md0
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
[...]
#
mount -t ext4 /dev/md0 Temp
ls Temp
lost+found
#
touch Temp/My_RAID_File.txt
#
ls Temp
lost+found My_RAID_File.txt
#

Configuring RAID  215

c05.indd  09/15/2016  Page 215

In the previous example, notice that the lost+found directory is on the /dev/md0 filesys-
tem, as you would see on a non-RAID partition formatted with the ext4 filesystem. Once
you have mounted your RAID array to its desired permanent location, just like with other
filesystems, you add a record to the /etc/fstab file, so the RAID array is automatically
mounted at system boot time.

Save RAID Array Configuration
Because the kernel, the md driver, and mdadm can read each RAID member’s superblock,
a configuration file is not absolutely necessary. Also, when creating a RAID array, a con-
figuration file is not created. If a RAID configuration file does exist, it is not automatically
updated by the mdadm utility.

However, it’s a good idea to create and maintain a RAID configuration file. This mdadm
utility file is useful for a potential RAID array recovery situation, and some Linux distribu-
tions produce errors when you attempt to assemble an array if no configuration file is present.

On your Linux distribution, you may find the opposite to be true in that,
with an mdadm configuration, file errors are produced and/or more RAID
problems occur when assembling a RAID array. In this case, still maintain
a RAID configuration file, but keep it offline on a flash drive should it be
needed for recovery purposes.

The mdadm configuration file, mdadm.conf, should be stored either in the /etc/ directory
or in the /etc/mdadm/ directory, depending on your distribution. Since it is not created
when the mdadm utility is installed, you will need to check which configuration file location
your distribution uses. You can find this out by typing man mdadm.conf at the command
line. Of course, you must have the mdadm utility installed before issuing this command.

Once the proper location is determined for your configuration file, you can create it. The
best way to create this file is using the mdadm utility’s --scan option. First, just do a simple
scan to see what the command will produce, as shown here in this snipped example:

mdadm --verbose --detail --scan /dev/md0
ARRAY /dev/md0 level=raid6 num-devices=4 metadata=1.2
name=localhost.localdomain:0 UUID=38edfd0d:45092996:954[...]
 devices=/dev/sdf1,/dev/sdg1,/dev/sdh1,/dev/sdi1
#

This is the information that needs to be stored within your configuration file for this
particular RAID array. Notice the keyword ARRAY is output with the information. This key-
word can be used in the mdadm.conf file to identify a RAID array.

Instead of typing in this information, which could introduce typographical errors, redi-
rect the command’s standard output into the proper configuration filename, as shown here
on this CentOS distribution:

ls /etc/mdadm.conf
ls: cannot access /etc/mdadm.conf: No such file or directory

216  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 216

#
mdadm --verbose --detail --scan /dev/md0 >> /etc/mdadm.conf
#
cat /etc/mdadm.conf
ARRAY /dev/md0 level=raid6 num-devices=4 metadata=1.2 name=localhost
.localdomain:0 UUID=38edfd0d:45092996:954[...]
 devices=/dev/sdf1,/dev/sdg1,/dev/sdh1,/dev/sdi1
#

If the mdadm.conf configuration file pre-exists, be sure to make a backup
copy prior to adding the new RAID array’s information to it.

Once you have this configuration file created and/or new RAID array information stored in it,
you have completed the RAID array’s implementation phase. However, you can tweak the file to
add some additional configuration information for monitoring purposes. There are many ways
to monitor and manage your RAID array properly, some of which include modifying this config-
uration file. These topics are more appropriately covered in a RAID array’s management phase.

Managing a RAID Array
Once you have your RAID array in production, you move into the management phase.
Managing RAID arrays involves monitoring them for problems, handling any difficulties,
fine-tuning their configuration if warranted, and so on. These important management tasks
are covered in this section.

Monitoring Your RAID Array
One of the most important RAID array management tasks is monitoring (also called following).
Monitoring allows you to take quick action when problems occur, improve data access perfor-
mance, and reduce outages.

The mdadm utility has a monitor mode, which is central to monitoring your software-
controlled RAID array. With this mode, you can monitor your RAID array(s) for certain
events (also called alerts). These events are shown in Table 5.2.

Ta b le 5 . 2     The mdadm monitor mode events

Event/Alert Name Description

DeviceDisappeared An entire array that was created or assembled has left array
configuration status.

RebuildStarted An array has started to rebuild.

Configuring RAID  217

c05.indd  09/15/2016  Page 217

Event/Alert Name Description

RebuildNN An array that is rebuilding is NN% done.

RebuildFinished An array that is rebuilding is either completely done or was
aborted.

Fail An active array member has been designated faulty.

FailSpare An array spare drive, which was currently being added into full
array membership to replace a failed drive, has been designated
faulty.

SpareActive An array spare drive, which was currently being added into active
array membership to replace a failed drive, has been successfully
added as an active array member.

NewArray A new array has been added in the /proc/mdstat file.

DegradedArray A new array appears to have an array member missing.

MoveSpare A spare drive has been moved from one array in the same spare
group or domain to another array that needs a spare due to a
failed drive.

SparesMissing The configuration file indicates that an array should have n spare
drives, but it is detected that fewer than n spare drives exist in the
array.

TestMessage At startup, an array is detected with the --test option used for
monitor mode.

The monitoring process can be started manually at the command line. The basic mdadm
utility syntax for kicking off monitoring is

mdadm --monitor options devices

You can substitute --follow for --monitor in the command. This command starts
mdadm in monitor mode, where it will screen the RAID arrays every 60 seconds (by default)
and report any events.

Be aware that when the mdadm utility starts its monitoring mode and finds arrays to
monitor, it will not exit. Therefore, it’s a good idea to tack an ampersand (&) onto the com-
mand’s end and run it in background mode.

218  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 218

RAID 0 arrays are not monitored by mdadm. Because there is no fault tolerance
in a RAID level 0 array, this array structure falls outside the mdadm utility’s mon-
itoring mode’s scope. If you attempt to monitor a RAID 0 array with mdadm, you
will instantaneously receive a DeviceDisappeared event message.

You can set various options with monitor mode to meet your system’s needs. A list of the
mdadm monitor options on a CentOS distribution is shown here:

mdadm --monitor --help
[...]
Options that are valid with the monitor (-F --follow) mode are:
 --mail= -m : Address to mail alerts of failure to
 --program= -p : Program to run when an event is detected
 --alert= : same as --program
 --syslog -y : Report alerts via syslog
 --increment= -r : Report RebuildNN events in the given
 increment. default=20
 --delay= -d : seconds of delay between polling state.
 default=60
 --config= -c : specify a different config file
 --scan -s : find mail-address/program in config file
 --daemonise -f : Fork and continue in child, parent exits
 --pid-file= -i : In daemon mode write pid to specified file
 instead of stdout
 --oneshot -1 : Check for degraded arrays, then exit
 --test -t : Generate a TestMessage event against each
 array at startup
#

The --mail option allows you to designate a single email address to receive event noti-
fications. The --program option designates a program to run upon an event notification.
As an alternative to using these options, you can use the --scan option, which will cause
the mdadm utility to look inside the mdadm.conf configuration file for these settings. Within
the configuration file, you add the keyword MAILADDR followed by a single email address.
Also, you may add the keyword PROGRAM followed by the name of a program or shell script
to run, should an alert occur. If you use the --scan option and the mdadm.conf file has no
program or email keywords, or if you start monitor mode without the --mail or --program
options, event notifications are sent to standard output.

Having odd problems with your RAID array? Put a watch on it. Type watch
cat /proc/mdstat at the command line, and view what is happening every
few seconds to the RAID array’s status. This may help in your problem-
discovery process.

Configuring RAID  219

c05.indd  09/15/2016  Page 219

Another interesting option is --daemonise. This allows you to start mdadm in monitor
mode as a daemon. This useful option can be put into a system startup script.

Adding a Spare Disk to a RAID Array
You can add a spare disk to a RAID array when you create it. However, if you didn’t add
one (or more) at creation time, or your spare disk has become an active RAID member due
to another drive failing, you may want to add a spare to an active RAID array.

When you need to add a spare drive to a RAID array, you should first ensure that it is
not already a RAID array member. This may not be needed for a single RAID array sys-
tem, but if you have a large array installment, it’s worth the extra few minutes. A snipped
example of checking a drive for array membership is shown here:

mdadm --misc --examine /dev/sde1
mdadm: No md superblock detected on /dev/sde1.
#
mdadm --misc --examine /dev/sdf1
/dev/sdf1:
 Magic: a92b4efc
 Version: 1.2
[...]
#

This preceding example shows the output that you receive for both a non-RAID member
as well as an active RAID member. The /dev/sde1 partition is not part of a RAID array,
but the /dev/sdf1 partition is a RAID array member. Note that if the drive is not already
partitioned, you would pass the whole drive name, /dev/sde in this case, to the mdadm
utility instead of the partition name to check for RAID membership.

When partitioning new drives to serve as RAID array spares, make their
partition size and type the same as current RAID members. You cannot add
spares to a RAID array that have a smaller size than current members have.

Prior to adding a spare to your RAID array, check the array’s current number of spares
by using the grep command, along with the mdadm utility’s miscellaneous mode’s --detail
option. An example is shown here:

mdadm --misc --detail /dev/md0 | grep Spare
 Spare Devices: 0
#

The /dev/md0 RAID array currently has no spare drives. To fix this situation, the /dev/
sde1 partition is hot-added here using the mdadm utility’s manage mode:

mdadm --manage --add /dev/md0 /dev/sde1
mdadm: added /dev/sde1

220  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 220

#
mdadm --misc --detail /dev/md0 | grep Spare
 Spare Devices: 1
#

Notice that once the partition was added, the Spare Devices count went up by one. You
can add more than one device at a time, if desired.

If you add a spare device to a RAID array and are using the mdadm.conf
configuration file, be sure to update it.

Growing the RAID Array
You can change the size or shape of your RAID array using the mdadm utility. Size or shape
refers to the ability to change RAID array configuration items such as chunk size and the
number of active RAID array members. You can even do conversions, such as changing a
RAID level 5 array into a RAID level 6 array.

The mdadm utility’s grow mode handles these various changes. Be aware that changing the
size and shape of your RAID array is a time-consuming (from hours to days) and potentially
data-dangerous activity. Always make sure that you have backups completed prior to any grow
mode activities. To see all of the various grow mode options, type mdadm --grow --help at the
command line.

To prepare for a recovery after an unexpected grow mode problem, you
should specify a special backup file for the mdadm utility to use in the resizing
or reshaping process. This backup file is specified by the --backup-file
option. The backup file should reside on a different disk or RAID array than
the one you are growing.

Removing a RAID Array
If desired, you can remove an entire RAID array. To do so, you must first stop the array
using the mdadm utility’s manage mode.

Just as you should do when employing the mdadm utility’s grow mode,
make a backup of any data that you wish to preserve prior to removing a
RAID array.

The sample /dev/md0 RAID array is stopped in this example here:

mdadm --manage --stop /dev/md0
mdadm: stopped /dev/md0
#

Adjusting Storage Devices  221

c05.indd  09/15/2016  Page 221

Once a RAID array is stopped, its members and spare drives can be removed by deleting
their superblock. You can either do this one drive at a time or remove the superblocks for
all drives at the same time, as shown here:

mdadm --zero-superblock /dev/sde1
#
mdadm --zero-superblock /dev/sdf1 /dev/sdg1 /dev/sdh1
#

Once the superblock is removed from the drives, they can be either employed in other
RAID arrays or used for other purposes. Be sure to update the mdadm.conf configuration
file when removing any RAID arrays.

Adjusting Storage Devices
Nowadays, you typically don’t need to adjust your storage devices. However, it is important
to understand these concepts and their associated utilities. This is especially true if you end
up with a unique situation that requires modifying a storage device’s attributes. In addition,
the utilities covered in this section can be used for monitoring and testing, which is always
useful. Also in this section, we cover understanding and managing iSCSI drives.

Looking at Drive Interface Concepts
When looking at adjusting various storage devices, it makes sense to review some basic
drive interface concepts. The following terms and concepts will help as you learn how to
use the Linux utilities created to adjust them.

PATA    Parallel Advanced Technology Attachment (PATA), also called simply ATA or
IDE (which here stands for Integrated Drive Electronics), is drive interface technology that
started with the ATA-1 standard in 1988. It depends on parallel ribbon cables and provides
transfer speeds of up to 133 MiB/second in burst mode.

Historically on Linux, PATA disk drives were denoted by the /dev/hd* device files. Currently,
most PATA drivers treat PATA disks as if they are SCSI disks, so the drives are denoted by /dev/
sd* device files.

SATA    Serial Advanced Technology Attachment (SATA) is also a drive interface technol-
ogy. It is considered an advancement over the PATA interface because of its use of serial
cables, which aren’t hampered by cable length limits like ribbon cables are. SATA is self-
configuring, allows Plug and Play (PnP), and provides transfer speeds of up to 6 Gbits/
second. On Linux, SATA disk drives are denoted by /dev/sd* device files.

ATAPI    Advanced Technology Attachment Packet Interface (ATAPI) is an optical media
and tape interface protocol, which uses PATA or SATA disk interfaces. Introduced in 1997,

222  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 222

it was part of the Enhanced IDE (EIDE) disk interface standard, which is heavily associated
with the ATA-2 disk interface standard released around the same time.

SCSI    Small Computer System Interface (SCSI) is an older drive interface technology that
got its start in the early 1980s. SCSI devices use a parallel interface and are platform inde-
pendent. SCSIs can transfer up to 80 MB/second and can support fiber cable. On Linux,
SCSI disk drives, like SATA drives, are denoted by /dev/sd* device files.

SAS    A newer version of SCSI is Serial Attached SCSI (SAS), and it is becoming very popu-
lar. It uses a Synchronous Serial Port (SSP) controller that supports the Serial Peripheral
Interface (SPI) protocol. SAS devices come at a lower cost than traditional SCSI devices and
provide higher reliability as well as faster serial transfer speeds. On Linux, SAS disk drives,
like traditional SCSI drives, are denoted by /dev/sd* device files.

iSCSI    Internet Small Computer System Interface (iSCSI) is a storage network transport
protocol. SCSI commands, using the iSCSI protocol, can be sent to remote storage devices
on local or wide area networks and even over the Internet. When configured, a SCSI stor-
age server’s disk appears as a locally attached client-side disk. On Linux, iSCSI disk drives,
like traditional SCSI drives, are denoted by /dev/sd* device files.

AHCI    The Advanced Host Controller Interface (ACHI) is a legacy specification implemented
in hardware, which allows software communication with SATA devices. This technology pro-
vides advanced SATA standard features, such as hot-plugging. It also allows TRIM (covered
later in this chapter) to be used on Solid State Drives (SSD). The Linux kernel has supported
the AHCI standard since version 2.6.19.

If your SSD is not being recognized by your system, it may be a BIOS or
UEFI configuration problem. Check your system’s BIOS or UEFI configura-
tion menu for SATA mode. If your SATA mode is set to IDE mode, switch it
instead to AHCI.

NVMe    Introduced in March 2011, Non-Volatile Memory Express (NVMe) is a standard
that was originally created by an association of over 90 companies. It is currently directed
by a promoter group of 13 companies. Specifically, the NVMe is a logical device interface
and command set standard for SSDs attached via the PCI Express bus. The Linux kernel
has contained an NVMe standard interface driver since version 3.3.

On Linux, NVMe-interfaced SSDs are represented by the /dev/nvme* device files. However,
the /dev/nvme* device file naming convention is slightly different than the naming convention
for SATA and SCSI drives. The NVMe standard uses a namespace (described in Chapter 4)
architecture, which is an additional top layer available for subdividing into partitions. For
example, here is an NVMe device file reference:

/dev/nmve0n1p1

The nmve denotes that the drive is an NVMe standard SSD. The 0 in the device file name
indicates that this is the first NVMe drive. The n1 denotes that this is the drive’s namespace
one. The p1 denotes that this is partition 1 within this drive’s namespace one.

Adjusting Storage Devices  223

c05.indd  09/15/2016  Page 223

Therefore, the NVMe drive is listed first; the namespace is subdivision of the drive; and the
partition is a subdivision of the namespace. If you want to refer to a second NMVe drive’s
third namespace and second partition, use the /dev/nvme1n3p2 device file name.

It is important to understand just how the Linux kernel views the various drive inter-
faces as well as the device files used to access them. The next issue is how to test and adjust
these various interfaces.

You can determine whether your system is treating a disk as an ATA drive or
a SCSI drive by using the lshw command, if it is available on your distribution.
Using super user privileges, type lshw --class disk. Also, you can typically
determine drive types by looking in the /proc/ide and /proc/scsi directories.

Testing and Tuning Drives
The topic of tuning a filesystem was briefly explored in Chapter 4, “Managing the Filesystem.”
In this section, we cover testing and tuning kernel drive interfaces.

One item that you can tune is direct memory access (DMA). DMA allows data to be sent
directly to/from an attached device to/from the system’s memory. This allows the processors
to be freed from dealing with data transfer issues, which in turn can speed up the system. To
enable this feature, DMA support from the system’s motherboard, BIOS, and drive is required.

Another item to tune is write-back caching. When using write-back caching, a drive
stores data to be written in a cache buffer prior to writing it physically on the drive. Once
data is in the cache, the system is told that the data has been committed to disk. In certain
large data volume scenarios with write-back caching enabled, the drive can accept data
much faster than before and improves its write speed. The downside is that a system crash
can cause uncommitted data in the cache to be lost. However, since most filesystems are
journaled, the risk is minimal.

Using hdparm
The hdparm utility was originally designed for PATA drives and ATAPI optical media inter-
faced devices. However, it can also handle SATA storage. In addition, if your SCSI devices
support SCSI/ATA command Translation (SAT), some options within the hdparm utility can
be used on them as well.

Check to see if your system has the hdparm utility installed. On Ubuntu, try the dpkg -s
hdparm command. On a Red Hat system, such as CentOS, using super user privileges, enter
the command rpm -qa | grep hdparm at the command line. If your distribution does not
have the hdparm utility installed, you can obtain it from the hdparm package.

By using hdparm, you can view, test, and, if needed, modify various drive settings. Be aware
that most drives come with their optimum configuration already set.

In the unlikely event that you change any drive settings, you’ll need to
modify or create the /etc/udev/rules.d/50-hdparm.rules file to make
them permanent.

224  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 224

For demonstration purposes here, on an Ubuntu distribution, we’ve set up two small
sample drives. One is a SATA drive, and it is represented by the device file /dev/sde. The
other is a PATA (IDE) drive. It is being treated as a SCSI device, and it is represented by the
device file /dev/sda.

Using hdparm with the -I option on the SATA drive, /dev/sde, you can get a lot of good
information, as shown in the snipped listing here:

$ sudo hdparm -I /dev/sde
[sudo] password for christine:

/dev/sde:

ATA device, with non-removable media
[..]
...Serial Number: VB3c70fec6-fd2c80f3
...Firmware Revision: 1.0
Standards:
...Used: ATA/ATAPI-6 published, ANSI INCITS 361–2002
...Supported: 6 5 4
Configuration:
[...]
Capabilities:
[...]
 DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4
udma5 *udma6
[...]
control=120ns
Commands/features:
 Enabled Supported:
 * Power Management feature set
 * Write cache
[...]
Checksum: correct
$

Notice that write cache is enabled. The asterisk (*) next to udma6 indicates that this
DMA form is enabled as well. This also works fine with the PATA drive, /dev/sda, which
is being treated as a SCSI disk by Linux, as shown here:

$ sudo hdparm -I /dev/sda
[sudo] password for christine:

Adjusting Storage Devices  225

c05.indd  09/15/2016  Page 225

/dev/sda:

ATA device, with non-removable media
[...]
 DMA: mdma0 mdma1 mdma2 udma0 udma1 *udma2 udma3 udma4
udma5 udma6
[...]
 Enabled Supported:
 * Power Management feature set
 * Write cache
[...]
$

This drive uses a different DMA form, udma2. However, it does have write cache enabled,
just like the /dev/sde drive.

The hdparm utility’s various features may or may not work with SCSI drives. In these
cases, the sdparm utility (covered in the next section) may help.

Many hdparm utility features and options can cause harm to your drives.
Be sure to peruse the hdparm man pages carefully prior to using the utility.
Also, try out the various options first on non-production disks.

Several hdparm options allow you to view whether a single feature is set. An example of
checking the write cache back setting on the /dev/sda drive is shown here:

$ sudo hdparm -W /dev/sde
[sudo] password for christine:

/dev/sde:
 write-caching = 1 (on)
$
$ sudo hdparm -W /dev/sda

/dev/sda:
 write-caching = 1 (on)
$

If for some reason you want to turn off write caching, you can easily do so. Just use the -W
option again as such: hdparm -W 0 /dev/device. Many of the hdparm utility’s options used by
themselves show current settings, and if used with an option parameter, they change that setting.

Several options are available with the hdparm utility to view and set various drive
settings. Table 5.3 lists just a few that you may be able to try out.

226  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 226

Ta b le 5 . 3     A few hdparm utility options

Option Description

-i Displays drive information taken by kernel drivers at the system’s boot time.
This information is likely to be less current and accurate than when using the
-I option.

-I Displays drive information taken directly from the drive itself. This informa-
tion is likely to be more current and accurate than when using the -i option.

-t Performs and displays device read timings. Use for benchmark and
comparison purposes.

-T Performs and displays device cache read timings. Use for benchmark and
comparison purposes.

-W When used without a parameter, it displays the drives’ write-caching features.

-X Sets the DMA. This option is dangerous. Most drives already have their DMA
set properly.

One of the more interesting features of the hdparm utility is its security
controls. You can secure your drives using some of these options, though
they are considered dangerous. Quickly view the various security options
available by typing hdparm --security-help at the command line.

One of the more useful (and not dangerous) hdparm options is for testing drive perfor-
mance. It’s best to use these tests when the drive is inactive. Here an Ubuntu distribution
drive is tested for both its device and cache reads:

$ sudo hdparm -tT /dev/sde
[sudo] password for christine:

/dev/sde:
Timing cached reads: 11810 MB in 2.00 seconds=5916.78 MB/sec
Timing buffered disk reads: 1024 MB in 2.69 seconds=380.94 MB/sec
$
$ sudo hdparm -tT /dev/sda

/dev/sda:
Timing cached reads: 10996 MB in 2.00 seconds=5504.82 MB/sec
Timing buffered disk reads: 992 MB in 3.00 seconds=330.43 MB/sec
$

Adjusting Storage Devices  227

c05.indd  09/15/2016  Page 227

Of course, just one test is not going to give you accurate data. You may want to perform
these tests several times and average your results.

Using sdparm
The sdparm utility is sometimes referred to as the “hdparm for SCSI,” but that is not the
case. The sdparm utility is very different from hdparm in how it acquires information and
sets various parameters.

Typically, the sdparm utility is not installed by default. If your distribution
does not have sdparm installed, you can obtain it from the sdparm package.

The sdparm utility pulls information from a SCSI device’s Vital Product Data (VPD)
tables. VPD information includes items such as part numbers, serial numbers, and code sets.

You can also use the sdparm utility to control a SCSI device’s behavior. For example, you
can spin down a SCSI drive and alter its write-back caching.

Many options are available with the sdparm utility to view and set various drive settings.
Table 5.4 lists just a few that you may want to try out.

Ta b le 5 . 4     A few sdparm utility options

Option Description

none Displays all of the common mode parameters for the device.

--all Displays all recognized field information for the device type.

--command cmd Executes the command (cmd) passed. Valid cmd parameters
include stop, sync, start, load, and so on.

--hex Displays VPD pages in hex instead of trying to decode them,
which is useful if sdparm is having trouble interpreting the
pages.

--page Displays the hex code associated with each VPD. Try passing
the option the page (nn) with the specified device to derive
page information needed.

--vendor Displays the hex code associated with each device vendor.
Try passing the option the vendor code (nn) associated with
the specified device to derive information if needed.

Be sure to read through the sdparm utility’s man pages. It can be a tricky utility to use.
Also, a good website describing sdparm in detail is http://sg.danny.cz/sg/sdparm.html.

http://sg.danny.cz/sg/sdparm.html

228  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 228

Using sysctl
The sysctl utility is used to modify kernel parameters while a system is running. Included
in these parameters are those associated with storage devices.

To see a list of kernel parameters that can be modified, type sysctl -a at the command
line, using super user privileges. Because the list is long (there are several kernel parameters),
you may want to pipe the output into a pager, such as less. To view individual parameters,
pass the parameter as an option to the sysctl command.

Any file listed in /proc/sys/ directories and subdirectories is also a kernel parameter
that can be modified. Here is an example on an Ubuntu distribution using sysctl as well as
the /proc/sys/ file to view the kernel parameter settings for automatically ejecting optical
disks when they have been unmounted:

$ sudo sysctl dev.cdrom.autoeject
[sudo] password for christine:
dev.cdrom.autoeject = 0
$
$ ls /proc/sys/dev/cdrom/autoeject
/proc/sys/dev/cdrom/autoeject
$
$ cat /proc/sys/dev/cdrom/autoeject
0
$

Many kernel parameters are Boolean values, meaning that 0 indicates that the feature is
off and 1 indicates that the feature is on. In the preceding example, the dev.cdrom.autoeject
parameter is Boolean, and it is currently turned off.

Some parameters, such as scsi_logging_level, do not have a Bool-
ean setting, and if it is set to 0, it means that SCSI logging is turned
off. The SCSI logging-level parameter is a rather complicated one to
set. To set this parameter, it is strongly recommended that you use the
scsi_logging_level utility, which is not typically installed by default. It
is available in the sg3-utils or sg3_utils package, depending on your
distribution.

To change a kernel parameter setting, you can use the sysctl utility. In this example,
the dev.cdrom.autoeject parameter is turned on, thus causing optical devices to eject
automatically when they are unmounted:

$ sudo sysctl -w dev.cdrom.autoeject=1
[sudo] password for christine:
dev.cdrom.autoeject = 1
$

Adjusting Storage Devices  229

c05.indd  09/15/2016  Page 229

$ sudo sysctl dev.cdrom.autoeject
dev.cdrom.autoeject = 1
$
$ cat /proc/sys/dev/cdrom/autoeject
1
$

You can see that the associated /proc/sys/ file is instantly updated when the sysctl
utility is used to modify the kernel parameter. However, this modification is not persistent.
To make the modification persistent, you must modify the /etc/sysctl.conf configuration
file. The following is a snipped file listing on an Ubuntu distribution:

$ cat /etc/sysctl.conf
#
#/etc/sysctl.conf-Configuration file for setting system variables
#See /etc/sysctl.d/ for additional system variables.
#See sysctl.conf (5) for information.
#
[...]
Do not accept ICMP redirects (prevent MITM attacks)
#net.ipv4.conf.all.accept_redirects = 0
[...]
$

Once you have made configuration changes to this file, you can test it by issuing the
command sysctl -p and then viewing the modified parameters.

On some distributions, if you customize /etc/sysctl.conf, you will
need to move it to /etc/sysctl.d/99-sysctl.conf. Additional kernel
parameter configuration files are found in the /etc/sysctl.d/ direc-
tory. To test these files, you will need to issue the command sysctl -p
filename.

Relatively few kernel parameters should be modified for tuning disk access and use.
However, these two particular RAID parameters may be useful to tune:

$ sudo sysctl -a | grep raid
dev.raid.speed_limit_max = 200000
dev.raid.speed_limit_min = 1000

These two kernel parameters control RAID speed. Increasing the limits could increase
the speed of any rebuilding or reshaping of a RAID array.

230  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 230

Using smartctl and smartd
You cannot reset or modify a drive’s SMART attributes, because they are set in a drive’s
protected area. You can only enable/disable SMART using the smartctl utility:

sudo smartctl -s on /dev/sda

However, besides the manual tests, checks, and analysis shown in Chapter 4 with the
smartctl utility and SMART devices, you can set up scheduled device tests with the smartd
daemon and its accompanying configuration file. Depending on your distribution, the file is
either /etc/smartd.conf or /etc/smartmontools/smartd.conf.

If smartd is started at system initialization (see your distribution’s documentation on
how to check for this and set this up if needed), it will enable SMART monitoring on any
ATA devices that have this capability. After that, it will check the SMART devices (includ-
ing SCSI drives) every 30 minutes, sending any warnings, error messages, and changes in
SMART elements to the system logger.

You change polling times, tests that are conducted, and who receives any messages via the
configuration file. The DEVICESCAN keyword can be set with various options. For example,
to run a long test on all of your system’s SMART devices on Sundays from 1 a.m. to 2 a.m.,
you would enter the following record into the configuration file:

DEVICESCAN -s L/../../7/01

The first DEVICESCAN keyword record encountered in the configuration
file that does not start with a hash mark (#) is the record used. Any others
below it are ignored.

A great deal of excellent documentation exists on the smartd configuration file. See the
man pages for your distribution’s smartd configuration file, or just look in the file itself.
The smartd configuration file is typically heavily documented with many good examples.

For filesystems such as ext3 and ext4, the tune2fs utility can also tune a
few items. Be sure to review the tune2fs utility covered in Chapter 4.

Using nvme
To tune and view logs for NVMe-interfaced SSDs, you must use NVMe standard compliant
commands. The nvme utility provides these commands through a command-line interface. It
is provided along with documentation via the nvme-cli package.

Adjusting Storage Devices  231

c05.indd  09/15/2016  Page 231

The nvme-cli package is typically not installed by default on most distribu-
tions, and it is often not included in standard repositories. However, you can
access the latest nvme-cli source at https://github.com/linux-nvme/
nvme-cli. The general guidelines from Chapter 1 on installing a program
from source can be helpful when installing the nvme-cli package.

Once installed, view all of the various commands available to tune your NVMe-interfaced
SSDs by typing in nvme help at the command line. A snipped example on an Ubuntu distri-
bution is shown here:

$ nvme help
[...]The following are all implemented sub-commands:
 list List all NVMe devices and namespaces on machine
 id-ctrl Send NVMe Identify Controller
 id-ns Send NVMe Identify Namespace, display structure
 list-ns Send NVMe Identify List, display structure
 create-ns Creates a namespace with the provided parameters
 delete-ns Deletes a namespace from the controller
 attach-ns Attaches a namespace to requested controller(s)
 detach-ns Detaches a namespace from requested controller(s)
 list-ctrl Send NVMe Identify Controller List, display structure
 get-ns-id Retrieve the namespace ID of opened block device
 get-log Generic NVMe get log, returns log in raw format
 fw-log Retrieve FW Log, show it
 smart-log Retrieve SMART Log, show it
 smart-log-add Retrieve additional SMART Log, show it
 error-log Retrieve Error Log, show it
 get-feature Get feature and show the resulting value
 set-feature Set a feature and show the resulting value
 format Format namespace with new block format
 fw-activate Activate new firmware slot
 fw-download Download new firmware
 admin-passthru Submit arbitrary admin command, return results
 io-passthru Submit an arbitrary IO command, return results
 security-send Submit a Security Send command, return results
 security-recv Submit a Security Receive command, return results
 resv-acquire Submit a Reservation Acquire, return results
 resv-register Submit a Reservation Register, return results
 resv-release Submit a Reservation Release, return results
 resv-report Submit a Reservation Report, return results
 dsm Submit a Data Set Management command, return results

https://github.com/linux-nvme/nvme-cli

232  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 232

 flush Submit a Flush command, return results
 compare Submit a Comapre command, return results
 read Submit a read command, return results
 write Submit a write command, return results
 show-regs Shows the controller registers. Requires admin character device
 version Shows the program version
 help Display this help

See 'nvme help <command>' for more information on a specific command.
$

Notice in the example that the term controller is used. The NVMe standard is also
called the NVM Host Controller Interface (NVMHCI) standard. An NVMe controller is
a PCI Express function that implements NVMe (or NVMHCI) specifications. You may
have one or more controllers managing a particular NVMe-interfaced SSD’s namespace(s).
Described earlier in this chapter, an NVMe namespace is another drive division layer,
which can consist of one or more partitions. The nvme utility makes managing, tuning, and
reviewing drive logs fairly easy.

Also notice in the preceding example that the nvme utility allows the retrieval of SMART
logs (covered in Chapter 4). Because the NVMe standard does not come with either an
AHCI or a SCSI-capable interface, if an SSD has SMART capability, there is no current
way to retrieve SMART information via the standard SMART utility (smartctl).

The nvme utility is very handy. It allows you to perform any necessary tuning or manage-
ment of your NVMe-interfaced SSDs.

SSD Unique Problems

An SSD stores data in blocks, which are further subdivided into pages. Data is written at
the lower page level, but is erased at the higher block level. This configuration overtime
causes severe internal fragmentation.

In addition, when existing SSD data needs to be modified, it cannot be overwritten.
Instead, the old data is moved into a buffer, deleted (at the block level), and then the old
buffered data is written along with any new or modified data (at the page level). Therefore,
more data is erased and rewritten on an SSD filesystem than each modification requested.
This phenomenon is called write amplification, and it is often written as an equation:

write amplification = data written to the SSD / data written by the host.

Internal fragmentation in combination with write amplification can adversely impact perfor-
mance. Wear leveling, a formula used by an SSD controller to distribute data evenly writes
across an SSD’s blocks to avoid wearing out a particular block, is also adversely affected.

Adjusting Storage Devices  233

c05.indd  09/15/2016  Page 233

To help with internal SSD block fragmentation, the TRIM command (sometimes called
discard) is used. This command lets the SSD know which blocks are free and in turn,
the SSD controller defragments the blocks. The TRIM command may be implemented in
various ways on your system. On Linux, the mount option, discard, will issue the TRIM
command after a file is deleted and only operates on the file’s previously-consumed data
blocks. This is called an automatic trim. A manual trim is performed using the fstrim
command, which defragments all of the free blocks within the designated filesystem.

Using fstrim
The fstrim command can be used periodically to avoid performance problems on SSDs due
to internal fragmentation. However, before you attempt to use the fstrim command, you
should check to ensure that your SSD does support TRIM. You can use the hdparm com-
mand (covered earlier) and grep to check your drive, as shown on an Ubuntu distribution
here:

$ sudo hdparm -I /dev/sda | grep TRIM
$

No response from the command means that TRIM is not supported. If TRIM is supported,
you can employ the fstrim to enact TRIM commands upon your SSD. The fstrim command’s
general syntax is as follows:

fstrim [options] mountpoint

The mountpoint is where the SSD partition is currently mounted. The various options
available are shown in Table 5.5.

Ta b le 5 .5     fstrim Command Options

Short Option Long Option Description

-l --length Start searching for free blocks at the designated number
of bytes past the starting point.

-m --minimum TRIM only the minimum (or above) contiguous free block
ranges, designated in bytes. Causes the operation to fin-
ish faster for badly internally fragmented filesystems.

-o --offset Set the starting point, in bytes, to begin searching for
free blocks to TRIM.

-v --verbose Displays the number of filesystem bytes that may
receive a TRIM.

234  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 234

You can also get help on the fstrim utility by typing fstrim and using either the -h or
--help option.

You need to use super user privileges, and the SSD must be mounted. In this example,
the fstrim command is issued using the verbose option on a CentOS distribution:

fstrim -v /home
/home: 1503238553 bytes were trimmed

The fstrim command’s output can be a little misleading. The bytes shown did not nec-
essarily have the TRIM command enacted upon them. Instead, these bytes were audited and
if found to need defragging, they were defragged.

Some distributions run the fstrim utility on a regular basis via a cron job.
Other distributions may perform the fstrim operation regularly as well,
but include it within startup scripts. Take a look at your particular distribu-
tion and determine what will work best for your SSD needs. If your system
is not rebooted on a regular basis, you may want to ensure fstrim is run
via a cron job.

Most drives, except SSDs, will never need to be tuned. However, many of the utilities in
this section can be also be used for either monitoring or testing.

Implementing iSCSI
Internet Small Computer System Interface (iSCSI) is a networking protocol (RFC 3720)
that allows the transport of SCSI commands over TCP/IP. In essence, it allows remotely
located drives (over a company’s intranet or even over the Internet) to appear as if they are
local SCSI drives.

To understand iSCSI (described briefly earlier in this chapter), it’s important to understand
a few basic storage area network (SAN) concepts. A SAN consists of network attached storage
devices, where various systems and the storage devices communicate with each over a network.
A SAN network’s primary purpose is to enable that communication, and it is typically a high-
speed network dedicated only to SAN communications.

There are three popular SAN protocols besides iSCSI to explore. The following descriptions
will help you understand various iSCSI alternatives.

Fibre Channel Protocol    A Fibre Channel SAN is a high-speed, highly-reliable SAN, which
typically runs on optical fiber cables and offers speeds of up to 32-gigabits per second. This
expensive-to-implement SAN uses the Fibre Channel Protocol (FCP) to transport SCSI com-
mands over the dedicated network.

ATA over Ethernet Protocol    ATA over Ethernet AoE is a network transport protocol that
does not use the Internet protocol, but instead runs on a network’s layer 2. Using this protocol,

Adjusting Storage Devices  235

c05.indd  09/15/2016  Page 235

ATA commands are transported over an Ethernet network. The network can be shared with
other TCP/IP packets, which makes AoE lower in cost to implement. Because it is a non-
routable protocol, it provides inherit security and ease of SAN implementation.

Fibre Channel over Ethernet Protocol    For those who cannot afford the expense of a dedi-
cated optical fiber network, the Fibre Channel over Ethernet (FCoE) protocol provides a
lower cost alternative. FCoE encapsulates Fibre Channel protocol frames for traveling over
Ethernet networks.

Like AoE and FCoE, an iSCSI SAN implementation’s network is not dedicated to the
iSCSI SAN, but it can be shared with other TCP/IP communications.

An iSCSI SAN is inexpensive compared to Fibre Channel SAN and much simpler to set up.
However, because iSCSI shares its network with other TCP/IP protocols, depending on how it
is implemented, it may not achieve the same data transfer rates as a Fibre Channel SAN.

When looking at the various available SAN protocols, you might ask,
“Which is the best SAN protocol?.” The answer to this question is,
“It depends upon your network environment and SAN requirements.”
For example, if you have data access requirements that demand high-
speed and reliability, most likely FCP will work best for you. However,
if you have a reliable high-speed Ethernet network already in place and
need an inexpensive solution, iSCSI, AoE, or FCoE may fit perfectly.

You may find that iSCSI is right for your SAN needs. But before you begin an iSCSI
implementation, you need to understand the protocol’s important terms and concepts.

Understanding iSCSI
In an iSCSI SAN, the remote system offering up an iSCSI disk is called the target. The local
system desiring to use the offered iSCSI disk is called the initiator. Thus, a client (initiator)
server (target) relationship exists in offering and accessing iSCSI drives.

A logical unit number (LUN) is a number used to identify a unique logical SCSI device
on the target system. LUN numbering starts at zero, so the first SCSI device to be offered
via iSCSI is typically assigned lun0. An iSCSI LUN can have an alias name up to 255
characters in length, which makes a particular LUN drive easier to identify.

You can create a truly unique ID for a SCSI device on your system using
the scsi_id command. The command uses a SCSI device’s own VPD 0x80
or 0x83 page data (if those VPD pages are supported by the SCSI device)
to generate this ID. To use this command on some distributions, you
must enter /lib/udev/scsi_id instead of scsi_id at the command line.
Depending on your distribution, you can get help on scsi_id by typing
/lib/udev/scsi_id --help or man scsi_id at the command line.

236  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 236

An iSCSI Qualified Name (IQN) is a unique address that identifies the iSCSI target
server along with its offered iSCSI drive. An IQN has the following basic format:

iqn.domain-date.domain:unique-scsi-name

The domain-date is the date when your organization officially registered its domain.
The format is year-month. The domain is the organization’s domain. The unique-scsi-id
is a unique name given to the SCSI drive. It is your choice how to identify each SCSI drive
uniquely, as long as the names are unique for each SCSI drive on the target server. For
example, an IQN might look like this:

iqn.2016–02.com.example.server07:iscsidisk1

In the previous example, the domain-date is February 2016 written in reverse order:
2016–02. The domain is server07.example.com, but notice that it also is written in reverse
order. Finally, the unique-scsi-name is iscsidisk1. Alternatively, you could use the SCSI
drive’s LUN within the unique SCSI name, such as iscsilun0.

World Wide Identification

A World Wide Identifier (WWID), also called a World Wide Name (WWN), is a unique
identifier defined by the Institute of Electrical and Electronics Engineers (IEEE) standards
body. This hexadecimal identifier is unique for each device, and it is hard-coded into a
device by its manufacturer. The WWID contains a unique code to identify the manufactur-
ing company as well.

Linux uses the WWID for identifying certain drives, such as iSCSI drives. It creates a
symbolic link between the WWID and its associated drive. On an iSCSI target system,
type ls -l /dev/disk/by-id at the command line to see any attached iSCSI disks along
with their WWID. This works equally well for locally attached SCSI drives.

The advantage of using a WWID to identify particular SCSI drives is that if you add
additional drives to a system, their device names may change, whereas their WWIDs
will never change. Thus, instead of using a SCSI drive’s /dev/device in the /etc/fstab,
you can use its WWID instead. For iSCSI drives, using their WWID assists in creating a
unique-scsi-name for their IQN.

An iSCSI’s drive IQN is important, because it is used in many of the iSCSI configura-
tion files and settings for identifying the target server’s offered SCSI drive. Thus, you will
want to take some time in determining a unique-scsi-name for the IQN. If you have a
large iSCSI SAN installment, you should use the scsi_id command’s output, or the SCSI’s
WWID/WWN, to identify the drive uniquely. For smaller installments, a made-up name or
the SCSI’s LUN should suffice.

Adjusting Storage Devices  237

c05.indd  09/15/2016  Page 237

Setting Up a Target iSCSI Disk
The primary tool for setting up an iSCSI disk on a target server is the targetcli utility. It
is a shell interface that allows you to manage the kernel’s target subsystem, Linux IO (LIO).
The LIO has been around since Linux kernel v2.6, and it is a subsystem that supports stor-
age fabrics. A storage fabric is any hardware that connects SAN storage devices to systems.
LIO supports storage fabrics, such as Fibre Channels and iSCSI.

The certification objectives do not specifically state that setting up the
target server iSCSI configuration or using targetcli to offer iSCSI disks
for initiator clients is covered on the exam. However, if you desire to set up
an iSCSI target server for practicing with initiator clients, then this chapter
section will get you headed in the right direction.

First, on your system, you need to ensure that the target subsystem will start at boot
time and the service is running. Here is an example of enabling the target subsystem on a
CentOS distribution to start at reboot:

systemctl enable target
ln -s '/usr/lib/systemd/system/target.service'
'/etc/systemd/system/multi-user.target.wants/target.service'
#

Once you ensure the target subsystem is running, using super user privileges, enter the
targetcli utility. You will receive a /> prompt when you have entered the utility. An exam-
ple is shown here:

targetcli
Warning: Could not load preferences file /root/.targetcli/prefs.bin.
targetcli shell version 2.1.fb37
Copyright 2011–2013 by Datera, Inc and others.
For help on commands, type 'help'.

/>

If you do not have the targetcli utility on your system, you can install it
via the targetcli package. Be aware that on some older distributions the
tgtd service was used along with the tgtadm utility for managing target
server iSCSI devices.

Now that you are within the targetcli utility, you can create a backstore. A backstore
is a data accessing method that points to and allows access to a physical storage medium (a
whole drive, disk partition, or even a plain file) in a storage fabric SAN. In the targetcli,

238  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 238

you change your present working directory using a cd command and then issue a create
command, as shown in the example here:

/> cd /backstores/block
/backstores/block> create iscsidisk1 dev=/dev/sde
Created block storage object iscsidisk1 using /dev/sde.
/backstores/block> ls
o- block [Storage Objects: 1]
 o- iscsidisk1 [/dev/sde (1.0GiB) write-thru deactivated]

In this example, the SCSI backstore was created, given the unique SCSI ID iscsidisk1,
and it was then assigned to the sample drive, /dev/sde. Notice that you can use the ls
command to confirm the newly created backstore.

If you are creating your own unique SCSI ID and including any alphabetic char-
acters, be sure to make the characters lowercase. If you use uppercase charac-
ters, the targetcli utility will flip-flop between using uppercase and lowercase
characters for the ID within its interface. This can lead to confusion.

Once a backstore is created, you must create the IQN for the target iSCSI. However, it’s
best first to change your present working directory into the iscsi directory within targetcli,
as shown here:

/backstores/block> cd /iscsi
/iscsi> create iqn.2016–02.com.example.server07:iscsidisk1
Created target iqn.2016–02.com.example.server07:iscsidisk1.
Created TPG 1.
Global pref auto_add_default_portal=true
Created default portal listening on all IPs (0.0.0.0), port 3260.

Notice that once the IQN is created, the service is listening on port 3260. The only
problem is that by the 0.0.0.0 designation, the service is open to all IP networks, which
can be a security risk. This is easily fixed, as follows:

/iscsi> cd iqn.2016–02.com.example.server07:iscsidisk1/tpg1
/iscsi/iqn.20...csidisk1/tpg1> cd portals
/iscsi/iqn.20.../tpg1/portals> delete 0.0.0.0 3260
Deleted network portal 0.0.0.0:3260
/iscsi/iqn.20.../tpg1/portals> create 192.168.56.103
Using default IP port 3260
Created network portal 192.168.56.103:3260.

Now only the designated initiator client node (192.168.56.103) may use this port (3260)
to access the offered iSCSI device. If needed, you can use the ls command again to check
your configuration thus far.

Adjusting Storage Devices  239

c05.indd  09/15/2016  Page 239

Once the IQN is properly set up, you must create a LUN to refer to the iSCSI drive.
Again, you will need to change directories and use the create command, as shown in this
example:

/iscsi/iqn.20.../tpg1/portals> cd ..
/iscsi/iqn.20...csidisk1/tpg1> cd luns
/iscsi/iqn.20...sk1/tpg1/luns> create /backstores/block/iscsidisk1
Created LUN 0.
/iscsi/iqn.20...sk1/tpg1/luns> ls
o- luns .. [LUNs: 1]
 o- lun0 [block/iscsidisk1 (/dev/sde)]
/iscsi/iqn.20...sk1/tpg1/luns>

For testing purposes, you can turn off any authentication, as shown in the following
example. However, should you be using this in a production environment, review both the
get auth and set auth commands.

/iscsi/iqn.20...sk1/tpg1/luns> cd ..
/iscsi/iqn.20...csidisk1/tpg1> set attribute authentication=0
Parameter authentication is now '0'.
/iscsi/iqn.20...csidisk1/tpg1> set attribute demo_mode_write_protect=0
Parameter demo_mode_write_protect is now '0'.
/iscsi/iqn.20...csidisk1/tpg1> set attribute generate_node_acls=1
Parameter generate_node_acls is now '1'.

Once the target server’s iSCSI drive is set up, you can double-check the settings, as
shown here:

/iscsi/iqn.20...csidisk1/tpg1> cd /
/> ls
o- / ... [...]
 o- backstores [...]
 | o- block [Storage Objects: 1]
 | | o- iscsidisk1 [/dev/sde (1.0GiB) write-thru activated]
 | o- fileio [Storage Objects: 0]
 | o- pscsi [Storage Objects: 0]
 | o- ramdisk [Storage Objects: 0]
 o- iscsi [Targets: 1]
 | o- iqn.2016–02.com.example.server07:iscsidisk1 [TPGs: 1]
 | o- tpg1 [gen-acls, no-auth]
 | o- acls [ACLs: 0]
 | o- luns [LUNs: 1]
 | | o- lun0 [block/iscsidisk1 (/dev/sde)]

240  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 240

 | o- portals [Portals: 1]
 | o- 192.168.56.103:3260 [OK]
 o- loopback [Targets: 0]
/> exit
Global pref auto_save_on_exit=true
Last 10 configs saved in /etc/target/backup.
Configuration saved to /etc/target/saveconfig.json
#

When you have completed your iSCSI target’s setup, leave the targetcli utility using
the exit command.

If you are in a production environment, you will need to add the appropriate rules to
your firewall utility, such as firewalld, ufw, or iptables. For testing purposes, you can
just lower the firewall as needed.

Setting Up an Initiator iSCSI Disk
The primary tool for managing an iSCSI disk on an initiator client is the iscsiadm utility.
This utility is used to discover and log into iSCSI target servers. It is also used for managing
the open-iscsi database files, which are located in the /var/log/iscsi/ directory.

If you do not have the iscsiadm utility on your system, you can install it via
the iscsi-initiator-utils or open-iscsi package, depending on your
distribution.

For many operations, the iscsiadm utility needs the iscsi daemon, iscsid, to be up and
running. The iscsid interfaces with the kernel and implements the open-iSCSI protocol.

The iscsid daemon is configured via the /etc/iscsi/iscsid.conf file. This file
also controls several of the iscsiadm utility’s operations. iSCSI can use the Challenge-
Handshake Authentication Protocol (CHAP) for establishing a secure connection between
an iSCSI target server and an initiator client. This configuration file is where you would
place the necessary CHAP settings. A snipped version of the configuration file is shown
here:

cat /etc/iscsi/iscsid.conf
[...]
node.startup = automatic
node.leading_login = No
[...]
discovery.sendtargets.iscsi.MaxRecvDataSegmentLength = 32768
[...]#

On the initiator client, the process of finding an iSCSI disk on a target server is called
target discovery. When target discovery first occurs, the configuration file’s discovery.*

Adjusting Storage Devices  241

c05.indd  09/15/2016  Page 241

settings are used. The /etc/iscsi/iscsid.conf file is very well documented. To determine
any needed settings for your particular iSCSI configuration, peruse the file with a pager
utility.

Enabling the iscsid daemon to start at reboot on a CentOS initiator client is shown
here:

systemctl enable iscsid
ln -s '/usr/lib/systemd/system/iscsid.service'
'/etc/systemd/system/multi-user.target.wants/iscsid.service'

You don’t have to start the iscsid daemon at this point. It is typically con-
figured to start automatically whenever the iscsiadm utility is used. How-
ever, if your system is configured differently, you may need to go ahead
and use the appropriate command to start the daemon.

To begin the target discovery process, you must use the iscsiadm command. In this example,
the iscsiadm utility’s discovery mode (-m discovery) is used to locate any SendTargets. A
SendTarget is a target type, designated by -t st, which tells the iSCSI target server to reply to
the request with an iSCSI devices available list. The iSCSI target server is designated by the -p
option. In the following example, the target server is at 192.168.56.103:

iscsiadm -m discovery -t st -p 192.168.56.103
192.168.56.103:3260,1 iqn.2016–02.com.example.server07:iscsidisk1
#

When the target was discovered in the preceding example, the iscsiadm tool also cre-
ated two records. One was a discovery record stored in the /var/lib/iscsi/send_targets
database file for the SendTarget type. (Different target type records are stored in their
appropriate database file.) An example send_targets file is shown here:

cat /var/lib/iscsi/send_targets
192.168.56.103,3260
#

The other record created by the iscsiadm tool during the discovery process was a dis-
covered node record. The node record is stored in the /var/lib/iscsi/nodes database file,
and it contains the target server’s available iSCSI device’s IQN, as shown here:

cat /var/lib/iscsi/nodes
iqn.2016–02.com.example.server07:iscsidisk1
#

These iSCSI database records are persistent (unless you delete them). The database
filenames can be a little confusing. Keep in mind that the IQNs are in the nodes file,

242  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 242

while the target server’s IP address is in the send_targets file. These records complete the
discovery process.

Once the discovery process is complete, a session between the target server and the
initiator client must be established. The iscsiadm command is used to log into the target in
order to create this connection. The example command here is broken onto multiple lines
for clarity:

iscsiadm -m node \
> -T iqn.2016–02.com.example.server07:iscsidisk1 \
> -p 192.168.56.103 -l
Logging in to [iface: default,
target: iqn.2016–02.com.example.server07:iscsidisk1,
portal: 192.168.56.103,3260] (multiple)
Login to [iface: default, target:
iqn.2016–02.com.example.server07:iscsidisk1,
portal: 192.168.56.103,3260] successful.
#

For this command, the node mode is used (-m node). The target iSCSI disk is desig-
nated by the -T option and its IQN. The target server is selected by the -p option and its IP
address (192.168.56.103). Finally, a login session is requested by the -l option. Now the
session is established, and the attached iSCSI drive can be used.

There are various ways to configure your iSCSI target clients using the
iscsiadm utility. Type man iscsiadm at the command line to view its
various options.

Using an iSCSI Disk
It’s a good idea to check your attached iSCSI drive prior to using it. The iscsiadm utility
has a nice output capability. It allows you to display a great deal of information via its -P#
option, as shown in this snipped output:

iscsiadm -m session -P3
iSCSI Transport Class version 2.0–870
version 6.2.0.873–28
Target: iqn.2016–02.com.example.server07:iscsidisk1 (non-flash)
 Current Portal: 192.168.56.103:3260,1
 Persistent Portal: 192.168.56.103:3260,1
[...]
 Attached SCSI devices:

Adjusting Storage Devices  243

c05.indd  09/15/2016  Page 243

 Host Number: 11 State: running
 scsi11 Channel 00 Id 0 Lun: 0
 Attached scsi disk sdj State: running
#

Notice in the output that the attached iSCSI drive is designated by the sdj device file-
name. You can now use utilities on the initiator client, as you would do for locally attached
SCSI devices. For example, the lsblk utility allows information to be displayed concerning
the iSCSI device, as shown here:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk
├─sda1 8:1 0 500M 0 part /boot
└─sda2 8:2 0 7.5G 0 part
 ├─centos-root 253:0 0 6.7G 0 lvm /
 └─centos-swap 253:1 0 820M 0 lvm [SWAP]
[...]
sdj 8:144 0 1G 0 disk
sr0 11:0 1 1024M 0 rom
#

The dmesg utility can be helpful when viewing iSCSI disk information as
well. Look for messages such as iSCSI Initiator over TCP/IP and
Direct-Access LIO-ORG along with your iSCSI device’s unique SCSI ID.

Once you have checked your iSCSI drive, you can partition it, format it, and mount it,
just as you would do with a locally attached drive. An example of doing this on a CentOS
distribution is shown in the snipped listing here:

parted /dev/sdj mklabel msdos
Information: You may need to update /etc/fstab.

parted /dev/sdj mkpart primary 8192s 100%
Information: You may need to update /etc/fstab.

parted -l
[...]
Model: LIO-ORG iscsidisk1 (scsi)
Disk /dev/sdj: 1074MB
[...]

244  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 244

#
mkfs -t ext4 /dev/sdj1
mke2fs 1.42.9 (28-Dec-2013)
[...]
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

mount -t ext4 /dev/sdj1 Temp
#
ls Temp
lost+found
#
touch Temp/My_iSCSI_file.dat
#
ls Temp
lost+found My_iSCSI_file.dat
#

Last, you should update two configuration files. Of course, be sure to include your
new iSCSI drive into the initiator client’s /etc/fstab file. The other configuration file is
the /etc/iscsi/initiatorname.iscsi file. It should be updated to contain the discovered
node (iSCSI devices available on a target server and denoted by their IQN) that you
are now using on the initiator client. Here is an example:

cat /etc/iscsi/initiatorname.iscsi
InitiatorName=iqn.2016.02.com.example.server07:iscsidisk1
#

The keyword InitiatorName needs to precede the IQN. However, you can also create an
alias using the InitiatorAlias keyword. An example of an alias in this configuration file is
shown here:

InitiatorAlias="LUN0 Test iSCSI Drive"

Once the configuration files are updated, your iSCSI drive is ready for use. Keep an eye
on its performance, and make any necessary changes using the various utilities covered in
this chapter section.

The utilities covered in this section are useful for reviewing, monitoring, testing, and
occasionally modifying storage media parameters or those associated with storage media.
Also, if you find that iSCSI is right for your SAN needs, the terms and concepts covered
will help you employ an iSCSI SAN.

Managing Logical Volumes  245

c05.indd  09/15/2016  Page 245

Managing Logical Volumes
Data has a habit of increasing. While you may be able to predict accurately your data’s
growth within a short timeframe, it is much more difficult to predict data growth accu-
rately over longer periods. Fortunately, logical volumes are handy for those times when
your predictions are less than accurate.

It’s good to understand this storage media scheme and have it in place prior to actually
needing it. This section covers logical volumes, their various terms, and gives practical steps
on setting them up.

Understanding LVM
Logical volume management or logical volume manager (LVM) allows multiple partitions
to be grouped together and used as a single partition for formatting, mounting on the
Linux virtual directory structure, storing data, and so on. This grouping is accomplished
through an abstraction layer so that the multiple partitions are referred to as a single vol-
ume. You can also add additional partitions to a logical volume as your data needs grow.

LVM has three primary parts. Each part plays an important role in creating and main-
taining logical volumes.

Physical Volume    A physical volume (PV) is created using the LVM’s /sbin/pvcreate
command. This utility designates an unused disk partition (or whole drive) to be used by
LVM. The LVM structures, a volume label, and metadata are added to the partition during
this process.

Volume Group    A volume group (VG) is created using the LVM’s /sbin/vgcreate
command, which adds PVs to a storage pool. This storage pool is used in turn to build
various logical volumes.

You can have multiple volume groups. When using the command to add a PV(s) to a VG,
volume group metadata is added to the PV during this process. This metadata includes
name, unique VG name, physical extent size, and so on.

A disk’s partition, designated as a PV, can belong to only a single VG. However, a disk’s other
partitions, also designated as PVs, can belong to other VGs.

Logical Volume    A logical volume (LV) is created using the LVM’s /sbin/lvcreate command.
This is the final object in logical volume creation. A LV consists of storage space chunks (logical
extents) from a VG pool. It can be formatted with a filesystem, mounted, and used just like a
typical disk partition.

While you can have multiple VGs, each LV is created from only one designated VG. However,
you can have multiple LVs sharing a single VG. You can resize (grow or reduce) an LV using
the appropriate LVM commands. This feature adds a great deal of flexibility to your data
storage management.

246  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 246

You can see that there are many ways to divide and manage your data storage media
using LVM. Like with many other data management structures, you should determine your
company’s data management needs prior to determining an LVM scheme.

Besides knowing about PVs, VGs, and LVs, there are some additional terms to understand.
These terms are helpful to know as you start creating LVs.

A physical extent (PE) is the smallest block size that can be allocated on a PV. This size is
set during the process of adding a PV to a VG. By default, the vgcreate command chooses
4 MiB. However, you can choose a different setting using the -s or --physicalextentsize
option. The typical size range is 8 KiB to 16 GiB. For example, if you have a 2 TiB PV and
use the default 4 MiB PE size, approximately 500,000 PEs will be added to the volume
group. After the initial PV, any PV added to the VB will have the same PE size set.

LVs are made up of logical extents (LE). Logical extents are mapped to VG physical
extents. The mapping provides a way to access the data without concern about where a
physical extent is located.

There are many acronyms involved with LVM. If this is your first time
through LVM concepts, make a cheat sheet for the various acronyms
and their meaning. This will help you as you read through the next few
sections.

Creating Logical Volumes
The lvm utility is an interactive utility for creating and managing LVs. If it’s not installed,
you can install it via the lvm2 package. Using super user privileges, you can enter the utility
and view the various tools available for LVM, as shown on this CentOS distribution here:

lvm
lvm> help
Available lvm commands:
Use 'lvm help <command>' for more information

devtypes Display recognised built-in block device types
dumpconfig Dump configuration
formats List available metadata formats
help Display help for commands
lvchange Change the attributes of logical volume(s)
lvconvert Change logical volume layout
lvcreate Create a logical volume
lvdisplay Display information about a logical volume
lvextend Add space to a logical volume
lvmchange With the device mapper, this is obsolete and
 does nothing.

Managing Logical Volumes  247

c05.indd  09/15/2016  Page 247

lvmdiskscan List devices that may be used as physical volumes
lvmsadc Collect activity data
lvmsar Create activity report
lvreduce Reduce the size of a logical volume
lvremove Remove logical volume(s) from the system
lvrename Rename a logical volume
lvresize Resize a logical volume
lvs Display information about logical volumes
lvscan List all logical volumes in all volume groups
pvchange Change attributes of physical volume(s)
pvresize Resize physical volume(s)
pvck Check the consistency of physical volume(s)
pvcreate Initialize physical volume(s) for use by LVM
pvdata Display the on-disk metadata for physical volume(s)
pvdisplay Display various attributes of physical volume(s)
pvmove Move extents from one physical volume to another
pvremove Remove LVM label(s) from physical volume(s)
pvs Display information about physical volumes
pvscan List all physical volumes
segtypes List available segment types
tags List tags defined on this host
vgcfgbackup Backup volume group configuration(s)
vgcfgrestore Restore volume group configuration
vgchange Change volume group attributes
vgck Check the consistency of volume group(s)
vgconvert Change volume group metadata format
vgcreate Create a volume group
vgdisplay Display volume group information
vgexport Unregister volume group(s) from the system
vgextend Add physical volumes to a volume group
vgimport Register exported volume group with system
vgmerge Merge volume groups
vgmknodes Create the special files for volume group devices
 in /dev
vgreduce Remove physical volume(s) from a volume group
vgremove Remove volume group(s)
vgrename Rename a volume group
vgs Display information about volume groups
vgscan Search for all volume groups
vgsplit Move physical volumes into a new or existing volume
 group

248  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 248

version Display software and driver version information
lvm> quit
Exiting.
#

In this example, you can see all of the various tools available to create and manage LVs.
Generally, any tool that starts with pv is for PVs, any tool that starts with vg is for VGs,
and any tool that begins with lv is for LVs.

Occasionally, you’ll see references to lvm2 or LVM2 in LVM documentation.
This refers to a new version of LVM, version 2, which was introduced back
in Linux kernel v2.6. It added some features and improved on design over
LVM version 1 (lvm1). This chapter uses LVM2.

Be aware that you do not need to enter the lvm utility to access these tools. For example,
the pvcreate tool is available straight from the command line:

which pvcreate
/sbin/pvcreate
#

The five steps required to set up your first LV are as follows:

1.	 Create your PVs.

2.	 Create your VG.

3.	 Create your LV.

4.	 Format your LV.

5.	 Mount your LV.

There are important considerations in the first three steps. Each decision you make in
the early steps will determine how flexible and easy it is to manage your LVs.

Creating the PVs
Before designating drives as PVs, they should be partitioned. Afterward, you can designate
the partitions as a PV using the pvcreate command.

In the following example on a CentOS distribution, four partitions are designated as PVs
using the pvcreate command. These four partitions are small sample partitions created for
demonstration purposes:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[...]

Managing Logical Volumes  249

c05.indd  09/15/2016  Page 249

sdj 8:144 0 1G 0 disk
└─sdj1 8:145 0 1023M 0 part
sdk 8:160 0 1G 0 disk
└─sdk1 8:161 0 1023M 0 part
sdl 8:176 0 1G 0 disk
└─sdl1 8:177 0 1023M 0 part
sdm 8:192 0 1G 0 disk
└─sdm1 8:193 0 1023M 0 part
[...]
#
pvcreate /dev/sdj1
 Physical volume "/dev/sdj1" successfully created
#
pvcreate /dev/sdk1
 Physical volume "/dev/sdk1" successfully created
#
pvcreate /dev/sdl1
 Physical volume "/dev/sdl1" successfully created
#
pvcreate /dev/sdm1
 Physical volume "/dev/sdm1" successfully created
#

The pvcreate command designates the specified disk partition to be used by LVM and
adds LVM structures, a volume label, and metadata to the partition. The specified disk par-
tition must be unused.

To see the information on your PVs, you can use the pvdisplay command. You can
specify a PV to see information only on that particular PV, or you can simply enter the
pvdisplay command to see all of your PVs’ information, as shown in the snippet here:

pvdisplay
[...]
 "/dev/sdk1" is a new physical volume of "1023.00 MiB"
 --- NEW Physical volume ---
 PV Name /dev/sdk1
 VG Name
 PV Size 1023.00 MiB
 Allocatable NO
 PE Size 0
 Total PE 0
 Free PE 0
 Allocated PE 0

250  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 250

 PV UUID 8vzvRi-8XZI-98tu-FW82-wwwX-os83-Z2a76L

 "/dev/sdj1" is a new physical volume of "1023.00 MiB"
[...]
 Allocated PE 0
 PV UUID uFBQqx-OVD6-Vb68–6mjC-P9LR-iND6-ooFdkc

#

Notice that a unique PV UUID is created for each PV. This UUID is generated by the
pvcreate command, and it can be overwritten using the --uuid option when using pvcreate.

The various LVM commands have extensive man pages along with many
options that allow you to modify their default behavior. Peruse each LVM
tool’s man page, as needed, to learn more.

Be sure to set up more than one PV. The whole point of LVM is having additional stor-
age media to add on the fly to your LVs. Once you have PVs set up, you can begin the next
step—creating a VG.

Creating a VG
Any PV can be added to a VG. The command to use is vgcreate, and its basic syntax is as
follows:

vgcreate VG_name PV

You can designate more than one PV during the VG creation process. If you need to add
PVs at a later time to a VG, you should use the vgextend command.

It’s important to choose your PE size prior to creating your VG pool. Once
set, it can be difficult to change, if current VG members need to have the
new PE size. The -s option sets the PE size when you use the vgcreate
command.

Common practice names the first VG vg00, the next one vg01, and so on. However, it’s
your choice what to name your volume group. Because many distributions on installation
set up LVM for the virtual directory structure’s root (/) and other directories, it’s a good
idea to check for any current VGs on your system using the vgdisplay command, as shown
here:

vgdisplay | grep Name
 VG Name centos
#

Managing Logical Volumes  251

c05.indd  09/15/2016  Page 251

The preceding example was conducted on a CentOS distribution. Notice that a VG is
already set up named centos. Therefore, to create a new VG on this system, the centos
name should not be used. Here is an example of creating a VG on a CentOS distribution,
named vg00, using four PVs:

vgcreate vg00 /dev/sdj1 /dev/sdk1 /dev/sdl1 /dev/sdm1
 Volume group "vg00" successfully created
#

Once you have successfully created a VG, it makes sense to check it. You can do so with
the vgdisplay command, which operates similarly to the pvdisplay command, as shown
here:

vgdisplay vg00
 --- Volume group ---
 VG Name vg00
 System ID
 Format lvm2
 Metadata Areas 4
 Metadata Sequence No 1
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 0
 Open LV 0
 Max PV 0
 Cur PV 4
 Act PV 4
 VG Size 3.98 GiB
 PE Size 4.00 MiB
 Total PE 1020
 Alloc PE / Size 0 / 0
 Free PE / Size 1020 / 3.98 GiB
 VG UUID 2n3wGF-xPSE-r13R-V5kX-I0pV-LDie-bZBQ5f

#

Notice in the preceding example that a unique VG UUID was created. Also notice the
default PE size was set. You can override many of these defaults by adding various options
to the vgcreate command to create a VG with your needed settings.

Once your VG storage pool contains at least one PV, you can move on to creating a LV.
The next section covers this task.

252  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 252

Creating an LV
To create an LV from a VG storage pool, the lvcreate command is employed. Its basic syn-
tax is as follows:

lvcreate -L size VG_name

With the lvcreate command, the volume’s size is designated using the -L option and the
VG from which to pull logical extents (LE)s is designated by VG_name.

If for some reason a VG does not have enough LEs to give to the LV for the designated
size, then it will not be able to create the LV. Here is an example, where the LV size requested
is 6 GiB (-L 6g), but only 3.98 GiB are available from the designated VG:

lvcreate -L 6g vg00
 Volume group "vg00" has insufficient free space (1020 extents):
1536 required.
#

The minimum size that you can specify for an LV is the VG’s PE size. Thus, if you use
the default PE size when creating your VG, the smallest size LV is 4 MiB.

Here is an example of using the lvcreate command to create an LV. Many default options
are accepted, but remember that you can view the lvcreate command’s man pages to see the
various non-default settings available for your use. In this example, the -v (verbose) option is
used to display more information during the LV creation process:

lvcreate -L 2g -v vg00
 Finding volume group "vg00"
 Archiving volume group "vg00" metadata (seqno 1).
 Creating logical volume lvol0
 Creating volume group backup "/etc/lvm/backup/vg00" (seqno 2).
 Activating logical volume "lvol0".
 activation/volume_list configuration setting not defined:
Checking only host tags for vg00/lvol0
 Creating vg00-lvol0
 Loading vg00-lvol0 table (253:2)
 Resuming vg00-lvol0 (253:2)
 Wiping known signatures on logical volume "vg00/lvol0"
 Initializing 4.00 KiB of logical volume "vg00/lvol0"
with value 0.
 Logical volume "lvol0" created.
#

Notice that the first LV from this VG’s default name is lvol0. However, you must now
use its full path name for displaying this LV’s information, /dev/vg00/lvol0. Later on in

Managing Logical Volumes  253

c05.indd  09/15/2016  Page 253

this chapter, you’ll learn how to use its Device Mapper name too. Here is a snipped exam-
ple of using the lvdisplay command to show the LV’s information:

lvdisplay /dev/vg00/lvol0
 --- Logical volume ---
 LV Path /dev/vg00/lvol0
 LV Name lvol0
 VG Name vg00
 LV UUID rvdLvZ-Mk1r-8CCO-prnv-B82H-LdGI-SgGPxZ
 LV Write Access read/write
[...]
 Block device 253:2

#

Notice that it too has been assigned an LV UUID. You can designate a non-default LV
name using the lvcreate command’s -n option.

Besides the lvdisplay command, you can use the lvs and the lvscan commands to dis-
play information on all of your system’s LVs, as shown in this snipped example here:

lvscan
 ACTIVE '/dev/centos/swap' [820.00 MiB] inherit
 ACTIVE '/dev/centos/root' [6.67 GiB] inherit
 ACTIVE '/dev/vg00/lvol0' [2.00 GiB] inherit
#
lvs
 LV VG Attr LSize Pool Origin [...]
 root centos -wi-ao---- 6.67g [...]
 swap centos -wi-ao---- 820.00m [...]
 lvol0 vg00 -wi-a----- 2.00g [...]
#

Once you have your LV created, you can treat it as if it is a regular partition. Of course,
it is different in that you can grow or shrink this partition on the fly as needed.

Formatting and Mounting an LV
You don’t have to do anything special with your LV in order to make a filesystem on it and
then mount it to the virtual directory structure. The system views it as a normal partition,
as shown in this snipped example here:

mkfs -t ext4 /dev/vg00/lvol0
[...]
Creating journal (16384 blocks): done

254  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 254

Writing superblocks and filesystem accounting information: done

#
mount -t ext4 /dev/vg00/lvol0 Temp
#
ls Temp
lost+found
#
touch Temp/My_LVM_File
#
ls Temp
lost+found My_LVM_File
#

Now that you have all of the various LVM parts created and an LV attached to your vir-
tual directory structure, you still must maintain and manage it. The next section covers this
topic.

Supporting Logical Volumes
Managing your system’s LVs includes resizing them, which typically means increasing their
size. However, sometimes you need to reduce an LV’s size. Also, LVM includes creating LV
snapshots, renaming them, removing an LV, and so on.

Growing Your VGs and LVs
The time comes when you need to increase an LV’s size. It may be due to increasing data on
the volume or it could be a new application being installed. In any case, growing an LV is
fairly easy.

Before increasing an LV’s size, it’s worthwhile to look at increasing a VG’s size with
more PVs. You can’t increase an LV beyond what its VG has to offer.

Once you’ve added or located additional storage, be sure that it is designated
as a PV prior to attempting to add it to a VG pool. In this example, the new partition
/dev/sdn1 is located via the lsblk command and then designated as a PV using the
pvcreate utility:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[...]
sdk 8:160 0 1G 0 disk
└─sdk1 8:161 0 1023M 0 part
 └─vg00-lvol0 253:2 0 2G 0 lvm
[...]

Managing Logical Volumes  255

c05.indd  09/15/2016  Page 255

sdn 8:208 0 1G 0 disk
└─sdn1 8:209 0 1023M 0 part
[...]
#
pvcreate -v /dev/sdn1
 Set up physical volume for "/dev/sdn1" with 2095104[...]
 Zeroing start of device /dev/sdn1
 Writing physical volume data to disk "/dev/sdn1"
 Physical volume "/dev/sdn1" successfully created
#

Notice here that some of the partitions, such as sdk1, are already shown to be part of an
LV. The -v (verbose) option was used with the pvcreate utility to display more information
because the partition is designated as a PV.

If you have two oversized VGs, you can merge them with the vgmerge com-
mand. This can be useful if you have no additional partitions to use and
need to increase an LV’s size immediately.

Besides the pvdisplay command, you can use the pvscan utility to check the system for
all available PVs. A snipped example of both is shown here:

pvscan
[...]
 PV /dev/sdj1 VG vg00 lvm2 [1020.00 MiB / 0 free]
 PV /dev/sdk1 VG vg00 lvm2 [1020.00 MiB / 0 free]
 PV /dev/sdl1 VG vg00 lvm2 [1020.00 MiB / 1012.00 MiB free]
 PV /dev/sdm1 VG vg00 lvm2 [1020.00 MiB / 1020.00 MiB free]
 PV /dev/sdn1 lvm2 [1023.00 MiB]
 Total: 6 [12.49 GiB] / in use: 5 [11.49 GiB] /
 in no VG: 1 [1023.00 MiB]
#
pvdisplay /dev/sdn1
 "/dev/sdn1" is a new physical volume of "1023.00 MiB"
 --- NEW Physical volume ---
 PV Name /dev/sdn1
 VG Name
 PV Size 1023.00 MiB
 Allocatable NO
 PE Size 0
 Total PE 0
 Free PE 0

256  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 256

 Allocated PE 0
 PV UUID Gx679x-c59d-C0pS-2L7a-8yz9-addf-QBtw3Y

#

With the additional needed PV(s) designated, the VG can be extended. To increase the
size of a VG pool, use the vgextend command, designating your additional PV(s) as shown
here:

vgextend vg00 /dev/sdn1
 Volume group "vg00" successfully extended
#

Once you have enough storage space in a VG, then you can go about growing your LV.
To grow an LV, use the lvextend command. The -L option is used to set the new desired
size of the LV. In this example, the LV, /dev/vg00/lvol0, is increased from 2 GiB to 4 GiB:

lvextend -L 4g -v /dev/vg00/lvol0
 Finding volume group vg00
 Archiving volume group "vg00" metadata (seqno 3).
 Extending logical volume vg00/lvol0 to 4.00 GiB
 Size of logical volume vg00/lvol0 changed from
 2.00 GiB (512 extents) to 4.00 GiB (1024 extents).
 Loading vg00-lvol0 table (253:2)
 Suspending vg00-lvol0 (253:2) with device flush
 Resuming vg00-lvol0 (253:2)
 Creating volume group backup "/etc/lvm/backup/vg00"[...]
 Logical volume lvol0 successfully resized
#

Notice that a volume group backup is created. These backups are VG metadata only,
and they do not contain any user or system LV data. They are often automatically created
when using utilities like lvextend. However, it may be useful to create a VG metadata
backup manually using the vgcfgbackup utility. You can restore the metadata using the
vgcfgrestore command.

A helpful way to check your extended LV is using the --maps option. This option
allows you to see the LV’s logical extents mapped to PV physical extents. You can see in
this snipped example that the newly grown /dev/vg00/lvol0 has a few physical extents
assigned to it from the newly added /dev/sdn1 PV:

lvdisplay --maps /dev/vg00/lvol0
 --- Logical volume ---
 LV Path /dev/vg00/lvol0
[...]

Managing Logical Volumes  257

c05.indd  09/15/2016  Page 257

 LV Size 4.00 GiB
[...]
 --- Segments ---
 Logical extents 0 to 254:
 Type	 linear
 Physical volume	 /dev/sdj1
 Physical extents	 0 to 254
[...]
 Logical extents 1020 to 1023:
 Type	 linear
 Physical volume	 /dev/sdn1
 Physical extents	 0 to 3
[...]
#

If you need to shrink an LV’s size, you can do so with the lvreduce
command. However, this command can destroy data, so use it with
caution, and be sure to review its man pages prior to using the
command.

If you need to grow an LV that has swap space on it, some extra steps are involved. You
must first enable alternative swap space, if you do not have a secondary swap space filesys-
tem already in use. (See Chapter 4 for more information on managing your system’s swap
space.) After that, disable that swap space on the LV using the swapoff command. Once
the LV swap space is disabled, you can use the normal methods for growing the LV. At this
point, use the mkswap command to make the swap filesystem on the enlarged LV. Finally,
re-enable the swap space using the swapon command.

Creating and Maintaining an LV Snapshot
An LV snapshot (sometimes called an LVM snapshot) deserves some special attention. It is
more of an active data copy as opposed to a stagnant backup copy.

An LV snapshot is a copy-on-write, or COW, snapshot. When an LV COW snapshot is
initially created, a location (snapshot LV) to store the snapshot is set up. At that time, no
user or system LV data is copied to the snapshot location. Only metadata (concerning the
user and system data’s location) is copied. Thus, when a snapshot is created, it happens very
quickly and does not cause any LV service interruptions.

After the initial snapshot creation, whenever any original LV data is to be changed,
that data is first copied to the snapshot’s location, which is known as copy-on-write
behavior. Due to the need to copy any data from the original LV to the snapshot
location prior to modification, an LV snapshot slightly slows down an LV’s write
performance.

258  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 258

Snapshots should not be considered data backups. They serve a different
purpose.

Since only metadata and data that has been modified on the LV since the snapshot was
created are physically stored on the LV snapshot, these snapshots hold virtual data copies.
Also, they take up less room than the original LV.

LV snapshots are readable and writeable, and they can be mounted to the Linux virtual
directory structure. Thus, they serve a few rather useful purposes. For example, you can
use them to back up the original LV’s data to another storage medium without stopping any
applications using the original LV. You can also conduct new or modified program tests
using production data. Any data writes that occur on the snapshot, but not on the original
LV, are not automatically merged with original LV data. This allows you to write test data
to the snapshot without adversely affecting production data. However, you can merge mod-
ified snapshot data with original LV data using the lvconvert command with the --merge
option, if needed.

To create an LV snapshot, use the lvcreate command. Here is a snipped example of cre-
ating and activating an LV snapshot on a CentOS distribution:

lvcreate -v -L 500m -s -n backup_snapshot /dev/vg00/lvol0
 Setting chunksize to 4.00 KiB.
 Finding volume group "vg00"
 Archiving volume group "vg00" metadata (seqno 32).
 Creating logical volume backup_snapshot
[...]
 Logical volume "backup_snapshot" created.
#

The -s option denotes that an LV snapshot should be created. The name of the snapshot
is indicated by the -n option and in this case is backup_snapshot. The LV for which to cre-
ate this snapshot is the last command item, /dev/vg00/lvol0.

The -L option sets the snapshot’s size. For temporary LV snapshots, which will be used
for items such as backups, the size can be fairly small, as in the preceding example. However,
if this is a long-term snapshot, size it at a minimum to the original LV. This will allow it
plenty of room to grow over time. If a snapshot’s volume becomes full, the snapshot is unus-
able, so you may need to grow the volume size at some point in the future or remove this
snapshot and create a new one. You can monitor an LV snapshot’s size using the lvs utility.

When you create an LV snapshot, it derives its LEs from the same VG as
the original LV’s VG. If for some reason a VG does not have enough LEs to
give to the LV snapshot for its designated size, then it will not be able to
create the snapshot.

Managing Logical Volumes  259

c05.indd  09/15/2016  Page 259

Because the LV snapshot is actually an LV itself, you can view it using the lvdisplay
command. Also, if you view the original LV, you will see that it has an active snapshot set
for it, as shown in this snipped example here:

lvdisplay /dev/vg00/lvol0
[...]
 LV snapshot status source of
 backup_snapshot [active]
[...]
#
lvdisplay /dev/vg00/backup_snapshot
 --- Logical volume ---
 LV Path /dev/vg00/backup_snapshot
 LV Name backup_snapshot
 VG Name vg00
[...]
 LV snapshot status active destination for lvol0
 LV Status available
 # open 0
 LV Size 4.00 GiB
 Current LE 1024
 COW-table size 500.00 MiB
 COW-table LE 125
 Allocated to snapshot 0.00%
 Snapshot chunk size 4.00 KiB
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 8192
 Block device 253:5

#

This particular sample LV snapshot was created for backup purposes. Therefore, the
next thing to do is to mount the LV snapshot as read-only to a temporary location, as
shown here:

mount -o ro -t ext4 /dev/vg00/backup_snapshot Temp
#
ls Temp
lost+found My_LVM_File
#

260  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 260

At this point, you can perform a backup of the LV snapshot’s data. Once your backup is
complete, remove the LV snapshot. If you don’t unmount the LV snapshot prior to remov-
ing it, you can get the following error:

lvremove /dev/vg00/backup_snapshot
 Logical volume vg00/backup_snapshot contains a filesystem in use.
#

An LV snapshot for backups should be thought of as a temporary structure.
Once it has served its purpose, remove it from your system. A snapshot
slows an LV’s write performance, and if it is needed only for backups or
testing purposes, it should be removed.

To avoid errors, simply unmount the LV snapshot prior to attempting to remove it using
the lvremove command:

umount /dev/vg00/backup_snapshot
#
lvremove /dev/vg00/backup_snapshot
Do you really want to remove active logical volume
backup_snapshot? [y/n]: y
 Logical volume "backup_snapshot" successfully removed
#

The lvremove command can be used to remove other LVs besides just snapshots. It
works the same for other LV types.

Renaming Your LV
Renaming an LV is simple using the lvrename utility. This is especially handy if you named
your LV incorrectly when you originally created it.

Here’s an example of renaming the /dev/vg00/lvol0 LV to /dev/vg00/new_name on a
CentOS distribution:

lvrename /dev/vg00/lvol0 /dev/vg00/new_name
 Renamed "lvol0" to "new_name" in volume group "vg00"
#

You can also use a slightly different format for renaming a volume, as shown here:

lvrename vg00 new_name lvol0
 Renamed "new_name" to "lvol0" in volume group "vg00"
#

This example designates the vg00 VG and renames the new_name LV back to lvol0.

Managing Logical Volumes  261

c05.indd  09/15/2016  Page 261

Employ the LVM Configuration File
When using the various LVM utilities, each utility uses a central configuration file to govern
its behavior. This configuration file is the /etc/lvm/lvm.conf file. The file has wonderful
internal documentation and additional assistance is provided when you type man lvm.conf
at the command line.

The lvm.conf file’s existence is not required, because the LVM utilities will use default
settings. However, if the file does exist and has not been modified, it most likely will con-
tain these default settings. The lvm.conf configuration file is considered a global file, and
it may load additional local configuration files to refine its settings. LVM uses timestamps
in association with this global file and any local configuration files. If the global (or local)
configuration file has been modified, LVM reloads them.

Here an lvm.conf file is displayed, snipped, on a CentOS distribution:

cat /etc/lvm/lvm.conf
This is an example configuration file for the LVM2 system.
It contains the default settings that would be used if there was no
/etc/lvm/lvm.conf file.
#
Refer to 'man lvm.conf' for further information including the file layout.
#
To put this file in a different directory and override /etc/lvm set
the environment variable LVM_SYSTEM_DIR before running the tools.
[...]
 # By default we accept every block device:
 # filter = ["a/.*/"]
[...]
#

Though you may never need to modify the lvm.conf file, there are some cases where it
may be useful for your particular environment. For example, you can modify the lvm.conf
configuration file to use filters, which are regular expressions. (A filter is shown in the pre-
ceding example and starts with filter =.) These filters in turn will limit what the various
LVM *scan utilities can view. This is useful for speeding up scans should you have a large
mixed storage environment.

You can employ the lvm dumpconfig utility to display lvm.conf settings. Here is a
snipped example of this:

lvm dumpconfig --type default
config {
	 checks=1
	 abort_on_errors=0
	 profile_dir="/etc/lvm/profile"
}

262  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 262

[...]
tags {
	 hosttags=0
#	 tag {
#		 host_list=""
#	 }
}
#

There is a lot of information displayed by the lvm dumpconfig commands.
It is worth piping the output into a pager utility for easy viewing.

A full description can be added to each configuration item displayed by the lvm dumpconfig
command. Just simply tack on the --withcomments option to the end of any --type options.
To see all of the various items that you can view and do with lvm dumpconfig, type man lvm-
dumpconfig at the command line.

On earlier distributions, the lvmconf command was used to display lvm.conf
settings instead of the lvm dumpconfig command.

In Exercise 5.1, you’ll experiment with adding and removing LVs on your Linux system.

E x e rc i s e 5 .1

Adding and Removing Logical Volumes

To experiment with creating and removing LVs, follow these steps:

1.	 If needed, add a drive with at least 4 GB virtually (if using a virtualized system) or
physically to your system.

2.	 Log in as an ordinary user and use super user privileges throughout this exercise, or
log in as a super user.

3.	 Create at least four new partitions on your new drives, and make them around 1 GB
each. Record the partition names for your partitions.

4.	 Using the recorded partition names from the previous step, designate each partition
as a PV by typing pvcreate /dev/partition and pressing Enter, where partition is
the recorded partition name. Do this for each partition that you created in step 3. You
should have four PVs at this step’s end.

5.	 Create a VG using three of the four PVs from the previous step by typing vgcreate
vgex0 /dev/partition1 /dev/partition2 /dev/partition3 and pressing Enter. Be

Managing Logical Volumes  263

c05.indd  09/15/2016  Page 263

sure to use three partition names that you designated as PVs in step 4. You should
have a VG named vgex0 at this step’s end.

6.	 Check your new VG by typing vgdisplay vgex0 and pressing Enter.

7.	 Create a small LV from your newly created VG pool, named exvol0, by typing lvcreate
-L 500m -n exvol0 vgex0 and pressing Enter. You should have a new LV named exvol0
at this step’s end.

8.	 View your new LV by typing lvdisplay exvol0 and pressing Enter.

9.	 Create a second small LV from your newly created VG pool, named exvol2, by typing
lvcreate -L 500m -n exvol2 vgex0 and pressing Enter. You should have a new LV
named exvol2 at this step’s end.

10.	 View your second new LV by typing lvdisplay exvol2 and pressing Enter.

11.	 Type in lvscan and press Enter to view all of your system’s LVs.

12.	 Remove your first LV by typing lvremove exvol0 and pressing Enter.

13.	 Type lvscan and press Enter to view all of your system’s LVs.

14.	 Try various LVM commands discussed in this chapter that will allow you to do things
such as resize your VG, vgex0, or mount the LV to a temporary directory in the Linux
directory structure. The more you play with the various LVM commands, the more
comfortable you will be when dealing with a production system.

Understanding the Device Mapper
LVs are assisted by the Device Mapper. The Device Mapper is a kernel driver, and it pro-
vides the ability to create mapped devices. It maps physical storage blocks to virtual storage
blocks, creating a framework for LVM and RAID.

You can interact with the Device Mapper directory via the dmsetup utility. For example,
to see the various LVs on your system, type dmsetup info. To see information for only one
LV, pass its name along to the utility, as shown in the snippet here:

dmsetup info /dev/vg00/lvol0
Name: vg00-lvol0
State: ACTIVE
[...]
UUID: LVM-2n3wGFxPSEr13RV5kXI0pVLDiebZB[...]
#

You can get help on the utility by entering dmsetup help at the command line. It’s
unlikely that you will need to modify any Device Mapper settings. However, you do need
to be aware of the mapper. When you create an LV using the lvcreate command, not only
can you reference it via its /dev name, such as /dev/vg00/lvol0 in earlier examples, but

264  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 264

you can also reference it via /dev/mapper/LV_name. Here is a snipped example of using the
dmsetup info command with the lvol0 LV’s Device Mapper name:

dmsetup info /dev/mapper/vg00-lvol0
Name: vg00-lvol0
State: ACTIVE
[...]
UUID: LVM-2n3wGFxPSEr13RV5kXI0pVLDiebZB[...]
#

You’ll often see Device Mapper names being used in the /etc/fstab configuration file.
Here is a snipped example from a CentOS distribution:

cat /etc/fstab
[...]#
/dev/mapper/centos-root / xfs defaults 0 0
[...]
/dev/mapper/centos-swap swap swap defaults 0 0
[...]
#

As you can see, there are /dev/mapper names in the /etc/fstab file. On some distribu-
tions, /dev/mapper names must be used instead of /dev names for LVs so that the system
will invoke LVM at system boot. Therefore, best practice recommends using /dev/mapper
names within the /etc/fstab file for mounting LVs at system boot.

Though fairly easy to set up, logical volume management can be very complex to use.
Hopefully, this section has helped you on your path to becoming an LVM expert.

Summary
Advanced devices, such as RAID and logical volumes, can assist in protecting your data
and the access to it. Various utilities can help in setting kernel options to support and con-
figure these devices. Additionally, some of these utilities are helpful in monitoring advanced
storage devices as well as configuring them. Understanding these devices, the terminology
surrounding them, how to configure and provide access to them, as well as continually
managing their use are all important in data system administration.

Exam Essentials
Determine if software RAID is supported.    You can check if your system supports soft-
ware RAID by determining if the /proc/mdstat file exists on it. This file provides current
system RAID status information. Also, using the modprobe command, you can attempt to

Exam Essentials  265

c05.indd  09/15/2016  Page 265

load various RAID kernel modules, such as raid6. Afterward, check the Personalities
line in the /proc/mdstat file to see if any RAID levels are present, which indicates that the
system supports those RAID levels.

Describe software RAID configuration files and utilities.    The Multiple Disk or Device
Administration (mdadm) utility is the primary utility for managing RAID arrays. RAID
arrays are typically represented by device files /dev/md#, but they can also be represented
by the Device Mapper. RAID arrays to be mounted at boot should have a record in the
/etc/fstab file. The mdadm configuration file, mdadm.conf, is stored in either the /etc/
directory or the /etc/mdadm/ directory. RAID array information should be put into this
configuration file, not by hand, but instead via redirected mdadm command scan output of
a particular RAID array, using the --verbose, --detail, and --scan options.

Know Non-Volatile Memory Express (NVMe) Basics.    NVMe is a logical device interface
and command set standard for SSDs attached via the PCI Express bus. The Linux kernel
has contained an NVMe standard interface driver since version 3.3. On Linux, NVMe
interfaced SSDs are represented by the /dev/nvme* device files. The NVMe standard uses a
namespace architecture, which is an additional top layer available for subdividing into par-
titions. Therefore, if you want to refer to a third NMVe drive’s fourth namespace and first
partition, use the /dev/nvme2n4p1 device.

Explain how to tune and test drives.    The hdparm utility allows you to view, test, and, if
needed, modify various drive settings, even though most drives come with their optimum
configuration already set. The -I option shows all of the various drive settings, while the
-W option shows or sets the drive setting, such as write-caching, listed. The hdparm options
-t and -T conduct various performance tests, which should be done when the drive is
inactive.

The sdparm utility gathers information from a SCSI device’s Vital Product Data (VPD)
tables, which includes data items such as part numbers, serial numbers, and code sets. The
sdparm utility can be used to control a SCSI device’s behavior, such as spinning down the
drive or altering its write-back caching.

The sysctl utility modifies kernel parameters while a system is running. These parameters
include those associated with storage devices. Use the -a option to view all of the various
modifiable kernel parameters, or view the files in the /proc/sys/ directory. Several kernel
parameters are Boolean values, and relatively few kernel parameters should be modified for
tuning disk access and use.

Summarize iSCSI and its management.    For an iSCSI SAN, the remote system serving an
iSCSI disk is the target, and the client desiring to use an iSCSI disk is the initiator. A logi-
cal unit number (LUN) is one method used to identify a unique logical SCSI device on the
target system. However, a World Wide Identifier (WWID), also called a World Wide Name
(WWN), can be used. In addition, a unique ID for a SCSI device can be created using the
scsi_id command. An iSCSI Qualified Name (IQN) is a unique address that identifies both
the iSCSI target server and its offered iSCSI drive. The primary tool for setting up a target
iSCSI disk is the targetcli utility, and the primary tool for managing an iSCSI disk on the
initiator client is the iscsiadm utility. The iscsiadm utility discovers and logs into iSCSI

266  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 266

targets, and it is used for managing the open-iscsi database files located in the /var/
log/iscsi/ directory. New initiator iSCSI drives should have a record put into the initia-
tor’s /etc/fstab file and their IQN put into the /etc/iscsi/initiatorname.iscsi file.

Describe Logical Volume Management.    Multiple partitions collected and used as a single
partition are at the core of logical volume management or Logical Volume Manager (LVM).
The collection is accomplished through an abstraction layer so that the multiple partitions
are referred to as a single volume. LVM has three primary parts. The first is the physical
volume (PV), which is created using the LVM’s pvcreate command. The utility designates
an unused disk partition (or whole drive) to be used by LVM. Next, a volume group (VG),
created by the LVM’s vgcreate command, adds one or more PVs to a storage pool. This
storage pool is used in turn to build the last item, a logical volume (LV). An LV is created
using the LVM’s lvcreate command and consists of storage space chunks. A physical
extent (PE), set during the process of adding a PV to a VG, is the smallest block size that
can be allocated on a PV, and logical extents (LEs) are mapped to VG physical extents and
used on LVs. This mapping provides a way to access the data without concern about where
a physical extent is located. LVs are also assisted by the Device Mapper, which is a kernel
driver that provides the ability to create mapped devices. It maps physical storage blocks to
virtual storage blocks, creating a framework for both LVM and RAID.

Explain how to resize, rename, and remove LVs.    To resize an LV, first increase the VG
pool size if needed by adding additional PV(s) and afterward using the vgextend command.
Once that’s completed, grow an LV using the lvextend command, with the -L option set
to the new desired LV size. To rename an LV, use the lvrename utility, designating both the
old name and the desired new name. Prior to removing an LV, unmount the LV. Once it’s
unmounted, use the lvremove utility to remove the LV.

Review Questions  267

c05.indd  09/15/2016  Page 267

Review Questions
You can find the answers in the Appendix.

1.	 Which of the following RAID array structures are considered fault tolerant? (Choose all
that apply.)

A.	 RAID 0

B.	 RAID 1

C.	 RAID 10

D.	 RAID 5

E.	 RAID 6

2.	 Which one of the following RAID structures is also called disk striping with double parity?
(Choose the best answer.)

A.	 RAID 0

B.	 RAID 1

C.	 RAID 10

D.	 RAID 5

E.	 RAID 6

3.	 After you issue the modprobe raid6 command using super user privileges on your system,
which file should you check to determine if software RAID is supported on your system?
(Choose the best answer.)

A.	 /proc/mdstat

B.	 /dev/md0

C.	 /etc/fstab

D.	 /etc/mdadm/mdadm.conf

E.	 /dev/mapper

4.	 Which of the following is not an mdadm command mode? (Choose the best answer.)

A.	 Grow mode

B.	 --follow

C.	 Delete mode

D.	 --manage

E.	 Miscellaneous mode

5.	 Which of the following mdadm command options chooses the mode to make a RAID array?
(Choose the best answer.)

A.	 --grow

B.	 -F

C.	 --make

268  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 268

D.	 -C

E.	 --misc

6.	 Current RAID array status is held in what file? (Choose the best answer.)

A.	 /etc/mdadm/mdadm.conf

B.	 /etc/mdadm.conf

C.	 /etc/fstab

D.	 /proc/mdstat

E.	 /etc/sysctl.conf

7.	 Which of the following mdadm options would show in the RAID array in which the /dev/sdc1
drive has membership? (Choose the best answer.)

A.	 --misc --detail /dev/md0

B.	 --misc --examine /dev/sdc1

C.	 --detail --scan /dev/md0

D.	 --monitor –-help

E.	 None of the above

8.	 To delete an unmounted RAID array, you must do which of the following? (Choose all that
apply.)

A.	 Stop the RAID array.

B.	 Shrink the RAID array.

C.	 Monitor the RAID array.

D.	 Delete RAID array drives’ superblocks.

E.	 Delete RAID array drives’ data and superblocks.

9.	 On which of the following drive types can the hdparm utility be used? (Choose all that
apply.)

A.	 PATA

B.	 ATAPI

C.	 SATA

D.	 SCSI

E.	 All of the above

10.	 Which of the following sdparm command options will show all of the common mode
parameters for a designated device? (Choose the best answer.)

A.	 --all

B.	 --command show

C.	 --hex

D.	 --page

E.	 None of the above

Review Questions  269

c05.indd  09/15/2016  Page 269

11.	 What number designates both an iSCSI target server and an iSCSI disk being offered by
that target? (Choose the best answer.)

A.	 WWID

B.	 WWN

C.	 IQN

D.	 LUN

E.	 scsi_id

12.	 Where are iSCSI discovery records stored? (Choose all that apply.)

A.	 /etc/iscsi/iscsid.conf

B.	 /lib/udev/scsi_id

C.	 /var/lib/iscsi/nodes

D.	 /var/lib/iscsi/send_targets

E.	 /var/log/iscsi.conf

13.	 Which of the following allows multiple partitions or whole disks to be grouped together
and used as a single drive? (Choose all that apply.)

A.	 PATA

B.	 RAID

C.	 iSCSI

D.	 Logical volume management

E.	 Storage fabric

14.	 Which is a designated unused disk partition or drive that can be used by LVM? (Choose the
best answer.)

A.	 PV

B.	 VG

C.	 LV

D.	 SATA

E.	 Backstore

15.	 Which of the following is not true concerning PEs? (Choose the best answer.)

A.	 PE stands for “physical extent.”

B.	 A PE is the smallest block size that can be allocated on a PV.

C.	 PE block size is set during the process of designating a PV.

D.	 The default PE block size is 4 MiB.

E.	 A PE block size setting can be chosen.

270  Chapter 5  ■  Administering Advanced Storage Devices

c05.indd  09/15/2016  Page 270

16.	 Which of the following is true concerning LEs? (Choose the best answer.)

A.	 LEs are made up of LVs.

B.	 LEs are mapped to VG physical extents.

C.	 LE mapping provides a way to block data access.

D.	 LE mappings occur during PV designation.

E.	 None of the above.

17.	 Which of the following LVM utilities will designate a partition as a PV? (Choose the best
answer.)

A.	 pvdisplay

B.	 vgcreate

C.	 lvcreate

D.	 pvcreate

E.	 pvscan

18.	 You’ve just finished creating vg01. What utility would be the best one to check it? (Choose
the best answer.)

A.	 pvdisplay

B.	 vgcreate

C.	 pvscan

D.	 vgdisplay

E.	 lvdisplay

19.	 Which of the following are true about LV snapshots? (Choose all that apply.)

A.	 LV snapshots are LVs themselves.

B.	 LV snapshots are read-only.

C.	 LV snapshots can be mounted to the directory.

D.	 LV snapshots contain copies of the original LV data.

E.	 LV snapshots are created using the vgcreate command.

20.	 To rename an LV, which utility should you use? (Choose the best answer.)

A.	 lvrename

B.	 lvremove

C.	 lvconvert

D.	 lvs

E.	 lvmchange

c06.indd  09/14/2016  Page 271

Navigating Network
Services

The following exam objectives are
covered in this chapter:

✓✓ 205.1 Basic network configuration

✓✓ 205.2 Advanced Network Configuration

✓✓ 205.3 Troubleshooting network issues

Chapter

6

c06.indd  09/14/2016  Page 272

These days, it’s a necessity to have your Linux system con-
nected to some type of network. Whether it’s because of the
need to share files and printers on a local network or because

of the need to connect to the Internet to download updates and security patches, most
Linux systems have some type of network connection.

This chapter looks at how to configure your Linux system to connect to a network, as
well as how to troubleshoot network connections if things go wrong. First, it covers the
basics of networking to make sure that you’re familiar with all of the terms and configura-
tion pieces necessary to talk with other devices on the network. Next, the chapter examines
how to set those configuration values in both wired and wireless network environments.
After that, the chapter shows some simple troubleshooting techniques that you can use to
help find the problem if anything goes wrong.

Networking Basics
Before we look at how Linux handles network connectivity, it’ll help to go through the
basics of computer networking. Computer networking is how we get data from one com-
puter system to another. To help simplify things, computer networks are often described as
a layered system. Different layers play different roles in the process of getting the data from
one network device to another.

There’s much debate, though, on just how best to split up the networking layers. While
the standard OSI network model uses seven layers, we’ll use a simplified four-layer approach
to describing the network functions:

■■ The physical layer

■■ The network layer

■■ The transport layer

■■ The application layer

The following sections detail the parts contained in each of these four layers.

The Physical Layer
The physical layer consists of the hardware required to connect your Linux system to the
network. If you’ve ever connected a computer to either a home or an office network, you’re
already familiar with the two main methods used to connect network devices—wired and
wireless network connections.

Networking Basics  273

c06.indd  09/14/2016  Page 273

Wired network connections use a series of network switches to connect network devices
using special Ethernet cables. The network switch accepts data packets from the network
device and then sends the data packets to the correct destination device on the network.
For large office network installations, switches are usually connected in a cascade design to
help reduce traffic load on the network. Switches can be interconnected to help segment the
network traffic into smaller areas. Figure 6.1 demonstrates a common layout for a wired
network.

F i gu r e 6 .1     A wired office network infrastructure

Workstation Workstation

Office switch Office switch

Backbone switch

Server Server Server Server

Workstation Workstation

While the term wired may make you think of copper cables, it can also apply to network
connections that use fiber-optic cables. Fiber-optic cables use light to transmit data down a
thin glass strand, achieving faster speeds and covering longer distances than conventional
copper connections. Although wired networking can be cumbersome, it does provide the
fastest network speeds (currently up to 100 gigabits per second). For that reason, wired net-
working is still popular in Linux server environments where high throughput is a must.

Nowadays though, most small office and home networks utilize wireless networking.
Instead of using physical wires or fiber cables to connect devices, wireless networking uses
radio signals to transmit the data between the network device and a network access point.
The access point works in a similar manner as the switch, in that it controls how data is
sent to each network device communicating with it.

Each access point uses a unique Service Set Identifier (SSID) to identify it from other
access points, which can be a name or number. You just tell your Linux system to which
access point it should connect by specifying the correct SSID value. Figure 6.2 demon-
strates a common wireless network layout.

274  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 274

F i gu r e 6 . 2     A wireless network infrastructure

Workstation Workstation

Wireless
access point

Physical network

The downside to wireless networking is that you can’t control where the radio signals travel.
It’s possible that someone outside your home will intercept your access point signals and try
to connect with them. Because of that, it’s important to implement some type of encryption
security on your access point. Only devices using the correct encryption key can connect to
the wireless access point. Common wireless encryption techniques are Wired Equivalent
Privacy (WEP), Wi-Fi Protected Access (WPA), and Wi-Fi Protected Access version 2 (WPA2).

The Network Layer
The network layer controls how data is sent between connected network devices, both in
your local network and across the Internet. For data to get to the correct destination device,
there must be some type of network addressing scheme to identify each network device
uniquely. The most common method for doing that is the Internet Protocol (IP or IPv4).

While the IP network protocol is by far the most popular in use, it’s not the
only network protocol available. Apple formerly used a proprietary protocol
called AppleTalk to allow Apple computers to communicate with each other
on a local network, and Novell used the IPX/SPX protocol for communication
between Novell network servers and clients. These network protocols, how-
ever, have faded from standard use and aren’t covered in the LPIC-2 exam.

To connect your Linux system to an IP network, you’ll need four pieces of information:

■■ An IP address

■■ A hostname

Networking Basics  275

c06.indd  09/14/2016  Page 275

■■ A default router

■■ A netmask value

The following sections walk through what each of these values represents.

The IP Address
In an IP network, each network device is assigned a unique 32-bit address. Network layer
software embeds the source and destination IP addresses into the data packet so that net-
working devices know how to handle the data packet and the Linux system knows which
packets to read and which to ignore.

To make it easier for humans to recognize the address, IP addresses are split into four
8-bit values, represented by decimal numbers, with a period between each value. This
format is called dotted-decimal notation. For example, a standard IP address in dotted-
decimal notation looks like 192.168.1.10.

IP addresses are split into two sections. One part of the IP address represents the
network address. All devices on the same physical network have the same network
address portion of their IP address. For example, if your home network is assigned the
network address 192.168.1.0, all of the network devices must start with the IP address
192.168.1.

The second part represents the host address. Each device on the same network must have
a unique host address. Figure 6.3 demonstrates assigning unique IP addresses to devices on
a local network.

F i gu r e 6 . 3     Network addressing on a local network

Network Host Network Host

Network 192.168.5.0

192.168.5.16 192.168.5.24

Workstation 1 Workstation 2

To complicate things even further, a newer IP network protocol called Internet Protocol
version 6 (IPv6) has become popular. The IPv6 networking scheme uses 128-bit addresses
instead of the 32-bit addresses used by IP, which allows many more network devices to be
identified uniquely on the Internet.

The IPv6 method uses hexadecimal numbers to identify addresses. The 128-bit address
is split into eight groups of four hexadecimal digits separated by colons, such as this:

fed1:0000:0000:08d3:1319:8a2e:0370:7334

276  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 276

If one or more groups of four digits are 0000, that group or those groups may be omit-
ted, leaving two colons:

fed1::08d3:1319:8a2e:0370:7334

However, only one set of consecutive zeroes can be compressed this way. IPv6 also
provides for two different types of host addresses:

■■ Link local addresses

■■ Global addresses

The IPv6 software on a host device automatically assigns the link local address. The
link local address uses a default network address of fe80::; then it derives the host part of
the address from the media access control (MAC) address built into the network card. This
ensures that any IPv6 device can automatically communicate with any other IPv6 device on
a local network without any configuration.

The IPv6 global address works in a similar manner as the original IP version: each
network is assigned a unique network address, and each host on the network must have a
unique host address.

Default Router
With IP and IPv6, devices can only communicate directly with other devices on the same
physical network. To connect different physical networks together, you use a router. A
router passes data from one network to another network. Devices that need to send packets
to hosts on remote networks must use the router as a go-between. Usually, a network
will contain a single router to forward packets to an upper-level network. This is called a
default router (or sometimes a default gateway).

Thus, for a device to communicate in an IP network, it must know three separate pieces
of information:

■■ Its own host address on the network

■■ The network address of the local physical network

■■ The address of a local router used to send packets to remote networks

You’ve already seen how to specify host addresses using the dotted-decimal notation
(such as 192.168.1.10). You specify the network address using a netmask address, which is
covered in the next section.

Netmask Address
The netmask address distinguishes between the network and host address portions in the
IP address by using 1 bit to show which bits of the 32-bit IP address are used by the net-
work and 0 bits to show which bits represent the host address. Since most people don’t like
working with binary numbers, the netmask address is usually shown in dotted-decimal
format. For example, the netmask address 255.255.255.0 indicates that the first three deci-
mal numbers in the IP address represent the network address and the last decimal number
represents the host address.

Networking Basics  277

c06.indd  09/14/2016  Page 277

There’s another way to represent netmask addresses called the Classless
Inter-Domain Routing (CIDR) notation. CIDR notation represents the net-
mask as just the number of masked bits in the IP address. CIDR notation
is usually shown with a slash between the network address and the CIDR
value. Thus, the network 192.168.1.0 and netmask 255.255.255.0 would
have the CIDR notation of 192.168.1.0/24. While CIDR notation is becoming
popular in the networking world, Linux configuration files still use the net-
mask value to define the network.

As mentioned, to connect your Linux system to a network, you need to specify three
values. Here’s an example of what you would need:

■■ Host address: 192.168.20.5

■■ Netmask address: 255.255.255.0

■■ Default gateway: 192.168.20.1

With these three values in hand, you’re almost ready to configure your Linux system to
work on the Internet. There’s just one more piece of the puzzle that you’ll need to worry
about, and we’ll look at that in the next section.

Hostnames
With all of these IP addresses, it can be impossible to remember just what servers have what
addresses. Fortunately for us, there’s yet another network standard that can help out. The
Domain Name System (DNS) assigns a name to hosts on the network.

With DNS, each network address is assigned a domain name (such as linux.org) that
uniquely identifies the network, and each host in that network is assigned a hostname,
which is added to the domain name to uniquely identify the host on the network.

Thus, to find the host shadrach on the domain example.org, you’d use the DNS name
shadrach.example.org. The DNS system uses servers to map host and domain names to the
specific network addresses required to communicate with that server. Servers responsible for
defining the network and hostnames for a local network interoperate with upper-level DNS
servers to resolve remote hostnames.

To use DNS in your network applications, all you need to configure is the address of the
DNS server that services your local network. From there, your local DNS server can find
the address of any hostname anywhere on the Internet.

Dynamic Host Configuration Protocol
We need to discuss one more network layer feature before we move on to configuring
the Linux system. Trying to keep track of host addresses for all of the devices on a large
network can be cumbersome. Keeping individual IP address assignments straight can be
a challenge, and often you’ll run into the situation where two or more devices are acciden-
tally assigned the same IP address.

The Dynamic Host Configuration Protocol (DHCP) was created to make it easier to
configure client workstations, which don’t necessarily need to use the same IP address all

278  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 278

the time. With DHCP, the client communicates with a DHCP server on the network using
a temporary address. The DHCP server then tells the client exactly which IP address, net-
mask address, default gateway, and even DNS server to use. Each time the client reboots,
it may receive a different IP address, but that doesn’t matter as long as it’s unique on the
network.

Most home network routers include a DHCP server function, so all you need to do is to
set your Linux client to use DHCP and you’re finished. You don’t need to know any of the
“behind the scenes” details of the network addresses.

While DHCP is great for clients, it’s not a good idea to use it for servers.
Servers need to have a fixed IP address so that the clients can always find
them. Although it’s possible to configure static IP addresses in DHCP, usu-
ally it’s safest to configure the network information manually for servers.
This is called a static host address.

The Transport Layer
The transport layer can often be the most confusing part of the network. While the net-
work layer helps get data to a specific host on the network, the transport layer helps get the
data to the correct application contained on the host. It does that by using ports.

Ports are sort of like apartment numbers. Each application that’s running on a network
server is assigned its own port number, just as each apartment in the same apartment
building is assigned a unique apartment number. To send data to a specific application
on a server, the client software needs to know both the server IP address (just like the
apartment building address) and the transport layer port number (just like the apartment
number).

There are two common transport protocols used in the IP networking world:

■■ Transmission Control Protocol

■■ User Datagram Protocol

The Transmission Control Protocol (TCP) sends data using a guaranteed delivery
method. It ensures that the server receives each portion of data that the client computer
sends and vice versa. The downside to this is that a lot of overhead is required to track and
verify all of the data sent, which can slow the data transfer speed.

For data that’s sensitive to transfer speed (such as real-time data like voice and video), this
can cause unwanted delays. The alternative to this is the User Datagram Protocol (UDP).
UDP doesn’t bother to ensure delivery of each portion of the data; it just sends the data out on
the network and hopes it gets to the server!

While losing data may sound like a bad thing, for some applications (such as voice and
video) it’s perfectly acceptable. Missing audio or video packets just show up as blips and
breaks in the final audio or video result. As long as most of the data packets arrive, the
audio and video are understandable.

Configuring Network Features  279

c06.indd  09/14/2016  Page 279

The Application Layer
The application layer is where all of the action happens. This is where the network pro-
grams process the data sent across the network and then return a result. Most network
applications behave using the client/server paradigm. With the client/server paradigm, one
network device acts as the server, offering some type of service to multiple network clients
(such as a web server offering content via web pages). The server listens for incoming con-
nections on specific transport layer ports assigned to the application. The clients must know
what transport layer port to use to send requests to the server application.

To simplify that process, both TCP and UDP use well-known ports to represent com-
mon applications. These port numbers are reserved so that network clients know to use
them when looking for specific application hosts on the network. Table 6.1 shows some of
the more common well-known application ports.

Ta b le 6 .1     TCP and UDP well-known ports

Port Protocol Application

22 TCP Secure Shell Protocol (SSH)

23 TCP Telnet (interactive command lines)

25 TCP SMTP (Simple Mail Transport Protocol)

53 UDP DNS (Dynamic Name System)

80 TCP HTTP (Hypertext Transport Protocol)

143 TCP IMAP (Internet Message Access Protocol)

443 TCP HTTPS (Secure HTTP)

Now that you’ve seen the basics of how Linux uses networking to transfer data between
systems, the next section dives into the details on how to configure these features in your
Linux system.

Configuring Network Features
As you saw in the previous section, you’ll need to configure five main pieces of information
in your Linux system to interact on a network:

■■ The host address

■■ The network address

280  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 280

■■ The default router (sometimes called the gateway)

■■ The system hostname

■■ A DNS server address for resolving hostnames

There are three different ways to configure this information in Linux systems:

■■ Manually editing network configuration files

■■ Using a graphical tool

■■ Using command-line tools

The following sections walk you through each of these methods.

Network Configuration Files
Every Linux distribution uses network configuration files to define the network settings
required to communicate on the network. Unfortunately, though, there’s no single standard
configuration file that all distributions use. Instead, different distributions use different
configuration files to define the network settings. Table 6.2 shows the most common net-
work configuration files that you’ll run into.

Ta b le 6 . 2     Linux network configuration files

Distribution Network Configuration Location

Debian-based /etc/network/interfaces file

Red Hat–based /etc/sysconfig/network-scripts directory

OpenSUSE /etc/sysconfig/network file

While each of the Linux distributions uses a different method of defining the network
settings, they all have similar features. Most configuration files define each of the required
network settings as separate values in the configuration file. Listing 6.1 shows an example
from a Debian-based Linux system.

Listing 6.1:  Sample Debian network static configuration settings

auto eth0
iface eth0 inet static
 address 192.168.1.77
 netmask 255.255.255.0
 gateway 192.168.1.254

Configuring Network Features  281

c06.indd  09/14/2016  Page 281

iface eth0 inet6 static
 address 2003:aef0::23d1::0a10:00a1
 netmask 64
 gateway 2003:aef0::23d1::0a10:0001

The example shown in Listing 6.1 assigns both an IP address and an IPv6 address to the
wired network interface designated as eth0.

Listing 6.2 shows how to define the IP network settings automatically using a DHCP
server on the network.

Listing 6.2:  Sample Debian network DHCP configuration settings

auto eth0
iface eth0 inet dhcp
iface eth0 inet6 dhcp

If you just want to assign an IPv6 link local address and not retrieve an IPv6 address
from a DHCP server, replace the inet6 line with this:

iface eth0 inet6 auto

The auto attribute tells Linux to assign the link local address, which allows the Linux
system to communicate with any other IPv6 device on the local network but not with a
global address.

For Red Hat–based systems, you’ll need to set the network settings in two separate files.
The first file defines the network and netmask addresses in a file named after the network
interface name (such as ifcfg-eth0). Listing 6.3 shows an example from a CentOS Linux
system.

Listing 6.3:  Sample CentOS ifcfg-eth0 file configuration settings

DEVICE="eth0"
NM_CONTROLLED="no"
ONBOOT=yes
TYPE=Ethernet
BOOTPROTO=static
NAME="System eth0"
IPADDR=192.168.1.77
NETMASK=255.255.255.0
IPV6INIT=yes
IPV6ADDR=2003:aef0::23d1::0a10:00a1/64

The second file required on Red Hat–based systems is the network file, which defines the
hostname and default gateway, as shown in Listing 6.4.

282  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 282

Listing 6.4:  Sample CentOS network file configuration settings

NETWORKING=yes
HOSTNAME=mysystem
GATEWAY=192.168.1.254
IPV6FORWARDING=yes
IPV6_AUTOCONF=no
IPV6_AUTOTUNNEL=no
IPV6_DEFAULTGW=2003:aef0::23d1::0a10:0001
IPV6_DEFAULTDEV=eth0

Notice that the Red Hat network configuration file also defines the hostname assigned
to the Linux system. For other types of Linux systems, storing the hostname in the /etc/
hostname file has become somewhat of a de facto standard. However, some Linux distribu-
tions use /etc/HOSTNAME instead.

You will also need to define a DNS server so that the system can use DNS hostnames.
Fortunately, all Linux systems follow this standard, and it is handled in the /etc/resolv
.conf configuration file:

domain mydomain.com
search mytest.com
nameserver 192.168.1.1

The domain entry defines the domain name assigned to the network. By default, the sys-
tem will append this domain name to any hostnames that you specify. The search entry
defines any additional domains used to search for hostnames. The nameserver entry is
where you specify the DNS server assigned to your network. Some networks can have more
than one DNS server; just add multiple nameserver entries in the file.

To help speed up connections to commonly used hosts, you can manually
enter their hostnames and IP addresses into the /etc/hosts file on your
Linux system. Linux will check this file before using DNS to look up the
hostname.

Graphical Tools
The Network Manager tool is a popular program used by many Linux distributions to pro-
vide a graphical interface for defining network connections. Network Manager starts auto-
matically at boot time, and it appears in the system tray area of the desktop as an icon.

If your system detects a wired network connection, the icon appears as two arrows pointing
in opposite directions. If your system detects a wireless network connection, the icon appears
as an empty radio signal. When you click the icon, you’ll see a list of the available wireless
networks detected by the network card, as shown in Figure 6.4.

Configuring Network Features  283

c06.indd  09/14/2016  Page 283

F i gu r e 6 . 4     Network Manager showing a wireless network

Click your access point to select it from the list. If your access point is encrypted, you’ll
be prompted to enter the password to gain access to the network.

Once your system is connected to a wireless access point, the icon appears as a radio
signal. Click the icon, and then select Edit Connections to edit the network connection set-
tings for the system, as shown in Figure 6.5.

F i gu r e 6 .5     The Network Connections window

You can select the network connection to configure (either wireless or wired) and then
click the Edit button to change the current configuration. Network Manager allows you
to specify all four of the network configuration values by using the manual configuration
option, or you can set the configuration to use DHCP to determine the settings. Network

284  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 284

Manager automatically updates the appropriate network configuration files with the
updated settings.

Command-Line Tools
If you’re not working with a graphical desktop client environment, you’ll need to use the
Linux command-line tools to set the network configuration information. You’ll need to
know three main commands to do that:

ifconfig—This command sets the IP address and netmask values for a network
interface.

iwconfig—This command sets the SSID and encryption key for a wireless interface.

route—This command sets the default router address.

Before you can get very far, you’ll need to know the device name that Linux assigns to
your network card. The easiest way to do that is to use the ifconfig command by itself,
without any parameters, as shown in Listing 6.5.

Listing 6.5:  The ifconfig output

$ ifconfig
eth0 Link encap:Ethernet HWaddr 08:00:27:b0:e3:02
 inet addr:192.168.1.67 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:feb0:e302/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:677 errors:0 dropped:0 overruns:0 frame:0
 TX packets:118 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:97003 (97.0 KB) TX bytes:15225 (15.2 KB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:171 errors:0 dropped:0 overruns:0 frame:0
 TX packets:171 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:39325 (39.3 KB) TX bytes:39325 (39.3 KB)

$

This example shows two network interfaces on the Linux system:

eth0—The wired Ethernet interface

lo—The local loopback interface

Configuring Network Features  285

c06.indd  09/14/2016  Page 285

The local loopback interface is a special virtual network interface. Any local program
can use it to communicate with other programs just as if they were across a network. That
can simplify transferring data between programs.

The eth0 network interface is the wired network connection for the Linux system. The
ifconfig command shows the IP address assigned to the interface (both an IP address and
an IPv6 link local address are assigned), the netmask value, and some basic statistics about
the packets on the interface.

If the output doesn’t show a network address assigned to the interface, you can use the
ifconfig command to specify the host address and netmask values for the interface. The
options for the ifconfig program are shown in Table 6.3.

Ta b le 6 . 3     The ifconfig command options

Option Description

-a Display all interfaces.

-s Display a short listing.

-v Display more information about errors.

interface Specify the interface name.

up Enable the interface.

down Disable the interface.

[-]arp Enable or disable the Address Resolution Protocol (ARP)
on the interface.

[-]promisc Enable or disable promiscuous mode on the interface.

[-]allmulti Enable or disable the ability to receive multicast packets.

metric N Set the interface metric.

mtu N Set the maximum transmission unit (MTU) size.

netmask addr Set the network mask for the interface.

add addr Add an IPv6 address to the interface.

del addr Remove an IPv6 address from the interface.

tunnel ::aa.bb.cc.dd Create an IPv6-in-IPv4 tunnel to the specified destination.

irq addr Specify the IRQ interrupt for the interface.

286  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 286

Option Description

io_addr addr Specify the IO address for the interface.

mem_start addr Specify the start address for the interface shared memory.

media type Specify the media type for the interface.

[-]broadcast addr Set the broadcast address for the interface.

[-]pointtopoint addr Create a point-to-point connection to a remote device.

hw class address Specify the hardware address for the interface.

multicast Allow multicast packets for the interface.

address Specify an IPv4 address for the interface.

txqueuelen len Specify the length of the transmit queue for the interface.

This long list of options allows you to customize lots of features of the network
interface. Usually, though, you just need to use a couple of options to define the basic
network settings. For example, to set the address and netmask values and then activate
the eth0 interface, you’d use the following command:

ifconfig eth0 up 192.168.1.67 netmask 255.255.255.0

The up parameter tells the Linux system to activate the interface after configuring it.
You can also assign an address to an interface and leave it deactivated by using the down
parameter.

There are also two shortcut commands, ifup and ifdown, that you can use
to quickly bring a specific interface that’s already configured up or down.

If your Linux system uses a wireless network connection, you’ll most likely see a wlan0
interface listed in the ifconfig output:

 wlan0 Link encap:Ethernet HWaddr 00:23:15:a6:1b:dc
 inet addr:192.168.1.65 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr:fe80::223:15ff:fea6:1bdc/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:13513 errors:0 dropped:0 overruns:0 frame:0

Table 6 .3     The ifconfig command options  (continued)

Configuring Network Features  287

c06.indd  09/14/2016  Page 287

 TX packets:6894 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:20016644 (20.0 MB) TX bytes:608292 (608.2 KB)

Before you can use the ifconfig command to assign an address to a wireless interface,
you must assign the wireless SSID and encryption key values using the iwconfig command:

iwconfig wlan0 essid "MyNetwork" key s:mypassword

The essid parameter specifies the access point SSID name, and the key parameter speci-
fies the encryption key required to connect to it. Notice that the encryption key is preceded
by an s:. That allows you to specify the encryption key in ASCII text characters; other-
wise, you’ll need to specify the key using hexadecimal values.

If you don’t know the name of a local wireless connection, you can use the iwlist com-
mand to display all of the wireless signals that your wireless card detects. Just specify the
name of the wireless device, and use the scan option:

$ iwlist wlan0 scan

To specify the default router for your network, you must use the route command:

route add default gw 192.168.1.1

You can also use the route command by itself to view the current default router config-
ured for the system.

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.254 0.0.0.0 UG 0 0 0 eth0
192.168.1.0 * 255.255.255.0 U 1 0 0 eth0
$

The default router defined for the Linux system is 192.168.1.254, and it is available
from the eth0 network interface. The output also shows that to get to the 192.168.1.0 net-
work you don’t need a gateway, since that’s the local network to which the Linux system is
connected.

If your network is connected to multiple networks via multiple routers, you can manu-
ally create the routing table in the system by using the add or del command-line option for
the route command. The format for that is

route [add] [del] target gw gateway

where target is the target host or network and gateway is the router address.
If your network uses DHCP, you’ll need to ensure that a proper DHCP client program

is running on your Linux system. The DHCP client program communicates with the net-
work DHCP server in the background, and it assigns the necessary IP address settings as

288  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 288

directed by the DHCP server. Three common DHCP programs are available for Linux
systems:

■■ dhcpcd

■■ dhclient

■■ pump

The dhcpcd program is becoming the most popular of the three, but you’ll still see the other
two used in some Linux distributions.

When you use your Linux system’s software package manager utility to install the DHCP
client program, it sets the program to launch automatically at boot time and handle the IP
address configuration needed to interact on the network.

While the ifconfig and iwconfig commands are by far the most popular
methods for retrieving and setting IP and wireless information, a newer set
of programs is starting to appear in the Linux world. Simply called ip and
iw, these programs allow “one-stop shopping” for all of your IP and wire-
less configuration needs. With the ip command, you can list the IP address,
network mask, and router information with just a couple of commands:

ip addr show
ip route show

Similarly, with the iw command, you can display all of the wireless sta-
tistics (such as which frequencies your wireless card is listening on) and
select which bands your wireless card uses. If you find that the ifconfig
or iwconfig commands don’t work in your particular Linux distribution, try
using the ip and iw commands instead.

Basic Network Troubleshooting
Once you have a Linux network interface installed, there are a few things that you can
do to make sure it’s operating properly. This section walks you through the commands
that you should know to monitor the network interface and troubleshoot it if things aren’t
working correctly.

Checking the Log Files
One primary reason for a lack of network connectivity is that something went wrong with
the kernel loading the appropriate module for the network card hardware. The way to
troubleshoot this is to look at the kernel boot messages.

One way to do that is with the dmesg command, which displays the contents of the ker-
nel ring buffer. The kernel ring buffer contains kernel messages, but it cycles old messages

Basic Network Troubleshooting  289

c06.indd  09/14/2016  Page 289

out as new messages are received. If you recently booted the Linux system, the boot
messages may still be in the buffer. Here’s an example of the kernel boot messages for a
properly loaded wired network connection:

[2.06] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:b0:e3:02
[2.06] e1000 0000:00:03.0 eth0: Intel(R) PRO/1000 Network Connection
[21.89] e1000: eth0 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
[21.90] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[21.90] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

If it’s been awhile since you booted the Linux system, the kernel boot messages may
have rolled out of the kernel ring buffer. In that case, you’ll need to check the log files in the
/var/log directory. Depending on your Linux distribution, the kernel boot messages may
be in the dmesg, syslog, or messages file.

Viewing the ARP Cache
Each Linux system on the network has two unique addresses assigned to it. You’ve seen
that it requires a unique IP (or IPv6) address, but it also has a unique hardware address
assigned to the network card itself. This is the media access control (MAC) address, and
it is assigned by the network card manufacturer to identify each network card uniquely on
the network.

As your Linux system communicates with other devices on the network, it maps the
hardware MAC addresses associated with each system it talks with to the individual net-
work IP addresses. It does this using the Address Resolution Protocol (ARP). Linux main-
tains a cache of these addresses, called the ARP table. You can view the contents of the
ARP table by using the arp command:

$ arp
Address HWtype HWaddress Flags Mask Iface
10.0.2.2 ether 52:54:00:12:35:02 C enp0s3
$

This helps you map IP addresses to specific hardware devices on the network. Table 6.4
shows a few command-line options for the arp command that allow you to manipulate the
ARP table if you run into problems.

Ta b le 6 . 4     The arp command options

Option Description

-a Use BSD style output format.

-D Use the interface name instead of the hardware address in
the ARP table.

290  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 290

Option Description

-d address Delete the specified ARP table entry.

-e Use default Linux-style output.

-f filename Create new ARP table entries from the data in the file.

-H type Show only MAC addresses of the type specified.

-i Display only addresses received on the specified address.

-n Show numerical addresses instead of hostnames.

-s address hw_addr Create a new ARP table entry.

-v Use verbose mode.

By comparing the MAC addresses assigned to IP addresses, you may be able to detect
duplicate IP addresses assigned to different devices on your local network.

Sending Test Packets
One way to test network connectivity is to send test packets to known hosts. Linux pro-
vides the ping and ping6 commands to do just that. The ping and ping6 commands send
Internet Control Message Protocol (ICMP) packets to remote hosts using either IP (ping)
or IPv6 (ping6). ICMP packets work behind the scenes to track connectivity and provide
control messages between systems. If the remote host supports ICMP, it will send a reply
packet back when it receives a ping packet.

The basic format for the ping command is just to specify the IP address of the remote
host:

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=63 time=14.6 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=63 time=3.82 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=63 time=2.05 ms
64 bytes from 10.0.2.2: icmp_seq=4 ttl=63 time=0.088 ms
64 bytes from 10.0.2.2: icmp_seq=5 ttl=63 time=3.54 ms
64 bytes from 10.0.2.2: icmp_seq=6 ttl=63 time=3.97 ms
64 bytes from 10.0.2.2: icmp_seq=7 ttl=63 time=0.040 ms
^C

Table 6 .4     The arp command options  (continued)

Basic Network Troubleshooting  291

c06.indd  09/14/2016  Page 291

--- 10.0.2.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6020ms
rtt min/avg/max/mdev = 0.040/4.030/14.696/4.620 ms
$

The ping command continues sending packets until you press Ctrl+C. You can also use
the -c command-line option to specify a set number of packets to send and then stop.

For the ping6 command, things get a little more complicated. If you’re using an IPv6
link local address, you also need to tell the command which interface to send the packets
out on:

$ ping6 –c 4 fe80::c418:2ed0:aead:cbce%eth0
PING fe80::c418:2ed0:aead:cbce%eth0(fe80::c418:2ed0:aead:cbce) 56 data bytes
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=1 ttl=128 time=1.47 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=2 ttl=128 time=0.478 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=3 ttl=128 time=0.777 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=4 ttl=128 time=0.659 ms

--- fe80::c418:2ed0:aead:cbce%eth0 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.478/0.847/1.475/0.378 ms
$

The %eth0 part tells the system to send the ping packets out on the eth0 network inter-
face for the link local address.

Unfortunately, these days many hosts don’t support ICMP packets because
they can be used to create a denial-of-service (DOS) attack against the
host. Don’t be surprised if you try to ping a remote host and don’t get any
responses.

Testing Network Routes
The route command provides information about the default router on your local network,
but it doesn’t help you with determining just how your packets get to a remote destination
outside your local network. The traceroute command can do that.

The traceroute command attempts to send ICMP packets to the specified destination,
and it lists all the router hops that the packets traversed to get to the remote host, as well as
the time it took for the packet to get to each intermediate route:

$ traceroute www.google.com
traceroute to www.google.com (74.125.21.103), 30 hops max, 60 byte packets
 1 10.0.2.2 (10.0.2.2) 1.398 ms 0.146 ms 0.134 ms
 2 192.168.1.254 3.442 ms 3.290 ms 3.044 ms

http://www.google.com
http://www.google.com

292  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 292

 3 162-194-188-3.lightspeed.iplsin.sbcglobal.net (162.194.188.3) 21.100 ms
20.891 ms 20.671 ms
 4 75.19.192.192 (75.19.192.192) 21.092 ms 21.280 ms 21.368 ms
 5 75.19.192.184 (75.19.192.184) 21.051 ms 20.887 ms 20.683 ms
 6 12.83.79.1 (12.83.79.1) 23.565 ms 20.763 ms 20.760 ms
 7 ggr6.cgcil.ip.att.net (12.122.132.189) 25.598 ms 24.118 ms 23.424 ms
 8 12.251.23.6 (12.251.23.6) 25.932 ms 26.039 ms 25.841 ms
 9 209.85.242.133 (209.85.242.133) 26.004 ms 209.85.242.217 (209.85.242.217)
28.107 ms 209.85.242.137 (209.85.242.137) 27.266 ms
10 72.14.237.130 (72.14.237.130) 31.427 ms 209.85.143.111 (209.85.143.111)
27.148 ms 209.85.241.47 (209.85.241.47) 30.260 ms
11 72.14.239.90 (72.14.239.90) 75.216 ms 72.14.239.190 (72.14.239.190)
47.397 ms 209.85.142.110 (209.85.142.110) 44.399 ms
12 216.239.56.164 (216.239.56.164) 66.881 ms 209.85.142.65 (209.85.142.65)
44.669 ms 216.239.56.166 (216.239.56.166) 68.130 ms
13 * * *
14 yv-in-f103.1e100.net (74.125.21.103) 57.001 ms 56.802 ms 56.696 ms
$

This output shows that it took 14 router hops to get from the Linux system to the www
.google.com host. Notice that the times for each hop increase as the packets get closer to
the destination host.

The mtr command (short for My Traceroute) is designed to provide real-time informa-
tion about network performance. It combines the traceroute and ping commands into a
single interface that continually updates in real-time:

mtr www.google.com
 My traceroute [v0.85]
ubuntu02 (0.0.0.0) Wed Jul 13 15:25:09 2016
Keys: Help Display mode Restart statistics Order of fields quit
 Packets Pings
 Host Loss% Snt Last Avg Best Wrst StDev
 1. 10.0.2.2 0.0% 24 7.0 1.5 0.0 7.0 1.7
 2. homeportal 0.0% 24 5.4 5.3 0.8 17.4 3.9
 3. 162-194-188-2.lightspeed.ip 8.3% 23 14.15 14.08 14.43 14.33 3.6
 4. 75.19.192.190 0.0% 23 22.5 20.6 12.8 29.9 4.0
 5. 12.83.79.1 0.0% 23 27.6 23.3 13.1 32.1 4.7
 6. ggr2.cgcil.ip.att.net 0.0% 23 35.4 57.6 20.9 160.2 44.7
 7. 12.250.102.18 0.0% 23 22.0 25.4 20.8 33.8 3.1
 8. 209.85.254.120 0.0% 23 34.6 26.9 21.5 35.8 4.2
 9. 209.85.254.238 0.0% 23 30.8 27.5 21.1 38.5 4.5
10. 72.14.239.90 0.0% 23 44.3 47.5 41.5 61.0 5.2
11. 209.85.248.53 0.0% 23 48.2 47.9 38.0 61.5 5.4

http://www.google.com
http://www.google.com
http://www.google.com

Basic Network Troubleshooting  293

c06.indd  09/14/2016  Page 293

12. ???
13. yw-in-f106.1e100.net 0.0% 23 41.6 46.3 37.2 66.9 6.0

By continually sending ping packets to the remote routers, the mtr command can display
a detailed hop-by-hop picture of what’s happening to your network packets.

Testing Client/Server Connectivity
Just being able to push ping or traceroute packets to a remote host may not necessarily
prove much; sometimes you need to simulate real data across the network. A great tool for
doing that is the nc command (short for netcat).

The nc command allows you to simulate both a server and a client from the command
line. You can use the nc command to send data out on the network, as well as receive data
from the network by specifying command-line options, as shown in Table 6.5.

Ta b le 6 .5     The nc command-line options

Option Description

-4 Force IPv4 addresses only.

-6 Force IPv6 addresses only.

-b Allow broadcast packets.

-C Send CRLF characters at the end of each line.

-D Enable debugging.

-d Don’t read from the standard input.

-h Display help.

-I len Specify the size of the TCP receive buffer.

-i int Specify the delay interval between sending and receiving.

-k Force listening after a connection closes.

-l Listen for an incoming connection.

-n Do not try DNS hostname lookups for addresses.

-O len Specify the size of the TCP output buffer.

-P user Specify a proxy username.

294  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 294

Option Description

-p port Specify the source port.

-q sec Specify the number of seconds to wait after an EOF.

-r Use random send and receive ports.

-S Use the MD5 signature option.

-s addr Specify the IP address of the sending interface.

-T tos Specify the TCP Type of Service value.

-t Allow scripted Telnet sessions.

-U Use Unix domain sockets.

-u Use UDP instead of TCP.

-V table Specify the routing table to use.

-v Display more verbose output.

-w sec Specify the timeout value.

-X proto Specify the proxy protocol.

-x addr Specify the proxy address.

-Z Use DCCP mode.

-z Scan for listening applications but don’t send data.

To use nc, you just need to set up a server on one system and a client on another system.
To start a server, use the –l option to specify a port to listen on:

$ nc –l 8000

Then, on the client system, specify the server’s IP address and the port to connect to:

$ nc 192.168.1.77 8000

The nc command will connect to the server, and then any text typed on one end will be
sent to the other using TCP.

Table 6 .5     The nc command-line options  (continued)

Basic Network Troubleshooting  295

c06.indd  09/14/2016  Page 295

Finding Host Information
Sometimes the problem isn’t with network connectivity but with the DNS hostname
system. You can test a hostname using the host command:

$ host www.linux.org
www.linux.org is an alias for linux.org.
linux.org has address 107.170.40.56
linux.org mail is handled by 20 mx.iqemail.net.
$

The host command queries the DNS server to determine the IP addresses assigned to
the specified hostname. By default, it returns all IP addresses associated with the hostname.
Some hosts are supported by multiple servers in a load-balancing configuration. The host
command will show all of the IP addresses associated with those servers:

$ host www.google.com
www.google.com has address 74.125.138.104
www.google.com has address 74.125.138.105
www.google.com has address 74.125.138.147
www.google.com has address 74.125.138.99
www.google.com has address 74.125.138.103
www.google.com has address 74.125.138.106
www.google.com has IPv6 address 2607:f8b0:4002:c0c::67
$

You can also specify an IP address for the host command, and it will attempt to find the
hostname associated with it:

$ host 107.170.40.56
56.40.170.107.in-addr.arpa domain name pointer iqdig11.iqnection.com.
$

Notice, though, that often an IP address will resolve to a generic server hostname that
hosts the website and not the website alias, as is the case here with the www.linux.org IP
address.

Another great tool to use is the dig command. The dig command displays all of the
DNS data records associated with a specific host or network. For example, you can look up
the information for a specific hostname:

$ dig www.linux.org

; <<>> DiG 9.9.4-RedHat-9.9.4-18.el7_1.5 <<>> www.linux.org
;; global options: +cmd
;; Got answer:

http://www.linux.org
http://www.linux.org
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.linux.org
http://www.linux.org
http://www.linux.org

296  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 296

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45314
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.linux.org. IN A

;; ANSWER SECTION:
www.linux.org. 14400 IN CNAME linux.org.
linux.org. 3600 IN A 107.170.40.56

;; Query time: 75 msec
;; SERVER: 192.168.1.254#53(192.168.1.254)
;; WHEN: Sat Feb 06 17:44:29 EST 2016
;; MSG SIZE rcvd: 72

$

Or you can look up DNS data records associated with a specific network service, such as
a mail server:

$ dig linux.org MX

; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> linux.org MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16202
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;linux.org. IN MX

;; ANSWER SECTION:
linux.org. 3600 IN MX 20 mx.iqemail.net.

;; Query time: 75 msec
;; SERVER: 127.0.1.1#53(127.0.1.1)
;; WHEN: Tue Feb 09 12:35:43 EST 2016

http://www.linux.org
http://www.linux.org

Advanced Network Troubleshooting  297

c06.indd  09/14/2016  Page 297

;; MSG SIZE rcvd: 68

$

The MX data record points to the server that accepts mail for the domain.

Network Security
If a client can’t connect to a network service, you may need to look into the security restric-
tion settings for the service. Many network applications provide network security by
allowing only specific hosts to connect (called a whitelist) or by blocking problematic hosts
(called a blacklist).

The tcp_wrappers program is a common Linux utility that allows you to create whitelists
and blacklists for network applications. It does that by acting as a proxy for network appli-
cations defined in the /etc/inetd.conf configuration file. It intercepts all packets destined
to the transport ports specified in the configuration file, compares the source IP address to a
database list, and then passes allowed addresses to the specified application.

The access lists are contained in two files:

■■ /etc/hosts.allow

■■ /etc/hosts.deny

As you can probably guess, the hosts.allow file is the whitelist file. Client addresses
specified in that file are allowed access to the applications. The hosts.deny file is the black-
list file. Client addresses specified in that file are denied access.

Advanced Network Troubleshooting
Besides the simple network tests shown in the previous section, Linux has some more
advanced programs that can provide further information about the network environment.
The following sections describe some of the more advanced features that you have available
when doing your network troubleshooting.

Viewing Open Network Connections
Sometimes it helps to be able to see just what network connections are active on a Linux
system. There are two ways to troubleshoot that issue: the lsof command and the netstat
command.

The lsof Command
The lsof command provides a list of files that are currently open on the Linux system.
Since Linux treats network connections as files, any open network session will appear in
the lsof output list.

298  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 298

The lsof command will produce lots of output. To limit the output to only network
connections, use the –i command-line option:

lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
avahi-dae 602 avahi 12u IPv4 15753 0t0 UDP *:mdns
avahi-dae 602 avahi 13u IPv4 15754 0t0 UDP *:39181
chronyd 613 chrony 1u IPv4 14930 0t0 UDP *:ntp
chronyd 613 chrony 2u IPv6 14931 0t0 UDP *:ntp
chronyd 613 chrony 3u IPv4 14932 0t0 UDP localhost:323
chronyd 613 chrony 5u IPv6 14933 0t0 UDP localhost:323
sshd 1052 root 3u IPv4 17701 0t0 TCP *:ssh (LISTEN)
sshd 1052 root 4u IPv6 17703 0t0 TCP *:ssh (LISTEN)
dhclient 1246 root 6u IPv4 18831 0t0 UDP *:bootpc
dhclient 1246 root 20u IPv4 18772 0t0 UDP *:7714
dhclient 1246 root 21u IPv6 18773 0t0 UDP *:12082
master 1513 root 13u IPv4 19506 0t0 TCP localhost:smtp (LISTEN)
master 1513 root 14u IPv6 19507 0t0 TCP localhost:smtp (LISTEN)
cupsd 2981 root 11u IPv6 24473 0t0 TCP localhost:ipp (LISTEN)
cupsd 2981 root 12u IPv4 24474 0t0 TCP localhost:ipp (LISTEN)
#

Or, if you’re interested in seeing IPv6 network connections, use the –i6 option:

lsof -i6
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
chronyd 613 chrony 2u IPv6 14931 0t0 UDP *:ntp
chronyd 613 chrony 5u IPv6 14933 0t0 UDP localhost:323
sshd 1052 root 4u IPv6 17703 0t0 TCP *:ssh (LISTEN)
dhclient 1246 root 21u IPv6 18773 0t0 UDP *:12082
master 1513 root 14u IPv6 19507 0t0 TCP localhost:smtp (LISTEN)
cupsd 2981 root 11u IPv6 24473 0t0 TCP localhost:ipp (LISTEN)
#

The netstat Command
The netstat command can provide a wealth of network information for you. By default, it
lists all of the open network connections on the system:

netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
Active UNIX domain sockets (w/o servers)

Advanced Network Troubleshooting  299

c06.indd  09/14/2016  Page 299

Proto RefCnt Flags Type State I-Node Path
unix 2 [] DGRAM 10825 @/org/freedesktop/
systemd1/notify
unix 2 [] DGRAM 10933 /run/systemd/
shutdownd
unix 6 [] DGRAM 6609 /run/systemd/journal/
socket
unix 25 [] DGRAM 6611 /dev/log
unix 3 [] STREAM CONNECTED 25693
unix 3 [] STREAM CONNECTED 20770 /var/run/dbus/system_
bus_socket
unix 3 [] STREAM CONNECTED 19556
unix 3 [] STREAM CONNECTED 19511
unix 2 [] DGRAM 24125
unix 3 [] STREAM CONNECTED 19535
unix 3 [] STREAM CONNECTED 18067 /var/run/dbus/system_
bus_socket
unix 3 [] STREAM CONNECTED 32358
unix 3 [] STREAM CONNECTED 24818 /var/run/dbus/system_
bus_socket
...

The netstat command produces considerable output, because normally many pro-
grams use network services on Linux systems. You can limit the output to just TCP or
UDP connections by using the –t command-line option for TCP connections or –u for UDP
connections:

netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 0 10.0.2.15:58630 productsearch.ubu:https CLOSE_WAIT
tcp6 1 0 ip6-localhost:57782 ip6-localhost:ipp CLOSE_WAIT
#

You can also get a list of what applications are listening on which network ports by
using the –l option:

netstat -l
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 ubuntu02:domain *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN
udp 0 0 *:ipp *:*

300  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 300

udp 0 0 *:mdns *:*
udp 0 0 *:36355 *:*
udp 0 0 ubuntu02:domain *:*
udp 0 0 *:bootpc *:*
udp 0 0 *:12461 *:*
udp6 0 0 [::]:64294 [::]:*
udp6 0 0 [::]:60259 [::]:*
udp6 0 0 [::]:mdns [::]:*
...

As you can see, a standard Linux workstation still has numerous things happening in the
background, waiting for connections.

Viewing Network Statistics
Yet another great feature of the netstat command is that the –s option displays statistics
for the different types of packets that the system has used on the network:

netstat -s
Ip:
 240762 total packets received
 0 forwarded
 0 incoming packets discarded
 240747 incoming packets delivered
 206940 requests sent out
 32 dropped because of missing route
Icmp:
 57 ICMP messages received
 0 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 12
 timeout in transit: 38
 echo replies: 7
 7 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 echo request: 7
IcmpMsg:
 InType0: 7
 InType3: 12
 InType11: 38
 OutType8: 7

Advanced Network Troubleshooting  301

c06.indd  09/14/2016  Page 301

Tcp:
 286 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 0 connections established
 239933 segments received
 206091 segments send out
 0 segments retransmited
 0 bad segments received.
 0 resets sent
Udp:
 757 packets received
 0 packets to unknown port received.
 0 packet receive errors
 840 packets sent
 0 receive buffer errors
 0 send buffer errors
UdpLite:
TcpExt:
 219 TCP sockets finished time wait in fast timer
 15 delayed acks sent
 26 delayed acks further delayed because of locked socket
 Quick ack mode was activated 1 times
 229343 packet headers predicted
 289 acknowledgments not containing data payload received
 301 predicted acknowledgments
 TCPRcvCoalesce: 72755
IpExt:
 InNoRoutes: 2
 InMcastPkts: 13
 OutMcastPkts: 15
 InOctets: 410722578
 OutOctets: 8363083
 InMcastOctets: 2746
 OutMcastOctets: 2826
#

The netstat statistics output can give you a rough idea of how busy your Linux system
is on the network or if there’s a specific issue with one of the protocols installed.

302  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 302

Another tool used to view network socket statistics is the ss command. The ss com-
mand works in a similar manner to the netstat command, but it can also display detailed
socket information, such as the send and receive queues for the sockets:

ss
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
u_str ESTAB 0 0 @/tmp/dbus-IBMGoMLy3h 14063 * 14062
u_str ESTAB 0 0 @/tmp/dbus-IBMGoMLy3h 13346 * 13345
u_str ESTAB 0 0 * 11993 * 11994
u_str ESTAB 0 0 * 10067 * 10068
u_str ESTAB 0 0 @/tmp/.X11-unix/X0 13143 * 13142
u_str ESTAB 0 0 @/tmp/.X11-unix/X0 12098 * 12097
u_str ESTAB 0 0 * 13794 * 13795
u_str ESTAB 0 0 @/tmp/.X11-unix/X0 13568 * 13567
u_str ESTAB 0 0 /var/run/dbus/system_bus_socket 12015 * 12014
u_str ESTAB 0 0 * 7509 * 7515
u_str ESTAB 0 0 * 12122 * 12124
u_str ESTAB 0 0 * 9463 * 9465
u_str ESTAB 0 0 @/tmp/dbus-EMEzMtP8a8 13869 * 13868
u_str ESTAB 0 0 @/tmp/dbus-EMEzMtP8a8 12432 * 12367

By examining the send and receive queues in the sockets, you can tell if an application is
having trouble keeping up with the data it sends or receives.

Scanning the Network
While the netstat command is great for determining what applications are listening to
which network posts on your Linux system, the nmap command takes that idea one step
further and allows you to scan your local network to view what network ports other hosts
have open.

The nmap command is somewhat powerful, so it’s not usually installed by default in
Linux distributions. However, you can usually install it directly from the software reposi-
tory in most Linux distributions. For Ubuntu, you just use

$ sudo apt-get install nmap

The basic format for the nmap command is

nmap [scan type] [options] target

The nmap command provides different types of network scanning, from brute-force con-
nection attempts to stealthy connections that can slip through firewalls. The target para
meter allows you to scan a specific host on the network or a range of hosts on the network
based on IP addresses.

Advanced Network Troubleshooting  303

c06.indd  09/14/2016  Page 303

Here’s an example of the output from a simple scan:

$ nmap 10.0.2.2

Starting Nmap 6.40 (http://nmap.org)
Nmap scan report for 10.0.2.2
Host is up (0.0026s latency).
Not shown: 988 closed ports
PORT STATE SERVICE
548/tcp filtered afp
555/tcp filtered dsf
631/tcp open ipp
1057/tcp filtered startron
1079/tcp filtered asprovatalk
1164/tcp filtered qsm-proxy
2040/tcp filtered lam
4224/tcp filtered xtell
5100/tcp filtered admd
5960/tcp filtered unknown
27352/tcp filtered unknown
49175/tcp filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 10.74 seconds
$

The nmap command found several TCP network ports that accepted connections on the
destination system.

Be careful when running the nmap tool in a network environment. Ensure
that you have permission from the administrator for each host that you
scan. Because of its use by attackers, many organizations ban the use of
nmap on their networks and prosecute anyone caught using it (even internal
employees).

Capturing Network Traffic
When it comes to troubleshooting specific network applications, nothing can replace viewing
the actual network packets that are sent between the systems on the network. Fortunately,
Linux provides the tcpdump command just for doing that.

The tcpdump program places the network card in promiscuous mode, which enables it
to capture all network traffic that it sees (not just traffic destined for the host). This allows
you to sniff any type of network traffic and even use your Linux system as a crude network
sniffer to troubleshoot other network issues.

http://nmap.org

304  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 304

By default, tcpdump captures all packets that it sees on the network interface and dis-
plays a rough description of each packet, as shown here:

tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enp0s3, link-type EN10MB (Ethernet), capture size 65535 bytes
18:10:04.782397 IP localhost.localdomain > 10.0.2.2: ICMP echo request, id
27838, seq 1, length 64
18:10:04.783052 IP 10.0.2.2 > localhost.localdomain: ICMP echo reply, id 27838,
seq 1, length 64
18:10:05.787166 IP localhost.localdomain > 10.0.2.2: ICMP echo request, id
27838, seq 2, length 64
18:10:05.792399 IP 10.0.2.2 > localhost.localdomain: ICMP echo reply, id 27838,
seq 2, length 64
18:10:06.789194 IP localhost.localdomain > 10.0.2.2: ICMP echo request, id
27838, seq 3, length 64
18:10:06.791284 IP 10.0.2.2 > localhost.localdomain: ICMP echo reply, id 27838,
seq 3, length 64
18:10:07.797694 IP localhost.localdomain > 10.0.2.2: ICMP echo request, id
27838, seq 4, length 64
18:10:07.805278 IP 10.0.2.2 > localhost.localdomain: ICMP echo reply, id 27838,
seq 4, length 64
#

In this example, the tcpdump command captured the ICMP request packets sent from the
ping command to a remote host, as well as the reply packets returned by the remote host to
the Linux system.

You can also specify command-line options that restrict what tcpdump captures and how
it displays the data. Table 6.6 shows some of the more useful command-line options.

Ta b le 6 .6     Useful tcpdump command-line options

Option Description

-A Display the packet contents in ASCII.

-b Display the AS number in BGP routing packets.

-B Set the packet capture buffer size.

-c Exit after receiving the specified number of packets.

-C If writing the output to a file, check the file size and, if larger than
specified, start a new capture file.

-d Dump the packet-matching code in human-readable form.

-dd Dump the packet-matching code as a C program fragment.

Advanced Network Troubleshooting  305

c06.indd  09/14/2016  Page 305

Option Description

-ddd Dump the packet-matching code as decimal numbers.

-D Display the list of network interfaces.

-e Display the link-level headers for each packet.

-E Define the key used to decrypt encrypted packets.

-f Display IP addresses numerically instead of using hostnames.

-F Specify a file to read filters from.

-G Rotate the dump file to a new file the specified number of seconds.

-h Display the tcpdump version.

-H Detect 802.11s headers.

-i Specify the interface to listen for packets on.

-I Place the interface in monitor mode (only for wireless interfaces).

-j Specify the timestamp format.

-J Display the supported timestamp formats for the interface.

-K Don’t verify packet checksum values.

-l Make the output line buffered.

-L Display the list of data link types for the interface.

-m Load SMI MIB modules.

-M Specify the shared secret key for validating TCP digests.

-n Don’t convert IP addresses to names.

-N Don’t display fully qualified domain names, only hostnames.

-O Don’t use the packet-capture optimizer.

-p Don’t place the interface in promiscuous mode.

-P Select which packet direction to capture (in, out, or inout).

-q Quick mode, display less packet detail.

306  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 306

Option Description

-r Read packets from the specified file.

-s Capture only the specified number of bytes from each packet.

-S Use absolute rather than relative TCP sequence numbers.

-t Don’t print the timestamp for each packet.

-tt Display an unformatted timestamp.

-ttt Use a delta timestamp from the previous line.

-tttt Display the timestamp using the date and default format.

-ttttt Use a delta timestamp from the first packet.

-T Specify the type of packets to filter.

-u Display undecoded NFS handles.

-v Display slightly more verbose output.

-vv Display even more verbose output.

-vvv Display full verbose output.

-w Write all packets to the specified file.

-W Specify the number of capture files to generate.

-x Display the packet data in hex.

-xx Display the packet data and link-layer data in hex.

-X Display the packet data in hex and ASCII.

-XX Display the packet data and link-layer data in hex and ASCII.

-y Specify the data link type to use.

-z Run the specified command for each capture file generated.

-Z Change to the specified userid before opening the capture file.

Table 6 .6     Useful tcpdump command-line options  (continued)

Advanced Network Troubleshooting  307

c06.indd  09/14/2016  Page 307

As you can see from Table 6.6, you have many ways to customize the tcpdump program
to display and store network data captured from the network card. This is a great tool to
use for troubleshooting network applications that don’t work.

E x e rc i s e 6 .1

Determining the Network Environment

This exercise demonstrates how to quickly assess the network configuration and pro-
grams for your Linux system without having to dig through lots of configuration files. To
document your system network information, follow these steps:

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of
the following commands.

2.	 Type ifconfig to display the current network interfaces on your system. You
will most likely see a loopback interface (named l0) and one or more network
interfaces. Write down the IP (called inet) and IPv6 (called inet6) addresses
assigned to each network interface, along with the hardware address and the
network mask address.

3.	 If your system has a wireless network card that supports scanning, type
iwlist wlan0 scan to view the wireless access points in your area.

4.	 If your system has a wireless network card, type iwconfig to display the current
wireless settings for your network interface.

5.	 Type route to display the routes defined on your system. Note the default gateway
address assigned to your system. It should be on the same network as the IP address
assigned to the system.

6.	 Type cat /etc/resolv.conf to display the DNS settings for your system.

7.	 Type netstat –l to display the programs listening for incoming network connections.
The entries marked as unix are using the loopback address to communicate with
other programs internally on your system.

8.	 Install the tcpdump program on your system using either apt-get for Debian-based
systems or yum for Red Hat–based systems.

9.	 Type tcpdump to start the tcpdump program listening on the default network interface
for your system.

10.	 Open a second terminal session; then type ping www.linux.org. Press the Ctrl+C
key combination after a few ping packets have processed.

11.	 Switch back to the tcpdump session window, and observe the packets detected and
displayed.

http://www.linux.org

308  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 308

Summary
Connecting Linux systems to networks can be painless if you have the correct tools. To
connect the Linux system, you’ll need an IP address, a netmask address, a default router,
a hostname, and a DNS server. If you don’t care what IP address is assigned to your Linux
system, you can obtain these values automatically using DHCP. However, if you are
running a Linux server that requires a static IP address, you may need to configure these
values manually.

Linux stores network connection information in configuration files. You can either man-
ually modify the files to store the appropriate network information or use a graphical or
command-line tool to do that. Network Manager is the most popular graphical tool used
by Linux distributions. It allows you to configure both wired and wireless network settings
from a graphical window. The Network Manager icon in the Panel area shows network
connectivity, as well as basic wireless information for wireless network cards.

If you must configure your network settings from the command line, you’ll need to use a
few different tools. For wireless connections, you’ll need to use the iwconfig command to set
the wireless access point and SSID key. For both wireless and wired connections, you’ll need
to use the ifconfig command to set the IP address and netmask values for the interface. You
will also need to use the route command to define the default router for the local network.

To use hostnames instead of IP addresses, you’ll need to define a DNS server for your
network. You do that in the /etc/resolv.conf configuration file. You will also need to define
the hostname for your Linux system in either the /etc/hostname or /etc/HOSTNAME file.

Once your network configuration is complete, you may have to do some additional
troubleshooting for network problems. The ping and traceroute commands allow you to
send ICMP packets to remote hosts to test basic connectivity and trace the path the packets
take across the network. The nc command allows you to send any type of data across the
network between two systems. If you suspect issues with hostnames, you can use the host
and dig commands to query the DNS server for hostnames.

For more advanced network troubleshooting, you can use the lsof and netstat com-
mands to display what applications are using which network ports on the system. The nmap
command allows you to perform a complete scan of any system on the network to detect
open ports and applications. Finally, the tcpdump command lets you peek at the network
traffic as it crosses the network card on your system.

Exam Essentials
Describe the utilities required to configure and manipulate Ethernet network interfaces.    To
set the IP and netmask addresses on an Ethernet interface, you use the ifconfig command.
To set the default router (or gateway) for a network, you use the route command. Some
Linux distributions use the newer ip command, which can configure all three values.

Explain how to configure basic access to a wireless network.    Linux uses the iwlist
command to list all wireless access points detected by the wireless network card. You can

Exam Essentials  309

c06.indd  09/14/2016  Page 309

configure the settings required to connect to a specific wireless network using the iwconfig
command. At a minimum, you’ll need to configure the access point SSID value and most
likely specify the encryption key value to connect to the access point.

Describe how to manipulate the routing table on a Linux system.    The route command
is used to display the existing router table used by the Linux system. You can add a new
route by using the add option or remove an existing route by using the del option. You can
specify the default router (gateway) used by the network by adding the default keyword to
the command.

Summarize the tools that you would need to analyze the status of network devices.    The
ifconfig command displays the current status of all network interfaces on the system. You
can also use the lsof command to display all open network files or the netstat command
to display statistics for all listening network ports. You can use the nmap command to scan
the network status of remote systems on your network or use the arp command to display
the hardware address associated with each IP address on the network.

Explain the utilities used to monitor and analyze TCP/IP traffic.    The netstat command
allows you to monitor what applications are listening for new network connections or what
applications are connected to remote server applications. The tcpdump command allows
you to capture and analyze specific network traffic.

Explain how Linux can restrict access to a network application.    Linux network applica-
tions can utilize the tcp_wrappers application, which acts as a middleman, intercepting
client connections to the application. The /etc/hosts.allow file lists clients that are
allowed to connect to the network applications on the system, while the /etc/hosts.deny
file lists clients that are blocked from accessing the network applications.

Describe how Linux initializes the network interfaces.    Debian-based Linux systems use
the /etc/network/interfaces file to configure the IP address, netmask, and default router.
Red Hat–based Linux systems use files in the /etc/sysconfig/network-scripts folder. The
ifcfg-eth0 file contains the IP address and netmask settings, while the network file contains
the default router settings. These files are examined at bootup to determine the network inter-
face configuration. You can see the network interface initialization status by using the dmesg
command, or look in the system log files, such as /var/log/syslog or /var/log/messages.

Explain how to test network connectivity.    The ping command allows you to send ICMP
messages to remote hosts, and it displays the response received. For more advanced testing,
the traceroute command attempts to connect to a remote host and lists all network routers
traversed to reach the remote system.

Describe one graphical tool used to configure network settings in Linux.    The Network
Manager tool provides a graphical interface for changing settings on the network interfaces.
The Network Manager appears as an icon in the desktop Panel area. If your Linux system
uses a wireless network card, the icon appears as a radio signal, while for wired network
connections it appears as two arrows. When you click the icon, it shows the current network
status, and for wireless interfaces, it shows a list of the access points detected. When you
open the Network Manager interface, it allows you to either set static IP address information
or configure the network to use a DHCP server to set the network configuration dynamically.

310  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 310

Review Questions
You can find the answers in the Appendix.

1.	 Which network layer uses the Wi-Fi Protected Access (WPA) encryption?

A.	 Network

B.	 Physical

C.	 Transport

D.	 Application

2.	 What network layer feature defines the network to which the system is connected?

A.	 IP address

B.	 Default router

C.	 Hostname

D.	 Netmask

E.	 DNS server

3.	 Which of the following is a correct netmask value?

A.	 255.255.255.0

B.	 255.255.0.255

C.	 192.168.1.0

D.	 192.168.0.1

E.	 0.255.255.255

4.	 What two parts make up an IP address?

A.	 Host address and router

B.	 Netmask and host address

C.	 Netmask and router

D.	 Host address and hostname

E.	 Network address and host address

5.	 How many bits are used in an IPv6 address?

A.	 32

B.	 64

C.	 128

D.	 256

E.	 8

6.	 What network setting defines the network device that routes packets intended for hosts on
remote networks?

A.	 Default router

B.	 Netmask

Review Questions  311

c06.indd  09/14/2016  Page 311

C.	 Hostname

D.	 IP address

E.	 DNS server

7.	 What device setting defines a host that maps a hostname to an IP address?

A.	 Default router

B.	 Netmask

C.	 Hostname

D.	 IP address

E.	 DNS server

8.	 What is used to assign an IP address automatically to a client?

A.	 Default router

B.	 DHCP

C.	 ARP table

D.	 Netmask

E.	 ifconfig

9.	 What type of address is used so that local applications can use network protocols to
communicate with each other?

A.	 Dynamic address

B.	 Loopback address

C.	 Static address

D.	 Hostname

E.	 MAC address

10.	 Which transport layer protocol guarantees packet delivery?

A.	 TCP

B.	 UDP

C.	 ICMP

D.	 DNS

E.	 DHCP

11.	 Which nc command format listens for incoming HTTP connections to simulate a web
server?

A.	 nc 192.168.1.77 80

B.	 nc –l 80

C.	 nc 192.168.1.77

D.	 nc 80 192.168.1.77

E.	 nc –l 22

312  Chapter 6  ■  Navigating Network Services

c06.indd  09/14/2016  Page 312

12.	 What folder do Red Hat–based systems use to store network configuration files?

A.	 /etc/sysconfig/network-scripts

B.	 /etc/network

C.	 /etc/ifcfg-eth0

D.	 /etc/ifconfig

E.	 /etc/iwconfig

13.	 Which configuration line sets a dynamic IP address for a Debian system?

A.	 iface eth0 inet static

B.	 iface eth0 inet dhcp

C.	 auto eth0

D.	 iface eth0 inet6 auto

E.	 BOOTPROTO=dynamic

14.	 Which file contains a list of DNS servers that the Linux system can use to resolve
hostnames?

A.	 /etc/hosts.allow

B.	 /etc/resolv.conf

C.	 /etc/inetd.conf

D.	 /etc/network/interfaces

E.	 /etc/host.deny

15.	 Which ifconfig format correctly assigns an IP address and netmask to the eth0 interface?

A.	 ifconfig eth0 down 192.168.1.50 netmask 255.255.255.0

B.	 ifconfig eth0 255.255.255.0 192.168.1.50

C.	 ifconfig up 192.168.1.50 netmask 255.255.255.0

D.	 ifconfig up

E.	 ifconfig down

16.	 What command displays all of the available wireless networks in your area?

A.	 iwlist

B.	 iwconfig

C.	 ifconfig

D.	 ip

E.	 arp

17.	 What option sets the wireless access point name in the iwconfig command?

A.	 key

B.	 netmask

Review Questions  313

c06.indd  09/14/2016  Page 313

C.	 address

D.	 essid

E.	 channel

18.	 What command can you use both to display and to set the IP address, netmask, and default
router values?

A.	 ifconfig

B.	 iwconfig

C.	 router

D.	 ifup

E.	 ip

19.	 What tool allows you to send ICMP messages to a remote host to test network
connectivity?

A.	 netstat

B.	 nmap

C.	 ping

D.	 nc

E.	 tcpdump

20.	 Which command allows you to view network packets?

A.	 dig

B.	 tcpdump

C.	 ping

D.	 netstat

E.	 nc

c07.indd  09/14/2016  Page 315

The LPI 202
Exam

Part

II

c07.indd  09/14/2016  Page 317

Chapter

7
Organizing Email
Services

The following exam objectives are
covered in this chapter:

✓✓ 211.1 Using e-mail servers

✓✓ 211.2 Managing E-Mail Delivery

✓✓ 211.3 Managing Mailbox Access

c07.indd  09/14/2016  Page 318

Email is one of the most-used features of the Internet. Whether
you’re creating a small intra-office email system or a Linux
email server to support thousands of users, knowing how
to configure email services on a Linux system has become a
necessity.

This chapter looks at how to configure your Linux system to interact with email servers
and clients. First, it covers the basics of email, showing just how email services are imple-
mented in a Linux environment. Next, the chapter examines the protocols with which
you’ll need to become familiar in order to work with email in Linux. Following that, the
chapter discusses two of the most popular email server packages used in Linux—sendmail
and Postfix. Finally, it shows you how to customize both local and remote email delivery
packages to allow Linux users to read and send mail messages.

The Linux Mail System
Before we look at how to use email servers in Linux, let’s examine how Linux handles
email in general. Linux follows the Unix method of handling email. One of the main
innovations of the Unix operating system was to make email processing software
modular.

Instead of having one monolithic program that handles all of the pieces required for
sending and receiving mail, Linux uses multiple small programs that work together in the
processing of email messages. Each program handles a smaller piece of the system’s total
functionality. Email functions are broken into separate pieces and then assigned to separate
programs running on the system. Figure 7.1 shows you how most open source email soft-
ware modularizes email functions in a Linux environment.

As you can see, the Linux email server is normally divided into three separate functions:

■■ The mail transfer agent (MTA)

■■ The mail delivery agent (MDA)

■■ The mail user agent (MUA)

The lines between these three functions are often fuzzy. Some Linux email packages
combine functionality for the MTA and MDA functions, while others combine the MDA
and MUA functions. The following sections describe these basic email agents and explain
in greater detail how they are implemented in Linux systems.

The Linux Mail System  319

c07.indd  09/14/2016  Page 319

Mail Transfer Agent
The mail transfer agent (MTA) software is responsible for handling both incoming and
outgoing email messages. For each outgoing email message, the MTA determines the des-
tination host of the recipient address. If the destination host is the local machine, the MTA
can either deliver the email message directly to the user’s local mailbox or pass the message
off to a local MDA program for delivery. If the destination host is a remote mail server, the
MTA must establish a communication link with another MTA program on the remote host
to transfer the message.

For incoming messages, the MTA must be able to accept connection requests from
remote email servers and receive messages for local users. The most common protocol used
for Internet mail transfer is the Simple Mail Transfer Protocol (SMTP).

The Linux environment has many different types of open source MTA programs, and
each type offers different features for the mail administrator. You should choose the MTA
program that meets the most requirements of your particular email environment.

The LPIC-2 exam covers two popular MTA packages that are in wide use in the Linux
world:

■■ sendmail

■■ Postfix

Fi gu r e 7.1     The Linux modular email environment

Linux Server

Workstation

Remote
MTAs

Email Database

Mail User Agent (MUA) Mail Transfer Agent (MTA)

Mail Delivery Agent (MDA)

320  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 320

Besides these two packages, which are covered on the LPIC-2 exam, two other popular
MTA packages that you’ll find in Linux environments are Exim and qmail.

The following sections describe the sendmail and Postfix MTA programs in more depth.

Sendmail
Sendmail is one of the most popular Linux MTA programs available. Written by Eric Allman
while at the University of California, Berkeley, sendmail is now maintained by the Sendmail
Consortium (http://www.sendmail.org).

The sendmail program has gained popularity mainly due to its ability to be extremely
versatile. Many of the standard features in sendmail have become synonymous with
email systems—virtual domains, message forwarding, user aliases, mail lists, and host
masquerading.

You can use sendmail for many types of email configurations, such as large corporate
Internet email servers, small corporate servers that connect to ISPs, and even stand-alone
workstations that forward mail through a mail hub. By simply changing a few lines in the
sendmail configuration file, you can change its characteristics and behavior.

Sendmail can also parse and handle mail messages according to predefined rule sets. Mail
administrators often need to filter messages depending on particular mail requirements. To
do that, they can simply add new rules to the sendmail configuration file.

Unfortunately, with versatility comes complexity. The sendmail program’s large con-
figuration file is sometimes overwhelming for novice mail administrators to handle. Many
books have been written to help the mail administrator determine the proper configuration
file settings for a particular email server application.

Postfix
Wietse Venema wrote the Postfix program to be a complete MTA package replacement.
Postfix is written as a modular program; it uses several different programs to implement the
MTA functionality.

Postfix requires a separate user account to be added to the Linux server. It then runs
each module as that common user account. If an attacker compromises a Postfix module,
they only have access to files owned by that user account and won’t be able to control the
entire Linux server.

One of Postfix’s best features is its simplicity. Instead of one large complex configuration
file or multiple small configuration files, Postfix uses just two configuration files with plain-
text parameter and value names to define functionality. Most of the parameters default to
common values so that mail administrators can configure a complete mail server with mini-
mum effort.

Exim
Yet another popular MTA package is the Experimental Internet Mailer (Exim) package,
created by Philip Hazel for the University of Cambridge. Despite the “experimental” part of
the name, Exim has become a stable and trustworthy mail delivery system.

http://www.sendmail.org

The Linux Mail System  321

c07.indd  09/14/2016  Page 321

Unlike Postfix, Exim sticks with the Sendmail model of using one large program to
handle all of the email functions. It attempts to avoid queuing messages as much as possible,
instead, relying on immediate delivery in most environments. It can handle thousands of
emails per hour without queuing.

Exim uses one large configuration file, which is split into multiple sections. The access
control section describes an access control list (ACL), which defines how the server handles
incoming messages. The rewrite section allows you to define rules for changing the address
of incoming messages to incorporate multiple host addresses on a single server. It also pro-
vides an authentication section, which allows you to define multiple authentication methods
to handle SMTP authentication.

Mail Delivery Agent
Often, Linux email implementations rely on separate stand-alone mail delivery agent (MDA)
programs to deliver messages to local users. Because these MDA programs concentrate only
on delivering mail to local users, they can add bells and whistles that aren’t available in MTA
programs that include MDA functionality.

The MDA program concentrates on the message destined for a user on the local email
server. It receives messages from the MTA program and then determines how those messages
are to be delivered. Figure 7.2 demonstrates how the MDA program interacts with the
MTA program.

Fi gu r e 7. 2     Using an MDA program on an email server

Mail server

Mailboxes

MDA

Messages

MTA

When the MTA program determines that a message is destined for a local user, it passes
the message to the MDA program. At this point, the MDA program ensures that the

322  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 322

message gets delivered to the proper location, either to the local user’s mailbox or to an
alternative location defined by the local user.

Currently three different types of user mailboxes are commonly used on Linux systems:

■■ /var/spool/mail files (called the mbox method)

■■ $HOME/mail files

■■ Maildir-style mailbox directories (called the maildir method)

Each mailbox type has features that make it attractive to use. The mbox mailbox method
uses a single file for each user account to hold all of the email messages for that user. The indi-
vidual mbox files are usually stored either altogether in the /var/spool/mail directory or in
the individual user directories. This is the original method of storing email messages in Linux.

As you might guess, there’s a performance issue with storing all of the email messages
for a user in a single file. Parsing individual email messages in the file can take some time,
especially if the user has numerous messages. The maildir mailbox method offers increased
performance, security, and fault tolerance by storing each email message as an individual
file within a protected directory structure.

With the maildir method, there is a separate directory for each user account, and the
MDA program places individual email messages in those directories as separate files. In the
past, many popular MDA and MUA programs were not able to use the maildir method, but
that’s slowly changing as the benefits of maildir-style mailboxes become more popular.

Different MDA programs combine various features that make them useful to the mail
administrator. Some of the more popular features are these:

■■ Automatic mail filtering

■■ Automatic mail replying

■■ Automatic program initialization by mail

You can incorporate several open source MDA programs with the standard MTA email
system. Two of the most popular MDA programs are binmail and procmail, which are
described in the following sections.

The Binmail Program
Binmail is the most popular MDA program used on Linux systems. You might not recog-
nize it by its official name, but you most likely have used it by its system name: mail. The
name binmail comes from its normal location on the system, /bin/mail.

The binmail program has become popular because of its simplicity. By default, it can read
email messages stored in the /var/spool/mail directory, or you can provide command-line
options to point to the user’s $HOME/mail file. No configuration is required for binmail to do
its job. Unfortunately, its simplicity means that it is limited in its functions. Because of that,
some mail administrators have sought alternative MDA programs.

The Procmail Program
Another popular MDA program is procmail, written by Stephen R. van den Berg. It has
become so popular that many Linux implementations now install it by default, and many
MTA programs use it in default configurations.

The Linux Mail System  323

c07.indd  09/14/2016  Page 323

The popularity of the procmail program comes from its versatility in creating user-
configured recipes that allow a user to direct how received email is processed. A user
can create a personal .procmailrc file in their $HOME directory to direct messages based
on regular expressions to separate mailbox files, forward messages to alternative email
addresses, or even send messages directly to the /dev/null file to trash unwanted email
automatically.

Mail User Agent
The Linux email model uses a local mailbox for each user to hold messages for that user.
Mail user agent (MUA) programs became available as an interface for users to read mes-
sages stored in their mailboxes. MUAs do not receive messages; they only display messages
that are already in the user’s mailbox. Many MUA programs also offer the ability to create
separate mailbox files or folders for the user to sort and store email.

Over the history of Internet email, two different philosophies have developed on where
user email messages should be stored. Both philosophies have proponents and opponents,
but in reality, each one can be beneficial given a particular email environment.

One philosophy is to download messages directly to the user’s workstation, thus
freeing up disk space on the mail server. This method makes the mail administrator’s
job easier, but it often leads to confusion for users who check their email from multiple
workstations.

The second philosophy solves the problem of multiple workstations by keeping all of
the messages on the email server. As the user reads each email message, only a copy of the
message is sent to the workstation for display purposes. The actual message is still stored in
a file or directory on the email server. No matter which workstation the user checks email
from, the same messages are available for viewing.

Although this method makes life easier for the user, the mail administrator’s life is more
complicated, because disk space now becomes a crucial factor, since all messages are being
stored on the email server.

With the advent of fancy graphical user interface (GUI) devices, MUA programs have
become more sophisticated in how they can display messages. Linux command-line MUA
programs still use text-mode graphics to display text messages. However, many graphical
window-based systems now have the ability to display rich text and HTML-formatted
documents.

To accommodate this feature, many email MUAs support the Multipurpose Internet
Mail Extensions (MIME) format. MIME allows messages to contain multiple versions of
the same message, each formatted using a different display method. The MUA’s job is to
determine which display method to use for the message. This allows text-based terminals
to display the message in a text mode and GUI terminals to display the message in a more
visually complex and sophisticated mode.

Although users often like the look of HTML-formatted messages, these messages quickly
become troublesome for email administrators. A simple three-sentence message can turn
into a large mail message because of added HTML formatting, complete with fancy back-
ground graphics and signature blocks that include pictures. It doesn’t take long for these
messages to clog up the email system.

324  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 324

MUA Programs
Linux supports both text-oriented and graphics-oriented MUA programs for reading email
messages. The most common text-oriented command-line program is our friend binmail
(yes, the same binmail that works as an MDA).

There isn’t anything too fancy about binmail. If you run it by itself on a command line,
you’ll see a list of any email messages in your mailbox. The binmail program uses simple
single-letter commands to navigate through the messages in your mailbox, as shown in
Listing 7.1.

Listing 7.1:  Sample mail program session

$ mail
"/var/spool/mail/rich": 4 messages 4 new
>N 1 barbara@shadrach.isp Sat Mar 12 18:47 12/417 "This is the first tes"
N 2 katie@shadrach.isp1. Sat Mar 12 18:57 12/415 "Second test message"
N 3 jessica@shadrach.isp Sat Mar 12 19:23 12/413 "Third test message"
N 4 mike@shadrach.ispnet Sat Mar 12 19:42 12/423 "Fourth and final test"
& 1
Message 1:
From barbara@shadrach.isp1.net Sat Mar 12 18:47:05 2016
Date: 12 Mar 2016 23:47:05 -0000
From: barbara@shadrach.isp1.net
To: rich@shadrach.isp1.net
Subject: This is the first test message
Hi, This is a test message
& d
& 2
Message 2:
From katie@shadrach.isp1.net Sat Mar 12 18:57:32 2016
Date: 12 Mar 2016 23:57:32 -0000
From: katie@shadrach.isp1.net
To: rich@shadrach.isp1.net
Subject: Second test message
Hi, this is the second test message
& q
Saved 3 messages in mbox
$

Also, a few graphics-oriented MUA programs run in various Linux desktop environ-
ments. Most Linux distributions that use the GNOME desktop environment support the
Evolution email client. Figure 7.3 shows an example of the Evolution main window.

mailto:barbara@shadrach.isp
mailto:katie@shadrach.isp1
mailto:jessica@shadrach.isp
mailto:mike@shadrach.ispnet
mailto:barbara@shadrach.isp1.net
mailto:barbara@shadrach.isp1.net
mailto:rich@shadrach.isp1.net
mailto:katie@shadrach.isp1.net
mailto:katie@shadrach.isp1.net
mailto:rich@shadrach.isp1.net

Email Protocols  325

c07.indd  09/14/2016  Page 325

Fi gu r e 7. 3     The Evolution MUA program

Another popular graphical MUA program is the Thunderbird email client, created
by the same development team that created the Firefox browser (Mozilla). Thunderbird
provides a simple setup that supports most common email servers (including Gmail and
Yahoo) and interfaces with the local email system in Linux.

For KDE desktops, the KMail package provides basic email client services. It has similar
features to Evolution but with the look and feel of the KDE desktop. All of these graphical
MUA programs allow you to manage multiple mailboxes as well as create local mail folders
for sorting your messages.

Email Protocols
Before diving into the email software setups, it helps to get a handle on the protocols used
in Linux email handling. You’ll need to become familiar with three different standard pro-
tocols when working with email in Linux:

■■ Simple Mail Transport Protocol (SMTP)

■■ Post Office Protocol (POP)

■■ Internet Message Access Protocol (IMAP)

The following sections detail these three protocols.

326  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 326

Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol has been used since the early 1980s to relay email mes-
sages and attachments to many different types of computer systems. Its ease of use and por-
tability made it the standard protocol used to transfer messages between computer systems
on the Internet. To have an understanding of how email works, you need to get to know
SMTP.

While SMTP was designed to work on many different types of transport media, the
most common transport medium in which you’ll find it is the Internet, using a TCP/IP con-
nection on port 25. You can check if an email server is running an SMTP server by using
the telnet program to connect to TCP port 25 on the remote host and then see if you get a
response.

You can test this out on your own Linux server by connecting to hostname localhost
using port 25. Listing 7.2 shows a sample Telnet session to a Linux server running the
Postfix MTA package.

Listing 7.2:  Sample SMTP session

$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 myhost ESMTP Postfix (Ubuntu)
QUIT
221 Bye
Connection closed by foreign host.
$

The first line shows the telnet command format using host localhost and TCP port 25.
If the server is running an SMTP server, you should see a response similar to the one shown
in the listing. The first number is a three-digit response code. This code can be used for
troubleshooting purposes if email is not being transferred properly.

Following the three-digit code is the hostname of the SMTP server, followed by a
description of the SMTP software package that the server is using. In this example, the
Ubuntu server is using the Postfix SMTP software package to accept incoming SMTP
connections.

You can close the connection by typing the word QUIT and pressing the Enter key. The
SMTP server should send you a closing message and kill the TCP connection.

As you can tell from this example, SMTP uses simple ASCII text commands, and it
returns three-digit reply codes with optional ASCII text messages. SMTP was originally
defined in Internet Request for Comments (RFC) document number 821 maintained by
the Internet Engineering Task Force (IETF) and updated in RFC 2821. Several modifica-
tions have been made to SMTP over the years, but the basic protocol commands remain
in use.

Email Protocols  327

c07.indd  09/14/2016  Page 327

SMTP Basic Commands
When a TCP session has been established and the SMTP server acknowledges the client by
sending a welcome banner (as shown in Listing 7.2), it’s the client’s responsibility to control
the connection between the two computers. The client accomplishes this by sending special
commands to the server. The server should respond accordingly to each command sent.

RFC 2821 defines the basic client commands that an SMTP server should recognize and
to which it should respond. Since RFC 2821 was written, there have been several extensions
to the SMTP protocol, which not all servers have implemented. This section documents the
basic SMTP keywords that are defined in RFC 2821.

The format of an SMTP command is

command [parameter]

where command is a four-character SMTP command and parameter is optional qualifying
data for the command. Table 7.1 shows the basic SMTP commands available. The following
sections describe the commands in more detail.

Ta b le 7.1     SMTP basic commands

Command Description

HELO Opening greeting from client

MAIL Identifies sender of message

RCPT Identifies recipients

DATA Identifies start of message

SEND Sends message to terminal

SOML Send-or-Mail

SAML Send-and-Mail

RSET Resets SMTP connection

VRFY Verifies username on system

EXPN Queries for lists and aliases

HELP Requests list of commands

NOOP No operation—does nothing

QUIT Stops the SMTP session

TURN Reverses the SMTP roles

328  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 328

Much work has been done on the format of the actual DATA messages. Technically, there
is no wrong way to send a message, although work has been done to standardize on a
method. RFC 822 defines a standard method for defining the email message subject, recipi-
ents, sender, and the type of document. Listing 7.3 shows a sample session sending a short
email message to a local user on an SMTP server.

Listing 7.3:  Sample SMTP session

rich@myhost:~$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 myhost ESMTP Postfix (Ubuntu)
HELO localhost
250 myhost
MAIL FROM:rich@localhost
250 2.1.0 Ok
RCPT TO:rich
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
This is a short test of the SMTP email system.
.
250 2.0.0 Ok: queued as E67A820C0E
QUIT
221 2.0.0 Bye
Connection closed by foreign host.
rich@myhost:~$ mail
"/var/mail/rich": 1 message 1 new
>N 1 rich@localhost Wed Mar 16 23:21 11/408
? 1
Return-Path: <rich@localhost>
X-Original-To: rich
Delivered-To: rich@myhost
Received: from localhost (localhost [127.0.0.1])
 by mthost (Postfix) with SMTP id E67A820C0E
 for <rich>; Wed, 16 Mar 2016 23:20:41 -0400 (EDT)
Message-Id: <20160317032053.E67A820C0E@myhost>
Date: Wed, 16 Mar 2016 23:20:41 -0400 (EDT)

Email Protocols  329

c07.indd  09/14/2016  Page 329

From: rich@localhost

This is a short test of the SMTP email system.
? x
rich@myhost:~$

Listing 7.3 shows a typical SMTP exchange between two hosts. After entering the mes-
sage header information, the client enters the DATA command and the server responses.
Next, the client sends the email message. The terminating period follows the completed
message, indicating the end of the message to the server. As you can see, the SMTP server
transferred the message to the local user’s mailbox account exactly as the server received it.
Also note how the SMTP server included a timestamp and the return path information in
the text of the email message.

SMTP Response Codes
For each command that the client sends to the SMTP server, the server must reply with a
response message. As you can see from Listing 7.3, response messages are made up of two
parts.

The first part is a three-digit code that is used by the SMTP software to identify whether
the command was successful and, if not, why. The second part is a text string that helps
humans understand the reply. Often, the text string is passed on by the SMTP software and
displayed to the user as part of a response message.

Usually, a space separates the code from the text string. In the case of multiline responses
(such as the HELP and EXPN commands), a dash (-) separates the code from the text on all but
the last line, which conforms to the normal pattern of using a space. This helps the client
host identify when to expect more lines from the server.

There are four different groups, or categories, of reply codes:

■■ Error response codes

■■ Informational response codes

■■ Service response codes

■■ Action response codes

SMTP error responses are not overly descriptive. They just give you a general idea of
what might have gone wrong if there was an error in the SMTP process. Informational
codes are used to display additional information about a command.

Service codes are used to mark the status of the SMTP service in the connection. Action
codes are a result of the SMTP server trying to perform a function requested by the client,
such as MAIL, RCPT, and DATA commands. They return the status of the requested action so
that the client will know what actions to take next in the SMTP process. Table 7.2 shows
the valid SMTP response codes.

330  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 330

Ta b le 7. 2     SMTP response codes

Code Category Description

500 Error Syntax error, command not recognized

501 Error Syntax error in parameters

502 Error Command not implemented

503 Error Bad sequence of commands

504 Error Command parameter not implemented

211 Informational System status or system help

214 Informational Help message

220 Service Service ready

221 Service Service closing transmission channel

421 Service Service not available

250 Action Requested mail action OK, completed

251 Action User not local, will forward to <forward-path>

354 Action Start mail input: end with <CRLF>.<CRLF>

450 Action Requested mail action not taken: mailbox unavailable

451 Action Requested action aborted: error in processing

452 Action Requested action not taken: insufficient system storage

550 Action Requested action not taken: mailbox unavailable

551 Action User not local: please try <forward-path>

552 Action Requested mail action aborted: exceeded storage allocation

553 Action Requested action not taken: mailbox name not allowed

554 Action Transaction failed

Email Protocols  331

c07.indd  09/14/2016  Page 331

Knowing the basic SMTP response codes can help with the troubleshooting process if
things go wrong with email delivery. Often the exact response code received by the server is
attached to an email message if it bounces back.

Extended SMTP
Since its invention, SMTP has performed well in transporting messages between computers
across the Internet. As it got older, though, system administrators began to recognize its
limitations. Instead of trying to replace a standard protocol that was in use all over the world,
work was done to try to improve the basic SMTP by keeping the original specifications and
adding new features.

Extended SMTP (ESMTP) adds extra commands for special features to the stan-
dard SMTP commands. The ESMTP commands are optional, so each client and server
must negotiate which ones to use. ESMTP is implemented in a connection by replac-
ing the original SMTP greeting (HELO) with a new greeting command, EHLO. When an
SMTP server receives this command, it realizes that the client is capable of sending
extended SMTP commands. It will return a list of the extended SMTP commands that it
recognizes.

Listing 7.4 shows a sample EHLO session and the commands that are available.

Listing 7.4:  Extended SMTP commands

rich@myhost:~$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 myhost ESMTP Postfix (Ubuntu)
EHLO localhost
250-myhost
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-ENHANCEDSTATUSCODES
250–8BITMIME
250 DSN
QUIT
221 2.0.0 Bye
Connection closed by foreign host.
rich@myhost:~$

332  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 332

Notice that the server indicates that more commands are available now that it is in
extended mode. One of the new groups of commands is the Enhanced Status Codes options.
These options can be used on the MAIL and RCPT commands to indicate the delivery status of
a particular email message for the client. Two ESMTP commands that are extremely useful
are the ETRN and STARTTLS commands. The ETRN command allows the client and server sys-
tems to reverse roles and transfer new messages from the server to the client, all within the
same SMTP connection.

The STARTTLS command allows the client and server to negotiate an encrypted session
instead of using plaintext to transfer the messages, providing a layer of protection against
unwanted snooping.

Post Office Protocol
Back in the old days (the 1980s), mailbox users would have to sit at a dumb terminal, log
into the host computer, and read their email messages via a character-based text email
processor. Now things are different. Computer users have the freedom of reading their
email from anywhere at any time and have fancy GUI interfaces to do that.

If users cannot be at the physical email server to view their email, the next best thing
is for them is to use a software package that can connect to the email server via a net-
work and to read their messages on their local workstation. One protocol that allows
a client to read email messages that are on a remote server is defined in RFC 1939 and
called the Post Office Protocol (POP). Currently, POP is at version three, thus the new
name POP3.

Description of the Post Office Protocol
Much like SMTP, POP3 is a command-based protocol. The POP3 server listens for con-
nection requests on TCP port 110 and responds by issuing a banner line indicating that
it is ready for commands. One method of determining if a host is running a POP3 server
is to telnet to port 110 and see if you get a POP3 greeting banner. Listing 7.5 shows an
example of this.

Listing 7.5:  Sample POP3 client session

rich@myhost:~$ telnet localhost 110
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
+OK Hello there.
QUIT
+OK Better luck next time.
Connection closed by foreign host.
rich@myhost:~$

Email Protocols  333

c07.indd  09/14/2016  Page 333

When the connection to TCP port 110 is made, the POP3 server produces a response
banner to identify itself. After receiving the response banner, the client sends a QUIT com-
mand to log off the server.

Authentication
In a POP3 session, the first step for the client would be to log into the server. There are
several different methods to do this:

■■ USER/PASS commands: send a userid and password in plaintext format

■■ APOP command: sends the userid in plaintext but the password as an MD5 encrypted
value

■■ AUTH command: negotiates a secure authentication method between the POP3 server
and client

The AUTH command provides a mechanism for the server and client to use advanced
authentication methods, which are harder to crack if anyone is snooping on the network
connection. These days, it’s recommended to use some type of encrypted authentication
method, especially if you’re connecting to a POP3 server on a remote network.

POP3 Client Commands
Once the POP3 client has successfully logged into the server, it enters transaction mode.
It must issue commands to control the transfer of messages from the server to the client.
Each command will solicit a specific POP3 action from the server. Table 7.3 shows the basic
POP3 commands.

Ta b le 7. 3     POP3 client commands

Command Description

STAT Returns current status of the mailbox

LIST Returns a brief list of mailbox messages

RETR Returns a specific mailbox message

DELE Deletes a specific mailbox message

UIDL Provides a unique numeric identifier for each message

TOP Returns a brief listing of the most recent mailbox messages

NOOP Performs no operation

RSET Resets the session back to the start

QUIT Terminates the POP3 session

334  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 334

The LIST, RETR, and DELE commands use a generic message-numbering system, based on
the order in which email messages are stored in the mailbox. As messages are deleted, the
numbers assigned to the remaining messages change.

To avoid this confusion, the UIDL command displays the unique ID number associated
with each email message. You can then use that identifier in the RETR and DELE commands
instead of the generic numbers to ensure that no mistakes are made when referencing
messages.

Internet Message Access Protocol
Although POP3 is easy to implement, it does have its drawbacks. Mainly, it lacks any serious
message-handling capabilities. Messages are usually downloaded en masse from the email
server and then deleted from the server. This technique is good for the ISP hosting the mail
server, because it saves on required disk space, but for the email user, this could get confusing.

When messages are downloaded, they become tied to the workstation where the
download was performed. If your users retrieve email from only a single workstation on
the network, that may not be a problem. However, if they need to access their mailbox
from a home workstation as well as from another workstation at work, this gets to be a
big problem. This means that their mailbox messages get split between two workstations
located in different areas.

To compensate for this situation, a new protocol was devised. The Internet Message
Access Protocol (IMAP) was developed at the University of Washington so that email
users can access their mailboxes from multiple locations without splitting their mail among
workstations.

By maintaining the mailbox on the email server and allowing the client to manipulate
the messages directly on the server, the IMAP program greatly simplifies email access.
Of course, the downside to this scenario is that the email server must maintain all of the
email messages on its own disk. This can lead to some scary disk space situations for
the email administrator. You must take care when administering an IMAP server that the
system does not max out on disk space and crash (with all of the mailboxes and messages
on it).

Description of the Internet Message Access Protocol
Just like POP3, IMAP uses a client/server command method of transferring messages from
the server to the client. The client establishes a TCP connection to port 143 of the server
to initiate the connection. The server should respond with a greeting banner. Listing 7.6
shows a sample IMAP session.

Listing 7.6:  Sample IMAP session

rich@myhost:~$ telnet localhost 143
Trying 127.0.0.1...
Connected to localhost.

Email Protocols  335

c07.indd  09/14/2016  Page 335

Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready. Copyright
1998–2011 Double Precision, Inc. See COPYING for distribution information.
a001 LOGOUT
* BYE Courier-IMAP server shutting down
a001 OK LOGOUT completed
Connection closed by foreign host.
rich@myhost:~$

This example shows a Telnet session to the default IMAP port on the local server. After
the connection is established, the IMAP server presents a greeting banner. The client sends
the LOGOUT command to the server to close the IMAP session.

Each command from the client must start with a unique identifier that tags the command.
The server can use this identifier when responding to the command so that the client will
know to which command the server is responding in the case of multiple commands being
processed.

The identifier is usually a short alphanumeric string generated by the client. The eighth line
in Listing 7.6 shows that the client chose the tag a001 as the first command-line identifier.
Usually, client command identifiers increment sequentially throughout the IMAP session to
simplify things, but that’s not a requirement.

When the client establishes a connection, it starts out in an unauthenticated state. For
the client to be allowed to perform any operations with the mailbox, it must first authen-
ticate itself with the server. Once the client has authenticated itself to the server, it can
issue IMAP commands to manipulate mail messages. IMAP supports each user having
multiple mailboxes on a server. The user can read, transfer, and delete messages to and
from any mailbox to which they have access on the server. This is a vast improvement
over POP3.

IMAP User Authentication
Similar to POP3, IMAP provides several methods to authenticate a client, some more
secure than others. However, unlike POP3 clients, IMAP clients often keep established
sessions open for an extended period of time while they process their messages. Thus, the
username and password pair are not transferred across the network several times each hour
as with POP3. Nonetheless, it is still beneficial to transmit username and password infor-
mation using an encrypted method if possible. Two different authentication methods are
available in IMAP:

■■ LOGIN: Allows the client to use plaintext usernames and passwords to log into the
IMAP server.

■■ AUTHENTICATE: The client and server negotiate a common encrypted authentication
method.

336  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 336

When the client issues a valid AUTHENTICATE command, the server responds with a chal-
lenge string. It is the responsibility of the client to respond to the challenge with the appro-
priate response. If the IMAP server does not support the authentication method proposed
by the client, it will respond with a NO response message. The client must attempt to nego-
tiate a common authentication method, falling back to the LOGIN method as a last resort.
Listing 7.7 shows a sample AUTHENTICATE session.

Listing 7.7:  Sample AUTHENTICATE session

$ telnet localhost 143
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready. Copyright
1998–2011 Double Precision, Inc. See COPYING for distribution information.
a001 AUTHENTICATE
a001 BAD Missing required argument to AUTHENTICATE
a002 AUTHENTICATE KERBEROS
a002 NO AUTHENTICATE KERBEROS failed
a003 AUTHENTICATE LOGIN
+ VXNlciBOYW1lAA==
cmljaA==
+ UGFzc3dvcmQA
dGVzdA==
a003 OK AUTHENTICATE completed
a004 LOGOUT
* BYE test.ispnet.net IMAP4rev1 server terminating connection
a004 OK LOGOUT completed
Connection closed by foreign host.
$

This example shows a failed attempt by the client to negotiate the KERBEROS IMAP
authentication method. Next, the client attempts to use the LOGIN authentication method.
The server responds by issuing a base64-encoded challenge. The client responds with the
appropriate encoded username and password.

IMAP Commands
Once the client is authenticated with the IMAP server, it can begin manipulating
messages. IMAP provides a large number of commands used to read, move, and delete
mail messages from within different mailboxes on the server. Table 7.4 shows the avail-
able commands.

Email Protocols  337

c07.indd  09/14/2016  Page 337

Ta b le 7. 4     IMAP commands

Command Description

APPEND Appends a message to the end of a mailbox

CAPABILITY Requests a list of capabilities of the IMAP server

CHECK Creates a checkpoint for the mailbox

CLOSE Closes the open mailbox

COPY Copies messages between mailboxes

CREATE Creates a new mailbox

DELETE Deletes a mailbox

EXAMINE Opens a mailbox in read-only mode

EXPUNGE Removes all messages from a mailbox tagged for deleting

FETCH Retrieves the text of a specified message

LIST Retrieves a list of all mailboxes

LOGOUT Logs out from the current server

LSUB Retrieves a list of only active mailboxes

NOOP Performs no operation

RENAME Renames a mailbox

SEARCH Searches messages in an active mailbox that match a search string

SELECT Selects an active mailbox

STATUS Requests the status of a mailbox

STORE Alters information associated with a message

SUBSCRIBE Adds a mailbox to the list of active mailboxes

UID Sets message references to the UID number instead of the
sequence number

UNSUBSCRIBE Removes a mailbox from the list of active mailboxes

338  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 338

The default mailbox for a client is called the Inbox. All new messages appear in the
INBOX. The client has the ability to create new mailboxes (sometimes called folders by email
client software) to move messages from the INBOX to other areas to reduce clutter.

Using Email Servers
Now that you’ve seen how the email process in Linux works, we can turn our attention
to the software packages required to set up a full-featured Linux email server. First, you’ll
want to install an MTA server. The two main MTA software packages used in the Linux
world are these:

■■ sendmail

■■ Postfix

Just about every Linux distribution contains one or both of these packages in its software
repository, so installing them is easy. Once you get an MTA server installed, you’ll most
likely need to tweak the configuration settings for your environment. This section walks
through the parts involved with each package and how to set them up on your Linux system.

Using Sendmail
The sendmail MTA package comprises several different parts, each part performing a sepa-
rate function of the MTA process.

Besides the main sendmail program, there is a configuration file and several tables that
you can create to contain information used by sendmail while processing incoming and
outgoing mail messages. Table 7.5 lists the parts used in a normal sendmail installation.

Ta b le 7.5     Sendmail parts

Part Description

sendmail Executable program that receives messages from local and remote
users and determines how to deliver them

sendmail.cf Configuration file that controls the behavior of the sendmail program

sendmail.cw Contains a list of domain names for which the sendmail program will
receive messages

sendmail.ct Contains a list of trusted users that can control the sendmail operations

aliases Contains a list of valid local mail addresses that can redirect mail to
another user, a file, or a program

Using Email Servers  339

c07.indd  09/14/2016  Page 339

Part Description

newaliases Creates a new aliases database file from a text file

mailq Checks the mail queue and prints any messages

mqueue The directory used to store messages waiting to be delivered

mailertable Used to override routing for specific domains

domaintable Used to map old domain names to new ones

virtusertable Used to map users and domains to alternate addresses

relay-domains Used to allow specific hosts to relay messages though the sendmail
program

access Used to allow or refuse messages from specific domains

While this list of files may seem intimidating, things really aren’t all that bad.
Fortunately, there are some tools to help with the sendmail configuration process.

Configuring Sendmail
The sendmail program needs to be told how to handle messages as the server receives
them. As an MTA program, sendmail processes incoming mail and redirects it to the
proper location, either on a remote system or on the local system. Usually, by default, the
sendmail package is configured to process mail for local users but not for sending or receiv-
ing messages from remote users.

The configuration file is used to direct sendmail as to how to manipulate the destination
mail addresses in order to determine where and how to forward messages. The default loca-
tion for the configuration file is /etc/mail/sendmail.cf.

The sendmail.cf file consists of rule sets that parse the incoming mail message and deter-
mine what actions to take. Each rule set is used to identify certain mail formats and instruct
sendmail on how to handle that message. As a message is received, its header is parsed and
passed through the various rule sets to determine an action to take on the message.

Rules also have helper functions defined in the configuration file. You can define three
different types of helper functions:

■■ Classes define common phrases that are used to help the rule sets identify certain types
of messages.

■■ Macros are values that are set to simplify the typing of long strings in the configura-
tion file.

■■ Options are defined to set parameters for the sendmail program’s operation.

340  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 340

The configuration file is made up of a series of classes, macros, options, and rule sets.
Each function is defined as a single text line in the configuration file. Each line begins with
a single character that defines the action for that line. Lines that begin with a space or a tab
are continuation lines from a previous action line. Lines that begin with a pound sign (#)
indicate comments and are not processed by sendmail.

The action at the beginning of the text line defines what the line is used for. Table 7.6
shows the standard sendmail actions and what they represent.

Ta b le 7.6     Sendmail configuration file lines

Configuration Line Description

C Defines classes of text

D Defines a macro

F Defines files containing classes of text

H Defines header fields and actions

K Defines databases that contain text to search

M Defines mailers

O Defines sendmail options

P Defines sendmail precedence values

R Defines rule sets to parse addresses

S Defines rule set groups

Trying to get the right combination of configuration lines for a specific email environment
is a tricky process—not for the faint of heart. Fortunately, there’s an easier way to create a
sendmail configuration file, so most likely you’ll never have to touch the sendmail.cf con-
figuration file directly.

Using the m4 Preprocessor
Most sendmail server configurations are a matter of setting common rules to implement
common features, such as forwarding local messages to an MDA program or passing email
destined for an alias address to the proper local user account. Because of this, developers
created a simpler way of generating the monolithic sendmail.cf configuration file.

They used the GNU m4 macro processor to create the sendmail configuration file from a
set of simple macro definitions. They created macro definitions to define common sendmail

Using Email Servers  341

c07.indd  09/14/2016  Page 341

features, and the m4 macro processor generates the sendmail.cf configuration lines needed
to implement those features. Some macro definitions are built into the m4 processor program.
Other macro definitions are defined in the sendmail configuration distribution.

You can now use the m4 preprocessor to create configuration files by just defining a
small set of macros that list the features that you need to be available in your email server.
Table 7.7 lists some of the macros that are available for you to use in the sendmail configu-
ration file.

Ta b le 7.7     Sendmail macro definitions

Macro Description

define Defines specific option values in the configuration file.

divert(n) Defines a buffer action for m4. When n = -1, the buffer is deleted. 0
starts a new buffer.

DOMAIN Defines what domain(s) the MTA will be using to transfer messages.

FEATURE Defines a special feature set that will be used in the configuration file.

MAILER Defines a method of mail transport for sendmail.

MASQUERADE_AS Defines an alternative hostname that sendmail will answer messages as.

OSTYPE Defines the operating system on which the macro is used. This allows
the m4 program to add operating system–specific macro files.

The entries in the macro definition file are expanded by the m4 preprocessor to create
the complete configuration file. Listing 7.8 shows a sample macro file that can be used to
create a standard sendmail configuration file.

Listing 7.8:  Sample sendmail macro file

divert(-1)
divert(0)dnl
include(`/usr/lib/sendmail-cf/m4/cf.m4')dnl
OSTYPE(`linux')dnl

FEATURE(`allmasquerade')dnl
FEATURE(`masquerade_envelope')dnl
FEATURE(`always_add_domain')dnl
FEATURE(`virtusertable')dnl
FEATURE(`local_procmail')dnl

342  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 342

FEATURE(`access_db')dnl
FEATURE(`blacklist_recipients')dnl

MASQUERADE_AS(`ispnet1.net')dnl

MAILER(`smtp')dnl
MAILER(`procmail')dnl

As shown in this example, many different features can be defined with the FEATURE
macro command. Each feature represents a separate set of action lines in the final con-
figuration file. Note how each line ends with the text dnl. This represents the end of a line
entry in the macro file.

You may have noticed the odd way of quoting text strings in the m4 macro
file. The m4 preprocessor uses the backtick (̀) and the single tick (') to
represent quote marks. If you do not use these characters properly, the m4
program will not create the final configuration file properly.

After you create the macro file, just use the m4 preprocessor program to create the send-
mail configuration file:

m4 < myserver.mc > /etc/mail/sendmail.cf

You must redirect the macro file into the m4 preprocessor and redirect the output to a file.

Running Sendmail
After creating a configuration file, you can start the sendmail program. The easiest method
for using sendmail is as a background daemon process, having it check the mail queue for
new messages on a regular basis. You can use the -b and -q options to accomplish this:

sendmail -bd -q5m

The -bd option runs sendmail as a background process, and the -q5m option tells it to
check the outgoing mail queues every 5 minutes for new messages to send. Remember to
execute this command with root privileges. At this point, if your configuration file is cor-
rect, you should be able to send and receive messages using sendmail.

Using Postfix
The Postfix system is a bit different from sendmail in that instead of one program, Postfix
consists of several small programs to process email messages. Postfix also uses several mail
queue directories to store email messages as they progress through the programs. This helps
to ensure that no messages are lost if the server should fail at any time during the email
process. Figure 7.4 shows a block diagram of the core Postfix parts.

Using Email Servers  343

c07.indd  09/14/2016  Page 343

Fi gu r e 7. 4     Block diagram of Postfix

The Postfix system

Message queues

Core programs

Utility programs

Configuration files

Lookup tables

Each piece of the Postfix block diagram provides a different function for the whole email
process. The following sections describe the different pieces of the Postfix block diagram in
more detail.

Postfix Core Programs
The Postfix package utilizes a master program that runs as a background process at all
times. The master program allows Postfix to spawn programs that scan the mail queues for
new messages and send them to the proper destinations.

You can configure the core programs to remain running for set times after they are
utilized. This allows the master program to reutilize a running helper program if necessary,
saving processing time. However, after a set time limit, the helper program quietly stops
itself. Listing 7.9 shows the Postfix processes that may be seen running on a normal Linux
system.

Listing 7.9:  Postfix background programs

$ ps ax
 232 con- I+ 0:00.34 /usr/sbin/postfix/master
 236 con- I+ 0:00.07 qmgr
 237 con- I+ 0:00.05 pickup
$

These processes run continually in background to control mail delivery on the Postfix
system. The master program is used to control the overall operation of Postfix. It is respon-
sible for starting other Postfix processes as needed. The qmgr and pickup programs are con-
figured to remain as background processes longer than other core programs. The pickup
program determines when messages are available to be routed by the Postfix system. The
qmgr program is responsible for the central message routing system for Postfix.

344  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 344

Besides the qmgr and pickup programs, Table 7.8 shows other core programs that Postfix
uses to transfer mail messages.

Ta b le 7. 8     Core Postfix mail processing programs

Program Description

bounce Posts a log in the bounce message queue for bounced messages
and returns the bounced message to the sender

cleanup Processes incoming mail headers and places messages in the
incoming queue

error Processes message delivery requests from qmgr, forcing
messages to bounce

flush Processes messages waiting to be retrieved by a remote mail
server

local Delivers messages destined for local users

pickup Waits for messages in the maildrop queue and sends them to the
cleanup program to begin processing

pipe Forwards messages from the queue manager program to external
programs

postdrop Moves an incoming message to the maildrop queue when that
queue is not writable by normal users

qmgr Processes messages in the incoming queue, determining where
and how they should be delivered, and spawns programs to
deliver them

sendmail Provides a sendmail-compatible interface for programs to send
messages to the maildrop queue

showq Reports Postfix mail queue status

smtp Forwards messages to external mail hosts using SMTP

smtpd Receives messages from external mail hosts using SMTP

trivial-rewrite Receives messages from the cleanup program to ensure that
header addresses are in a standard format for the qmgr program,
and is used by the qmgr program to resolve remote host addresses

Using Email Servers  345

c07.indd  09/14/2016  Page 345

Postfix Utility Programs
Besides the Postfix core programs, several utilities are used by both Postfix processes and
local Postfix users to help manipulate and transfer messages. Table 7.9 shows the different
Postfix utilities available on a Postfix system.

Ta b le 7. 9     Postfix utility programs

Program Description

mailq Checks the Postfix mail queues for messages and displays the results

postfix Controls starting, stopping, and reloading the Postfix system

postalias Creates, updates, or queries the Postfix alias database

postcat Displays the contents of Postfix queue files

postconf Displays and modifies parameter entries in the main.cf configuration file

postkick Sends command requests to running Postfix services

postlock Locks specified Postfix files and executes a specified command

postlog Logs a message to the system-logging facility using Postfix-style log
messages

postmap Creates or queries a Postfix lookup table

postsuper Performs maintenance on specified Postfix queue directories

Each Postfix utility program plays a different role in either processing mail messages
or querying the Postfix system for status information. Postfix core programs utilize some
of the utilities, while the Postfix administrator can use others to manipulate messages and
obtain statistics about the running system.

Postfix Configuration Files
The next block in the diagram is the Postfix configuration files. The configuration files
contain information that the Postfix programs use when processing messages. Unlike some
other MTA programs, it is possible to change configuration information while the Postfix
server is running and issue a command to have Postfix load the new information without
completely downing the mail server.

The three Postfix configuration files are located in a common Postfix directory. The
default location for this directory is /etc/postfix. Usually, all users have access to view

346  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 346

the configuration files, while only the root user has the ability to change values within the
files. Of course, you can modify this for your own security situation. Table 7.10 lists the
Postfix configuration files.

Ta b le 7.10     Postfix configuration files

File Description

install.cf Contains information from the install parameters used when Postfix
was installed

main.cf Contains parameters used by the Postfix programs when processing
messages

master.cf Contains parameters used by the Postfix master program when
running core programs

The operation of the core Postfix programs can be controlled using the master.cf con-
figuration file. Each program is listed in a separate line along with the parameters to con-
trol its operation. Listing 7.10 shows a sample master.cf file with default settings.

Listing 7.10:  Sample master.cf configuration file

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n — — — — smtpd
pickup unix n — — 60 1 pickup
cleanup unix n — — — 0 cleanup
qmgr unix n — n 300 1 qmgr
#qmgr unix n — n 300 1 oqmgr
tlsmgr unix — — — 1000 1 tlsmgr
rewrite unix — — — — — trivial-rewrite
bounce unix — — — — 0 bounce
defer unix — — — — 0 bounce
trace unix — — — — 0 bounce
verify unix — — — — 1 verify
flush unix n — — 1000? 0 flush
proxymap unix — — n — — proxymap
proxywrite unix — — n — 1 proxymap
smtp unix — — — — — smtp
relay unix — — — — — smtp

Using Email Servers  347

c07.indd  09/14/2016  Page 347

showq unix n — — — — showq
error unix — — — — — error
retry unix — — — — — error
discard unix — — — — — discard
local unix — n n — — local
virtual unix — n n — — virtual
lmtp unix — — — — — lmtp
anvil unix — — — — 1 anvil
scache unix — — — — 1 scache
maildrop unix — n n — — pipe
 flags=DRhu user=vmail argv=/usr/bin/maildrop -d ${recipient}
uucp unix — n n — — pipe
 flags=Fqhu user=uucp argv=uux -r -n -z -a$sender—$nexthop!rmail ($recipient)
ifmail unix — n n — — pipe
 flags=F user=ftn argv=/usr/lib/ifmail/ifmail -r $nexthop ($recipient)
bsmtp unix — n n — — pipe
 flags=Fq. user=bsmtp argv=/usr/lib/bsmtp/bsmtp -t$nexthop -f$sender $recipient
scalemail-backend unix - n	 n - 2 pipe
 flags=R user=scalemail argv=/usr/lib/scalemail/bin/scalemail-store ${nexthop}
${user} ${extension}
mailman unix — n n — — pipe
 flags=FR user=list argv=/usr/lib/mailman/bin/postfix-to-mailman.py
 ${nexthop} ${user}

The Postfix operational parameters are set in the main.cf configuration file. Postfix
parameters have a default value that is implied within the Postfix system. If a parameter value
is not present in the main.cf file, its value will be preset by Postfix. If a parameter value is
present in the main.cf file, its contents override the default value.

Each Postfix parameter is listed on a separate line in the configuration file along with its
value in the form

parameter = value

Both parameter and value are plain ASCII text strings that can be easily read by the
mail administrator. The Postfix master program reads the parameter values in the main.cf
file when Postfix is first started and again whenever a Postfix reload command is issued.

Two examples of this are the myhostname and mydomain parameters. If they are not
specified in the main.cf configuration file, the myhostname parameter assumes the results
of a gethostname() command, while the mydomain assumes the domain part of the default
myhostname parameter. If you don’t wish to use these values for the email server, you can
specify different values in the configuration file using these parameters:

myhostname = mailserver.smallorg.org
mydomain = smallorg.org

348  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 348

When Postfix starts, it recognizes the local mail server as mailserver.smallorg.org
and the local domain as smallorg.org, and it ignores any system set values. Table 7.11
shows some of the more common main.cf configuration settings that you may have to set
for your email environment.

Ta b le 7.11     Common Postfix settings

Setting Description

myorigin Specifies the domain or full hostname used for outgoing email
messages

mydestination Specifies the domain(s) for which Postfix will accept mail

relay_domains Specifies allowed domains for forwarding mail

relayhost Specifies points to an SMTP relay host for all outbound messages

virtual_alias_domains Specifies a file that maps domain aliases to user accounts

Once you set the Postfix variable settings, you can use the kill -HUP command to stop
and restart the master program. This forces Postfix to reread the configuration files and
restart the SMTP server.

Sendmail Emulation Commands
With the popularity of the sendmail package, many email-oriented software packages
expect the sendmail executable programs and utilities to be present to operate. Because of
that, Postfix provides similar commands that emulate common sendmail features:

■■ sendmail: mimics the sendmail executable program and command options but redirects
to the Postfix program

■■ mailq: lists the messages in the outgoing mail queue

■■ newaliases: initializes the aliases database

The newaliases command reads a text list of aliases and the real user accounts to which
they point from the /etc/aliases file, and then it generates a binary database file read by
Postfix for delivering mail sent to the aliases.

Postfix Lookup Tables
Postfix also uses several lookup tables that can be created by the mail administrator. Each
lookup table defines parameters that control the delivery of mail within the Postfix system.
Table 7.12 shows the different lookup tables that can be created for Postfix.

Using Email Servers  349

c07.indd  09/14/2016  Page 349

Ta b le 7.12     Postfix lookup tables

Table Description

access Maps remote SMTP hosts to an accept/deny table for security

alias Maps alternative recipients to local mailboxes

canonical Maps alternative mailbox names to real mailboxes for message headers

relocated Maps an old user mailbox name to a new mailbox name

transport Maps domain names to delivery methods for remote host connectivity
and delivery

virtual Maps recipients and domains to local mailboxes for delivery

Each lookup table is a plain ASCII text file. Once the text file is created, you must create
a binary database file by using the postmap command. Postfix uses the binary database file
when searching the lookup tables. This helps speed up the lookup process for Postfix.

Postfix Security
Postfix supports secure SMTP using TLS encryption. By enabling TLS encryption Postfix
has the ability to encrypt email messages, as well as authenticate remote SMTP servers and
clients securely.

To use TLS security in Postfix, you’ll need a certificate and private key. You can use the
OpenSSL package to generate a self-signed certificate, or you can obtain a certificate signed
by an authorized Certificate Authority (see Chapter 9, “Offering Web Services,” for details
on how to use self-signed certificates).

By default, TLS is disabled in Postfix. To enable it, you’ll need to add a line to the
main.cf configuration file:

smtpd_tls_security_level = may

The may option allows hosts still to connect without encrypting the session. To require
that all hosts use encryption, you must use the encrypt option.

After you enable security on the Postfix server, you need to define where the server cer-
tificate and private key are located:

smtpd_tls_cert_file = /etc/postfix/cert.pem
smtpd_tls_key_file = /etc/postfix/key.pem
smtpd_tls_mandatory_ciphers = high
smtpd_tls_mandatory_exclude_ciphers = aNULL, MD5
smtpd_tls_security_level = encrypt
smtpd_tls_mandatory_protocols = TLSv1

350  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 350

Postfix provides a few other configuration options that allow you to cus-
tomize how your security environment operates. Consult the official Post-
fix documentation to see the other configuration statements available.

Starting Postfix
To start the Postfix software, you must be logged in as the root user and use the command

postfix start

The first time Postfix is started, it will check the /var/spool/postfix directory and
create any message queue directories as needed:

postfix-script: warning: creating missing Postfix pid directory
postfix-script: warning: creating missing Postfix incoming directory
postfix-script: warning: creating missing Postfix active directory
postfix-script: warning: creating missing Postfix bounce directory
postfix-script: warning: creating missing Postfix defer directory
postfix-script: warning: creating missing Postfix deferred directory
postfix-script: warning: creating missing Postfix flush directory
postfix-script: warning: creating missing Postfix saved directory
postfix-script: warning: creating missing Postfix corrupt directory
postfix-script: warning: creating missing Postfix public directory
postfix-script: warning: creating missing Postfix private directory

These are the directories where Postfix stores messages as they are being processed. You
should be able to check the log where your mail logs are kept (often the /var/log/maillog
file) to see if Postfix started properly:

Mar 2 22:49:56 shadrach postfix-script: starting the Postfix mail system
Mar 2 22:49:56 shadrach postfix/master[864]: daemon started

You should not see any warning or error messages (other than the ones for creating the
missing directories). If so, compare the messages with your configurations to determine
what may possibly be wrong.

If Postfix started properly, you should see three new processes running in background
mode on the mail server:

864 ? S 0:00 /usr/libexec/postfix/master
865 ? S 0:00 pickup -l -t unix –u -c
866 ? S 0:00 qmgr -l -t unix -u

The first field is the process ID of the running program. The programs are shown in
the last field. The master program should run at all times. The pickup and qmgr programs

Local Email Delivery  351

c07.indd  09/14/2016  Page 351

should be configured in the master.cf configuration file to wake up at predetermined
intervals; thus, they should also remain running.

The Postfix program either creates or replaces the /usr/sbin/sendmail file with the
Postfix version. If this was done, any messages sent should use the Postfix system to send
the message. You can test this by sending a test message to a remote user and watching the
Postfix processes:

864 ? S 0:00 /usr/libexec/postfix/master
865 ? S 0:00 pickup -l -t unix
866 ? S 0:00 qmgr -l -t unix -u
885 ? S 0:00 cleanup -t unix -u
886 ? S 0:00 trivial-rewrite -n rewrite -t unix -u
896 ? S 0:00 smtp -t unix –u -c

If Postfix is installed properly, it should call the cleanup, trivial-rewrite, and smtp
programs to help it deliver the message to the final destination. These programs will stay
active in background mode until they reach their timeout limit set in the master.cf file,
and then they will quietly go away. Of course, the best way to determine if Postfix worked
is to see if the message actually made it to the remote user.

Local Email Delivery
While most Linux MTA programs can perform local email delivery on their own, if you
want any fancy features, you’ll need to incorporate a specialized MDA program. Currently,
the most popular MDA program for Linux is the procmail program. However, a standard
is being developed that provides advanced email message filtering for any MDA or MTA
application. The Sieve programming language can be added to any mail application, and it
defines advanced methods for handing messages. This section walks you through both the
procmail program and the Sieve language for filtering messages on your Linux system.

Procmail Basics
The procmail program has become so popular that many Linux distributions now install it
by default, and many MTA programs utilize it in default configurations.

This section walks you through how to install procmail and write simple recipes to help
redirect your incoming mail.

Installing Procmail
Most Linux distributions include procmail as a package in the software repositories. You
can use the standard method of installing software to install the procmail package (apt-get
for Debian-based systems or yum for Red Hat–based systems).

352  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 352

To run procmail on all email messages, you must configure the MTA program to
pass incoming messages to procmail instead of storing the messages in the standard
mailboxes.

For sendmail, that’s as easy as adding a single line to the m4 macro file:

MAILER(`procmail')dnl

Similarly, for Postfix to use procmail, you just add a setting to the main.cf configuration
file:

mailbox_command = /usr/bin/procmail –m /etc/procmailrc

This example allows the mail administrator to create a common procmailrc file that
applies to all users. By default, procmail applies the recipes in the /etc/procmailrc file to
all users but using the root username. The root user will own any folders created by this
recipe. By specifying the –m option in the command line, procmail will run the recipes as
the recipient username. This comes in handy when writing recipes that store messages in
separate folders.

Procmail Recipes
Once procmail is installed, the most important part of procmail is the recipes created for
mail filtering. The recipes control what procmail does with each incoming message. As the
administrator, you can define recipes that apply to all incoming email in the /etc/procmailrc
file. Also, each user can create their own recipes using the .procmailrc file located in their
$HOME directory to specify how their messages are handled.

Note that the .procmailrc file for each user account starts with a period.
This indicates that the file is a hidden file. This file won't appear in a stan-
dard ls listing or in the display of graphical file manager programs unless
you select the option to display hidden files.

Each recipe defines a matching expression value and an action for procmail to take when
a message matches the expression. The format of a procmail recipe is

recipe header line
condition line(s)
action line

The recipe header line defines the basic action of the recipe. All recipe lines start with
the heading

:0 [flags] [: locallockfile]

The flags identify the basic functions that the recipe will perform. Table 7.13 lists the
flags that are available.

Local Email Delivery  353

c07.indd  09/14/2016  Page 353

Ta b le 7.13     Procmail recipe flags

Flag Description

A This recipe will not be executed unless the conditions of the preceding
recipe are met.

a This recipe will not be executed unless the conditions of the preceding A or
a recipe are met.

B Egreps the body of the message.

b Feeds the body of the message to the destination (default).

c Generates a copy of this message.

D Distinguishes between uppercase and lowercase (default is to ignore case).

E This recipe will not be executed unless the conditions of the preceding
recipe were not met.

e This recipe will not be executed unless the preceding E or e recipe failed.

f Considers the pipe as a filter.

H Egreps the message header (default).

h Feeds the header of the message to the destination (default).

i Ignores any write errors on the recipe.

r Does not ensure that messages end with an empty line (raw mode).

W Waits for the filter or program to finish and checks the exit code.
Suppresses any “Program failure” messages.

w Waits for the filter or program to finish and checks the exit code. Does not
suppress any error messages.

The flags are listed in the recipe header line after the :0 header. More than one flag can
be entered on the recipe header line.

After the flags, if a lock file is required, the mail administrator can either specify a lock
file by name or omit the lock filename to allow procmail to use a default lock file. For
example, the recipe header line

:0:
specifies procmail to use the default flags (Hhb) and to utilize the default lock file when
processing the message.

354  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 354

Since mbox-style mailboxes store messages for a user in a single file, the
lock file is required in procmail. If your MTA uses maildir-style mailboxes
(such as Postfix), you don't need to use a lock file.

After the header line, one or more recipe condition lines must be defined. Each condition
line must start with an asterisk (*). After the asterisk, a normal regular expression is used
as the matching condition. Besides normal regular expressions, procmail defines seven spe-
cial conditions. Table 7.14 lists the special conditions.

Ta b le 7.14     Procmail special conditions

Condition Description

! Inverts the condition

$ Evaluates the condition according to shell substitution rules inside
double quotes

? Uses the exit code of the specified program

< Checks if the total message length is less than the specified number
of bytes (in decimal)

> Checks if the total message length is greater than the specified
number of bytes (in decimal)

variable ?? Matches the remainder of the condition against the environment
variable specified

\ Quotes any of the special characters to use as normal characters

The easiest way to learn how to write condition lines is to see a few examples. This
condition line checks to see if the message subject header field contains the word guitars:

* ^Subject:.*guitars

Any received messages with the word guitars in the message subject header field would
match this condition. This condition line checks to see if the message subject header field
contains the words guitars and bass:

* ^Subject:.*guitars.*bass

Local Email Delivery  355

c07.indd  09/14/2016  Page 355

Received messages with both guitars and bass in the message subject header field would
match this condition line. Finally, this condition line checks the entire message for the word
meeting:

meeting

Any received message with the word meeting anywhere in the message would match this
condition line.

After the condition lines are defined, the procmail action line must be defined. The
action line defines the action that procmail will take if the condition line is matched with a
message.

Much like the condition line, the action line starts with a special character that describes
the basic action that will be taken. Table 7.15 describes the action line special characters.

Ta b le 7.15     Procmail action line special characters

Character Description

! Forwards message to the specified addresses

| Starts the specified program

{ Starts a block of recipes checked if the condition is matched

} Ends a block of recipes checked if the condition is matched

text Forwards message to the mailbox defined by text

Each recipe has only one action line. The action line defines what procmail will do with
any messages that match the condition lines. Again, the easiest way to explain this is to
show some examples.

:0 c
messages

This recipe places a copy of all messages received in the mailbox directory named
messages.

:0
* ^From.*guitar-list
{
 :0 c
 ! rich@ispnet3.net

mailto:rich@ispnet3.net

356  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 356

 :0
 guitars
}

This recipe demonstrates using a recipe inside a recipe. The main recipe checks if the
message was received from the guitar-list user. If it is, both internal recipes are checked.
The first one forwards a copy of the message to the rich@ispnet3.net email address, and
the second saves the message in the guitars directory.

:0 hc
* !^FROM_DAEMON
* !^X-Loop: rich@ispnet1.net
| (formail -r -I"Precedence: junk" \
-A"X-Loop: rich@ispnet1.net"; \
echo "Thanks for your message, but I will be out of the office until 1/4") \
| $SENDMAIL -t

This recipe demonstrates both using an external program as well as creating an auto-reply.
All messages that are not sent from either a daemon process or from the original user are
forwarded to the formail program.

This program is included with the procmail distribution. It is used to help filter header
information from messages. Two header fields are added: a Precedence: line and an X-Loop
line to help prevent message loops. After that, a message is generated and sent to the local
MTA process (Postfix, hopefully).

:0
* ^Subject.*work
/dev/null

The last recipe demonstrates filtering messages based on a Subject header line. Any
message with a subject of work is placed in the mail folder /dev/null. Any information
copied there is lost forever. Thus, this recipe deletes any messages with the subject work.

Each message is processed against each recipe. Any recipes whose condition line matches
the message are processed. However, recipes that match a message but are not specifically
set to copy the message redirect the message from the normal inbox.

Sieve
Sieve is a programming language created specifically for filtering email messages in either a
client or server environment. Sieve is based on Internet Standard RFC5228, which defines
the basic commands used in Sieve to process email messages. Several different MDA pack-
ages implement the Sieve programming language, including Dovecot and Cyrus.

This section walks through some of the basic commands that you can use in Sieve
to customize email handling, as well as showing you a few simple examples on how to
use them.

mailto:rich@ispnet3.net
mailto:rich@ispnet1.net
mailto:rich@ispnet1.net

Local Email Delivery  357

c07.indd  09/14/2016  Page 357

Sieve Commands
The Sieve programming language is divided into three types of commands:

■■ Action commands

■■ Control commands

■■ Test commands

Action commands define the action taken on an incoming email message. There are four
actions that the filter can take:

keep—save the message in the default mailbox location for the user

fileinto—save a copy of the message to a specified location

redirect—forward the message

discard—silently ignore the message

While not part of the base actions, the reject action has been added as an
optional extension. It allows you to refuse an incoming email message but
send a reason message back to the sender.

The control commands define conditional actions based on features of the incoming
email messages, such as the sender, subject header, or message content. There are three
types of control commands:

if—performs a conditional check on the message

require—adds external extensions to the script

stop—ends processing of the script

Finally, the test commands are used in the if commands to decide which part of the
condition to execute. The test commands are what makes Sieve so versatile. You can test for
many different features of an email message and act accordingly. The basic test commands
are as follows:

address—compares the address of a sender or recipient

allof—combines multiple tests with a logical AND operation

anyof—combines multiple tests with a logical OR operation

envelope—evaluates parts of the SMTP commands, such as the From or Rcpt headers

exists—determines if a specific header exists in the message

false—always evaluates to a logical FALSE condition

header—determines if specific SMTP headers are present

not—inverts the result of a test condition

size—evaluates the size of an email message

true—always evaluates to a logical TRUE condition

358  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 358

The easiest way to examine how the Sieve programming language works is to see it in
action. The following section walks you through some example Sieve scripts to demonstrate
how it works.

Sieve Scripts
Sieve scripts work similarly to procmail recipes. The mail filter compares the incoming
email message against the Sieve script, taking the actions specified. A simple Sieve script is
as easy as

require ["fileinto"];
fileinto "saved";

This script moves all of the messages into the mailbox named saved. If you want to move
only specific messages, you can add an if control command:

require ["fileinto"];
if header :is "Sender" "guitar-list.org"
 {
 Fileinto "guitars";
 }
else
 {
 fileinto "saved";
 }

This script uses the if control to check the message header for the sender of the message.
If the message was sent by the guitar-list.org address, Sieve places the message in the
guitars mailbox; otherwise, the message is placed in the saved mailbox.

With Sieve, you can easily filter out unwanted messages:

require ["fileinto", "reject"];
if header :contains "subject" "pills"
{
 reject "please stop spamming me"
}
elsif address :matches :domain "from" "badhost.com"
{
 discard;
}

The Sieve programming language provides lots of different options for creating filters.
For a complete list of all of these features, refer to RFC5228.

Remote Email Delivery  359

c07.indd  09/14/2016  Page 359

Remote Email Delivery
While all of the user account mailboxes are located on the Linux server, most likely not all
(if any) of your users will actually use the physical Linux server. Instead, most system users
connect remotely to the Linux server using some type of client workstation. To read their
email messages, they must use some type of email client package, such as Thunderbird for
Linux workstations or one of the many Windows and Mac OS X email clients.

To support remote clients, the Linux server must have either a POP3 or IMAP package
installed. There are several popular POP3 and IMAP packages available for Linux, and the
LPIC-2 exam covers two of them:

■■ Courier

■■ Dovecot

This section walks you through how to use both of these packages in your Linux system.

Using Courier
The Courier email server package is actually categorized as an MTA package, because it
contains full SMTP capabilities as well as the ability to support POP3 and IMAP. However,
it’s not commonly used as an MTA package; it’s better known for its POP3 and IMAP
capabilities. Often, you’ll see the Courier package installed alongside the sendmail or
Postfix MTA package to provide IMAP and POP3 support.

Once you install the Courier package for your Linux distribution, the configuration files
are located in the /etc/courier directory. The authdaemonrc file contains the configura-
tion settings required for authenticating user accounts for login. The imapd and pop3d files
contain configuration settings for those specific servers. Table 7.16 shows the more common
configuration settings that you may need to tweak for your specific environment.

Ta b le 7.16     Courier configuration settings

Setting Description

ADDRESS Specifies the interface IP address to listen to for incoming
requests. A value of 0 indicates to listen on all interfaces.

MAILDIRPATH Specifies the directory where email messages are stored.

MAXDAEMONS Specifies the maximum number of client connections allowed.

MAXPERIP Specifies the maximum number of connections per client.

PORT Specifies the TCP port to listen to for incoming requests.

360  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 360

By default, Courier uses the standard Linux authentication database to authenticate
user logins. You can, however, create a separate login database using either MySQL or the
Lightweight Directory Access Protocol (LDAP).

Using Dovecot
The Dovecot package was created primarily as an IMAP server, but it also supports POP3.
Because of its popularity, most Linux distributions include the Dovecot package as part of
the standard software repository.

Dovecot Configuration
Once you install Dovecot, the configuration file should be /etc/dovecot.conf, though
some distributions create a separate /etc/dovecot directory to store the dovecot.conf
file and a separate subdirectory under that to store separate configuration files for each
Dovecot feature.

In the configuration file, you can change settings that control which servers start, what
protocols they use, and what authentication methods the servers support. Some Linux
distributions (such as Ubuntu) also include a subdirectory under the dovecot directory to
create separate configuration files for each feature supported by Dovecot. Table 7.17 shows
the configuration settings that you may need to tweak for your environment.

Ta b le 7.17     Dovecot configuration settings

Setting Description

auth Specifies the login authentication method used

listen Specifies the IP address and optional port to listen to
for incoming requests

login_max_connections Specifies the maximum number of connections

login_max_processes_count Specifies the maximum number of logins

login_process_per_connection Specifies whether each login creates its own process

mail_location Defines the type and location of mailboxes on the
system

mechanisms Defines the authentication methods that the server
supports

protocols Specifies the protocols supported by the server

Remote Email Delivery  361

c07.indd  09/14/2016  Page 361

Dovecot also supports the Sieve programming language for handling incoming mail
messages. This feature is called the “vacation extension” in Dovecot. It allows you to create
code for handling things such as automatic replies or sending email messages directly to spe-
cific folders. You define the vacation settings in the plugin section of the configuration file:

sieve_vacation_min_period
sieve_vacation_max_period
sieve_vacation_default_period
sieve_vacation_use_original_recipient
sieve_vacation_dont_check_recipient
sieve_vacation_send_from_recipient

Time periods can be set using seconds (s), minutes (m), hours (h), or days (d), such as 7d
for seven days.

Dovecot Administration
Once you have Dovecot configured for your environment, you use the doveadm command to
control it. The doveadm command has several different options for managing the Dovecot
application program, as well as for handling mailbox messages. There are two options that
control the Dovecot master process:

reload—stops and restarts the Dovecot processes

stop—halts the Dovecot processes

Once Dovecot is running, there are several doveadm options that you use to control the
Dovecot process:

director—manage Dovecot directors

exec—execute Dovecot commands

instance—manage the list of running instances

kick—disconnect users

log—locate, test, or reopen log files

penalty—show current penalties

proxy—manage Dovecot proxy connections

who—display current users

There are also doveadm options for managing mailboxes:

acl—manage access control lists

altmove—move messages to alternative storage

backup—synchronize mailboxes to a remote location

batch—execute multiple commands

copy—copy messages to another mailbox

deduplicate—remove duplicate messages

362  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 362

dump—dump the contents of a mailbox

expunge—remove messages based on query

fetch—retrieve messages based on query

flags—add, remove, or replace message flags

fts—manipulate the full text search index

force-resync—fix broken mailboxes

import—import messages into a mailbox

index—index messages in a mailbox

mailbox—mailbox handling commands

move—move messages between mailboxes

purge—remove messages from mailboxes

quota—set or show quota settings

replicator—manage a user’s mail replication

search—show a list of mailboxes or messages

stats—display or reset mailbox statistics

sync—synchronize the mailbox with another location

The doveadm commands provide a full set of administration tools for managing the
Dovecot mailbox environment.

E x e rc ise 7.1

Setting Up and Testing an Email Server

This exercise demonstrates how to set up a simple email server on your Linux system. To
do this, follow these steps:

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of
the following commands.

2.	 Open a command prompt; then type sudo apt-get install sendmail or yum
install sendmail to install the sendmail package on your system. You won’t see
any objects added to the menu when this program is installed.

3.	 Type sudo apt-get install courier-imap courier-pop or yum install
courier-imap and yum install courier-pop to install the Courier IMAP and POP3
servers. Again, you won’t see any objects added to the menu when these programs
are installed.

4.	 Test the sendmail SMTP server by typing telnet localhost 25 at a command line. If
your system has the sendmail program running, you should be greeted by a welcome
banner. Type QUIT, and then hit the Enter key to exit the SMTP session.

Summary  363

c07.indd  09/14/2016  Page 363

5.	 Test the Courier IMAP server by typing telnet localhost 143 at a command line.
You should see the Courier IMAP welcome banner. Type a01 LOGOUT, and hit the
Enter key to exit and return to the command prompt.

6.	 Test the Courier POP3 server by typing telnet localhost 110 at the command line.
You should see the Courier POP3 welcome banner. Type QUIT, and hit the Enter key to
exit and return to the command prompt.

7.	 Send a test email message to yourself by typing telnet localhost 25 at the com-
mand line. At the SMTP prompt, type HELO localhost then press the Enter key. Next,
continue the SMTP session by entering the following commands:

MAIL FROM: rich@localhost
RCTP TO: rich
DATA
Subject: Test message
This is a test message.
.
QUIT

Substitute your username for the username in the RCPT TO line shown in this example.

8.	 At the command prompt, check your mailbox by typing the mail command at the
command prompt. You should see at least one message waiting for you. Enter the
message number as shown in the message listing to view the message. Type d to
delete the message and then x to exit the mail program.

9.	 Exit from the command prompt to return to your desktop.

Summary
Linux uses several programs to implement email features in a server environment. The mail
transfer agent (MTA) is responsible for sending mail messages to both local and remote
users, as well as receiving mail messages from remote servers. The two most popular Linux
MTA packages are sendmail and Postfix.

The mail delivery agent (MDA) can provide advanced features for processing mail des-
tined for local user accounts. You can create systemwide rules (called recipes) for process-
ing all mail messages. Individual users can also specify rules for processing their own mail.
The procmail program is the most common MDA program used in Linux.

The mail user agent (MUA) provides an interface for users to access the email messages
in their mailboxes. Both text-based as well as graphical MUA packages are available for
Linux. The binmail program is the most common text-based package for the command
line. The Evolution, Thunderbird, and KMail packages are commonly found in graphical
desktop Linux environments.

364  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 364

The sendmail program uses a single configuration file to store all settings required to
run the MTA server. The /etc/sendmail.cf file can be somewhat difficult to build, so the
sendmail developers created macros using the m4 macro preprocessor to help make setting
up a sendmail server easier. The sendmail program normally uses the /var/spool/mail
directory for storing mail messages, with each user account mailbox being a separate file
under that directory.

The Postfix program uses multiple configuration files and stores them all in the /etc/
postfix folder. It creates system mailboxes in the /var/spool/postfix directory for pro-
cessing email messages, and then it can use either the standard mbox mailbox format that
sendmail uses for user messages, or it can use a more advanced directory structure called
maildir.

The procmail program allows both the system administrator and individual users to cre-
ate recipes for forwarding email messages to separate folders, to remote email addresses, or
to the trash. The /etc/procmailrc file contains recipes that are applied to all email mes-
sages, while each user’s $HOME/.procmailrc file contains recipes that apply only to email
for that user.

The Sieve programming language provides a standard interface for handling incoming
email messages. It allows you to define what type of messages to filter and how to handle
the filtered messages.

The Courier and Dovecot programs provide IMAP and POP3 servers, which allow remote
users to access their mailboxes. The Courier package stores configuration files in the /etc/
courier directory, and Dovecot stores its configuration in the /etc/dovecot.conf file.

Exam Essentials
Describe the configuration files required for Postfix.    Postfix uses three configuration files,
all located in the /etc/postfix directory. The install.cf file contains settings for manag-
ing the installation parameters when you install Postfix. The main.cf file contains settings
for processing messages, and the master.cf file contains settings to control the running
Postfix processes.

Describe how SMTP is used to transfer mail between two email users.    SMTP is a text-
based protocol. Once you establish a connection to an SMTP server, the client program
controls the connection by issuing four-character commands. The server responds with a
three-digit response code, along with human-readable text. The client specifies the email
message recipient, identifies the sender, and then sends the message text. SMTP servers can
be configured to accept messages for non-local user accounts and then relay the message to
the appropriate server for the user.

Summarize the common SMTP programs available for Linux.    The sendmail and Postfix
programs are the most common SMTP programs for Linux. The sendmail program was the
original SMTP program used in Unix systems, and it was ported to the Linux environment.

Exam Essentials  365

c07.indd  09/14/2016  Page 365

The Postfix program makes creating an email server easier by simplifying the configuration
process. It also improves recovery from a server crash by splitting the email process into
several programs, with each program having its own storage directory for processing email
messages. Two other popular SMTP programs are Exim and qmail, each of which can be
found in specialized email server installations.

Explain what the procmail program adds to the email process.    MTA programs have the
ability to store incoming email messages in mailboxes for individual local users, but they
don’t normally do much else. The procmail MDA program provides advanced features for
mail processing. The MTA program passes email messages for local users to the procmail
program, which then compares each received message against recipes defined by the system
administrator and each individual user. The recipes can sort email messages into separate
directories, forward email to other user accounts (both local and remote), or automatically
respond to email messages.

List where to define procmail recipes.    You can define procmail recipes in two locations.
The /etc/procmailrc file contains recipes that procmail applies to all email messages that
the server receives. This can come in handy if you need to store copies of all incoming email
or if you need to redirect all incoming email temporarily to another server. Besides the
main procmailrc configuration file, each user can create an individual .procmailrc file in
their $HOME directory to process their own email messages.

Explain how remote users can access their email mailboxes.    You can install POP3 and/or
IMAP server software on the Linux system to allow remote users to connect to the server
to read their email messages. The POP3 server normally downloads user email messages
directly to the client MUA software on the remote workstation, so no email messages are
stored on the server. The IMAP server normally allows users to store their email messages
on the server, as well as create separate directories for sorting messages. Most MUA client
programs (such as Evolution, Thunderbird, and KMail) support both POP3 and IMAP con-
nections to servers.

Describe how the Sieve programming language works.    The Sieve programming language is a
standard for defining rules for processing incoming email messages. It can be implemented in
any MDA or MTA application. Sieve defines controls for determining which email messages
are handled and actions for defining what the server should do with the email messages
that match the controls.

Describe how the Dovecot program works.    The Dovecot program also provides both
POP3 and IMAP server capabilities for accessing user mailboxes remotely. It uses a single
configuration file called /etc/dovecot.conf to control server features.

366  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 366

Review Questions
You can find the answers in the Appendix.

1.	 Where are the Postfix configuration files located?

A.	 /var/spool/postfix

B.	 /etc/postfix

C.	 /var/spool/mail

D.	 /var/log

E.	 /etc/mail

2.	 What is the name of the main Postfix process?

A.	 qmgr

B.	 pickup

C.	 master

D.	 cleanup

E.	 smtp

3.	 What is the Postfix configuration file that manages when Postfix processes start and stop?

A.	 master.cf

B.	 main.cf

C.	 install.cf

D.	 /var/spool/postfix

E.	 /var/log/maillog

4.	 What is the Postfix configuration file that controls mail processing?

A.	 master.cf

B.	 /etc/sendmail.cf

C.	 /etc/aliases

D.	 main.cf

E.	 /var/log/maillog

5.	 What directory does Postfix use for storing email messages as it processes them?

A.	 /var/spool/mail

B.	 /var/spool/postfix

C.	 /etc/postfix

D.	 /etc/mail

6.	 What sendmail emulation command in Postfix allows you to check on the number of mes-
sages waiting in the mail queue to be delivered?

A.	 newaliases

B.	 master

Review Questions  367

c07.indd  09/14/2016  Page 367

C.	 pickup

D.	 smtp

E.	 mailq

7.	 Which sendmail emulation command converts the text alias entries into the binary aliases
database file?

A.	 newaliases

B.	 master

C.	 pickup

D.	 smtp

E.	 mailq

8.	 What text file does the newaliases command read to create the aliases database?

A.	 /etc/aliases

B.	 /etc/postfix/master.cf

C.	 /etc/postfix/main.cf

D.	 /etc/postfix/install.cf

9.	 What log file does Postfix use to store system messages?

A.	 /var/spool/mail

B.	 /var/log/maillog

C.	 /var/spool/postfix

D.	 /var/log/messages

10.	 Where do individual users store procmail recipes to apply to their own email messages?

A.	 /etc/postfix

B.	 /etc/procmailrc

C.	 $HOME/.procmailrc

D.	 /etc/aliases

E.	 /users/.procmailrc

11.	 What files does the email administrator use to store recipes to apply to all incoming email
messages?

A.	 /etc/postfix

B.	 /etc/procmailrc

C.	 $HOME/.procmailrc

D.	 /etc/aliases

E.	 /users/.procmailrc

368  Chapter 7  ■  Organizing Email Services

c07.indd  09/14/2016  Page 368

12.	 What does the following procmail recipe do to incoming email messages?
:0 c
messages

A.	 The system rejects all incoming email messages.

B.	 The system forwards all email messages to an alias account.

C.	 The system copies all incoming email messages to the messages directory.

D.	 The system moves all incoming email messages to the messages directory.

E.	 The system deletes all incoming email messages.

13.	 What MDA program is commonly used to forward email messages to local mailboxes?

A.	 Sendmail

B.	 Procmail

C.	 Postfix

D.	 Courier

E.	 Dovecot

14.	 What configuration setting in Postfix must you change to forward all incoming email
messages to procmail?

A.	 mailbox_command

B.	 mydestination

C.	 myhost

D.	 relayhost

15.	 Which mailbox style stores all messages for a user in a single file?

A.	 Sendmail

B.	 Courier

C.	 Maildir

D.	 Mbox

E.	 Exim

16.	 Which mailbox style uses separate files to store each message for each user?

A.	 Sendmail

B.	 Courier

C.	 Maildir

D.	 Mbox

E.	 Exim

17.	 Where are the Courier configuration files located?

A.	 /var/spool/mail

B.	 /var/spool/postfix

Review Questions  369

c07.indd  09/14/2016  Page 369

C.	 /etc/courier

D.	 /etc/mail

E.	 /var/log

18.	 What Courier configuration setting determines how many remote clients can connect at the
same time?

A.	 MAXDAEMONS

B.	 MAILDIRPATH

C.	 ADDRESS

D.	 MAXPERIP

E.	 PORT

19.	 Where does Dovecot store its configuration settings? (Select two.)

A.	 /etc/dovecot

B.	 /etc/postfix

C.	 /var/spool/mail

D.	 dovecot.conf

E.	 /var/spool/postfix

20.	 What Dovecot setting specifies the authentication methods that the server supports?

A.	 mail_location

B.	 mechanisms

C.	 listen

D.	 login_max_connections

E.	 protocols

c08.indd  09/14/2016  Page 371

Directing DNS

The following exam objectives are
covered in this chapter:

✓✓ 207.1 Basic DNS server configuration

✓✓ 207.2 Create and maintain DNS zones

✓✓ 207.3 Securing a DNS server

Chapter

8

c08.indd  09/14/2016  Page 372

The Domain Name System (DNS) is a network protocol at the
heart of many Internet activities. It provides IP addresses to
various systems that provide services, and it uses a distributed
database to do this.

For Linux systems, BIND is a popular package that provides DNS. Setting up DNS via
BIND can be a complicated process, involving modifying configuration files and creating
and maintaining zones, in addition to securing the DNS server and its various transactions.
All of these topics (and more) are covered in this chapter.

Configuring a DNS Server
In part, you have DNS to thank for being able to type a web page’s address, such as
www.ivytech.edu (or a shortened version of that name, such as ivytech.edu) into a
browser’s address bar and having the browser reach the web site. In this section, you’ll
learn about how DNS works, how to install BIND software to implement DNS services,
BIND’s various configuration files, starting and stopping BIND, setting up BIND logging,
and even implementing a local caching-only DNS server.

Understanding DNS and BIND
Before launching into how to install BIND and configure it, it’s best to understand how
DNS works. Designed in 1983, DNS is a complicated but rigorous structure that has sur-
vived the test of time.

Looking at DNS
Typically, when someone would like to visit a web page, they open a web browser and
type in letters (or words), separated by dots, into the browser’s address line, such as www
.ivytech.edu. These dot-separated letters make up a fully qualified domain name (FQDN),
and they are the human-friendly addresses used by individuals to access various services, such as
web pages, across a network.

Systems connected to a network, such as the Internet, do not use FQDNs. Instead, they
use IP addresses to identify each other. Thus, there exists a need to translate FQDNs into IP
addresses and vice versa. This need is typically fulfilled by DNS. The process of translating
between a system’s FQDN and its IP address is called name resolution. DNS is a network
protocol that uses a distributed database to provide the needed name resolution.

http://www.ivytech.edu
http://www.ivytech.edu
http://www.ivytech.edu

Configuring a DNS Server  373

c08.indd  09/14/2016  Page 373

Historically a system’s local /etc/hosts file was used to provide name
resolution. If desired, you can still use this file for that purpose on very
small local networks that consist of a few systems.

If DNS used a single database in a sole location, the results would be disastrous. Large
networks would bog down while waiting for name resolutions to complete. Fortunately,
DNS has a database with a robust distributed structure, providing the needed name
resolution performance levels.

The DNS database structure, also called the Domain Name Space, is an inverted
or upside-down tree. This structure is somewhat similar to the Linux virtual directory
structure. In DNS, a web host may be referred to by its host name and domains, sepa-
rated by dots, such as www.example.com, whereas in the Linux virtual directory structure,
the files and directory names are separated by forward slashes, such as /home/rich/
filea.txt.

The Domain Name Space’s hierarchical structure is rather vast. An artistic representation
of a name space snippet is shown in Figure 8.1.

F i gu r e 8 .1     Domain Name Space depiction

At the top of the domain namespace is the root domain, also called null. It is typically
written in documentation either with two single quotes right next to each other (") or as a
single dot (.).

http://www.example.com

374  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 374

Below the root domain are Top-Level Domains (TLDs). These TLDs can be generic, such
as .com, .edu, .gov, and so on. They can also be country codes, typically only two letters
long, such as .IN for India and .US for the United States of America. In addition, there are
infrastructure, restricted, sponsored, and test TLDs. The organizations that manage these
TLDs are selected by the Internet Corporation for Assigned Names and Numbers (ICANN).
ICANN is also responsible for managing the root domain area.

Below the TLDs are first-level domains, and they are considered to be TLD subdomains.
Typically, first-level domains are for various companies, organizations, or individuals. For
example, referring back to Figure 8.1, the first-level domains depicted include .Ubuntu,
.RedHat, .openSUSE, and .IvyTech. Each first-level domain name must be unique and regis-
tered with ICANN through a domain name registrar.

Following the first-level domains on the domain name space tree are further subdomains that
can either be actual systems (hosts, sometimes called nodes) or additional subdomains. These
hosts and any subdomains are usually managed by the first-level domain owner. Typically, you
see either www or a name for the host. In Figure 8.1, hosts (nodes) are shown as leaves on the tree.

While it is true that you can go to even deeper subdomain levels (up to 127
levels) and have a domain name like me.linux.cs.myorg.com, it’s typically
not a good idea. It is a better practice to use subfolders such as myorg
.com/cs/linux/me instead of multilevel subdomains.

When a user types an FQDN into a web browser’s address bar, they include many
different information pieces, as shown here:

host_name.first-level_domain.TLD

For example, a user may enter the following FQDN to reach the openSUSE distribution’s
forums:

forums.opensuse.org

A FQDN can also be preceded with the protocol being used as well as followed by any
needed subfolders/paths or ports. For example, to reach the same website as just shown, a
user could enter https://forums.opensuse.org/forum.php.

FQDNs are sometimes referred to as absolute domain names, because they show the
entire path to a service or web page. This is similar to absolute directory references in the
Linux virtual directory structure.

Technically, an FQDN must end in the root domain name, which is indicated
by a trailing single dot (.). So forums.opensuse.org should be written as
forums.opensuse.org. to qualify as a true FQDN.

The name resolution process (translating an FQDN into an IP address that allows you
to reach the desired host or service) is rather complicated. Several players are involved.

https://forums.opensuse.org/forum.php

Configuring a DNS Server  375

c08.indd  09/14/2016  Page 375

The first player is the name server. A name server can store information about a domain
namespace portion, called a zone, which will provide the name resolution data. If a name
server doesn’t store zone information, it has software that can obtain the needed name
resolution information.

Domain Name Space is broken up into different zones. For example, the root zone, shown
in Figure 8.2, is managed by ICANN. The root zone manages authoritative information con-
cerning the TLDs (also shown in Figure 8.2) on its name servers. Thus, these name servers
store information about the root zone, and they are often referred to as the root servers.

F i gu r e 8 . 2     Namespace root zone and TLDs

Thirteen named managers take care of the root servers handling the root zone. Some
people mistakenly take that to mean that there are only 13 servers. Actually, there are hun-
dreds of root servers managing the DNS root zone, and these servers are spread all over the
world. You can find out more about these 13 designated managers and their root servers at
https://www.iana.org/domains/root/servers.

Additional zones also exist, but they are not as clear-cut as the root zone. Once you get
to the first-level domains, a zone may be the entire first-level domain and all it subdomains,
or it may be the first-level domain and only a portion of its subdomains.

A zone defines what a domain name server has authority over. It includes
maintaining the zone’s authoritative data files, called either zone files or
zone databases, covered later in this chapter.

At the first-level domains and below, a domain name’s owner is responsible for managing
the zone(s) and the name servers. A minimum of two name servers are required per zone, as
noted here:

https://www.iana.org/domains/root/servers

376  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 376

Primary (Master) Server    This name server is required, and it is considered the authoritative
server, because it has authority over the domain; the information it contains (such as the
domain’s name and what subdomains exist in that domain) is called authoritative information.

Secondary (Slave) Server    This name server is optional; it is considered an authoritative
server, but it receives its information from the primary server and is often used for perfor-
mance reasons to offload the primary server’s burden.

Caching Server    Often used by ISPs, this name server receives its information from the
primary (or secondary) server, and it stores the information locally in its own cache, which
provides faster name resolution.

Forwarding Server    This specialized caching server also forwards queries to the other
servers if it cannot find the needed query answer in its cache; it is often implemented for
security reasons and can also be implemented on the DNS client side to improve name reso-
lution performance.

A domain owner can have more than two name servers for a domain, depending on the
domain’s performance needs. However, at a minimum, there must be a primary server and
one other of the listed servers.

DNS servers can also be a combination of the server types listed previously. For example,
you could have a secondary server that is also acting as a caching server. These combo-DNS
servers are sometimes called Hybrid servers.

There are also Stealth DNS servers, which are sometimes called Hidden DNS servers.
These servers are typically behind firewalls. They can be either primary or secondary DNS
servers, are used for an organization’s internal DNS queries, and are often hybrids in that
they may also offer caching and recursive DNS services.

As you probably have recognized, understanding what DNS server types
your company or organization needs can be a large part of a DNS server
implementation project. While there is great flexibility, there can also be
terminology confusion. Whether you are implementing DNS servers or
just studying for the certification, it is worthwhile to record the various
server type definitions for study or use during implementation project
meetings.

Another important player in name resolution is the resolver. The resolver is a program or
library routine that forms a query (for example, “What is the IP address of www.example
.com?”) and needs to obtain the query answer. (A resolver can also refer to a DNS client.)

When a resolver creates its query, it first checks its own DNS cache, if available. If this query
has been recently answered and the resolver’s cache has the answer, the query process stops.

The various name resolutions that exist in the different DNS caches are
often governed by a time to live (TTL) setting. Once that time has passed,
the name resolution is flushed from the cache.

http://www.example.com
http://www.example.com

Configuring a DNS Server  377

c08.indd  09/14/2016  Page 377

If the resolver’s cache does not contain the answer, the resolver sends the query to an
internal or external (typically an ISP) name server. This query is a single UDP request and
the name server is typically called a Recursive Name Server. If previous name resolutions
have been stored on this server (cached) or stored on a local caching server, the Recursive
Name Server responds to the query, using a single UDP reply containing the appropriate IP
address. If the name resolution has not been cached, the Recursive Name Server will start
its own query process.

As an example, suppose a resolver is trying to determine the IP address of the www
.example.com website. The name resolution process example is depicted in Figure 8.3.

F i gu r e 8 . 3     DNS query process

1

2

Cache

Resolver

Local System
(DNS Client)

Recursive Name Server Authoritative Servers

Root Server

TLD Server (.com)

Zone Server (.example)

Query
Process

12

3

4

5

Cache

7

6

9

8

11

10

For Figure 8.3, each step the name resolution process takes in this example query is
described here:

1.	 The resolver checks its own server’s cache for www.example.com’s IP address.

2.	 The resolver is informed that the name resolution data is not found in the local cache.

3.	 The resolver queries its ISP’s Recursive Name Server, which starts a query process.

4.	 The Recursive Name Server query process checks its local cache for the www.example
.com’s IP address.

5.	 The Recursive Name Server is informed that the name resolution data is not found in
the local cache.

6.	 The Recursive Name Server queries the authoritative root server for the .com TLD
server location.

7.	 The root server responds with the authoritative information stating where a .com TLD
server is located.

8.	 The Recursive Name Server queries the authoritative .com TLD server for the .example
zone server location.

9.	 The .com TLD server responds with the authoritative information stating where an
.example zone server is located.

http://www.example.com%E2%80%99s
http://www.example.com
http://www.example.com
http://www.example.com%E2%80%99s
http://www.example.com%E2%80%99s

378  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 378

10.	 The Recursive Name Server queries the authoritative .example zone server for the www
host’s IP address.

11.	 The .example zone server responds with the authoritative information stating the IP
address of the www host.

12.	 The Recursive Name Server passes along the IP address of www.example.com to the
resolver.

This entire name resolution process would move much more slowly if the DNS database
was not distributed. In addition, providing caching of recent name resolutions is beneficial
for performance.

On the client side of name resolution, different caching or forwarding server configura-
tions are possible. Your particular DNS client-side setup will be dictated by the applications
and data needs of your system(s) as well as their resources.

Sometimes confusion exists when it comes to name resolution concern-
ing IP addresses and MAC addresses. Address Resolution Protocol (ARP)
translates an IPv4 address into a system’s NIC MAC address. Neighbor
Discovery Protocol (NDP) translates IPv6 addresses into MAC addresses
(though your IPv6 address may contain the system’s MAC address, depend-
ing on its configuration). Typically, a system’s MAC address is used from
only one router hop to the next, and it does not go beyond a single router.
Thus, your system’s MAC address is used to send packets from the closest
router to the system and does not go beyond that point, whereas a system’s
IP address does go beyond a single hop. Chapter 6 contains more details on
network configuration.

There are additional finer details to the name resolution process. The DNS structure
is extremely rigorous and whole books have been written on the topic. A book dedicated
entirely to DNS is useful if you want to dig deeper into understanding its nuances.

Looking at BIND
Berkeley Internet Name Domain (BIND) provides DNS protocol implementation. BIND
got its start more than 30 years ago at the University of California at Berkeley, and it is
open source. It also is the most popular DNS software available.

Certification objectives cover BIND version 9.x, also called BIND 9.
Though BIND was originally written by four Berkeley graduate students,
it ended up being maintained by the Internet Systems Consortium (ISC).
Around 2009, the ISC started on BIND 10. In 2014, BIND 10 was renamed
Bundy, and it is no longer handled by the ISC. Bundy is currently main-
tained by the Bundy-Project at http://bundy-dns.de/. This chapter’s and
the certification objective’s focus is on BIND 9, which is still maintained by
the ISC.

http://www.example.com
http://bundy-dns.de/

Configuring a DNS Server  379

c08.indd  09/14/2016  Page 379

The various details on configuring and maintaining DNS on Linux using BIND are covered
later in this chapter. First, it is worth looking at a few BIND alternatives and companion tools.

Looking at BIND Alternatives
You have several alternatives to BIND. The following describes four alternatives, or companion
tools, arranged in alphabetical order.

djbdns    The djbdns software was written by Daniel J. Bernstein (of qmail fame), thus the
djb preceding dns in its name. This software is actually several DNS applications, including
tinydns, which was very popular around the turn of the millennium. The djbdns software
collection was released to the public domain in 2007 and resulted in several project forks,
including the Debian project’s dbndns and ndjbdns at http://pjp.dgplug.org/ndjbdns/.

dnsmasq    Often installed by default on various distributions (such as Ubuntu), the
dnsmasq utility provides a lightweight combination of DNS and Dynamic Host Control
Protocol (DHCP) services as well as a few others. (If it’s not installed on your distribution,
you can obtain it via the dnsmasq package.) The software is designed for small networks.

For DNS services, it acts as a DNS forwarding server and can maintain a small cache so
that not all queries need to be forwarded to other servers. It is fairly easy to configure, and
it includes the /etc/hosts file’s contents in its configuration. Some turn off many of the
dnsmasq utility features and configure it to act as only a local cache and forwarding server.
This can greatly improve name resolution speeds.

pdnsd    pdnsd is not a full DNS server solution but instead is a utility that works alongside
DNS to improve performance. This GPL-licensed proxy DNS server software has a perma-
nent persistent cache for a small set of DNS name servers. The leading p in its name stands
for persistent. Its primary function is to allow applications that use resolvers at system boot
time to handle situations where the desired DNS name server is unreachable or down. Also,
it can conduct parallel name server queries to speed up query processing.

PowerDNS    PowerDNS is a full-service DNS server implementation. It is free, is open
source, and has the GPL license, but it also offers 24/7 support contracts. PowerDNS’s
maintaining company also provides training and consulting services.

The PowerDNS software has a modular approach in that one application provides an
authoritative server, while a separate software application provides recursive server features.
It also offers an application programming interface (API) for managing zone data, and the
data can be stored either in plain-text files or in a third-party database, such as MySQL,
PostgreSQL, or MariaDB. Find out more about PowerDNS by visiting their website at
https://www.powerdns.com/.

Configuring DNS on Linux
How you configure BIND on your Linux system(s) depends on your DNS goals. If you
are a domain owner, you’ll need at least two name servers. On one name server, you
will need to configure DNS via BIND as an authoritative primary server to handle DNS

http://pjp.dgplug.org/ndjbdns/
https://www.powerdns.com/

380  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 380

name resolution queries. Your second required server can be any of the other three
types—authoritative secondary, caching, or forwarding—depending on your domain’s
performance needs.

If you’re primarily configuring your system to be a DNS client (resolver), you may want
to consider configuring your system to be a caching-only server (if it’s not preconfigured
this way). By caching name resolutions, resolver speeds can improve significantly.

Installing BIND on Linux
Whether you plan on setting up a name server or just following along in this chapter, you’ll
need the BIND 9 software package and utilities. The BIND 9 software is in the bind9
or bind package, depending on your distribution. Also, you’ll need various utilities to
troubleshoot and manage it, which are in the bindutils package.

Typically, on Red Hat–based distributions, you need to install the bind and bindutils,
if not already installed. For an Ubuntu distribution, you will need to install bind9 and
bind9utils, and it is also very helpful to install bind9-doc.

The following shows checking a CentOS distribution for the various bind packages and
installing the missing software:

rpm -qa | grep ^bind
bind-libs-9.9.4–18.el7_1.5.x86_64
bind-libs-lite-9.9.4–18.el7_1.5.x86_64
bind-license-9.9.4–18.el7_1.5.noarch
bind-utils-9.9.4–18.el7_1.5.x86_64
#
yum install bind
[...]
Install 1 Package
Upgrade (4 Dependent packages)

Total download size: 3.7 M
Is this ok [y/d/N]: y
Downloading packages:
[...]
Complete!
#

Both the CentOS and the Ubuntu distributions offer a nice set of BIND documentation.
Ubuntu provides it via the bind9-doc package. Once installed, the documentation is
located in the /usr/share/doc/bind9/ directory for review. The Ubuntu /etc/bind/
named.conf file strongly recommends that you do so prior to modifying it.

The CentOS distro documentation is provided by the bind package and is created in
the /usr/share/doc/bind-version/ directory. It primarily consists of several .html files,
including an Administrator Resource Manual (ARM).

Configuring a DNS Server  381

c08.indd  09/14/2016  Page 381

Comparing BIND Services and Daemons
The BIND daemon provides DNS services, and it is typically located on a system in the
/usr/sbin/ directory. There are several differences to note between the distributions. For
example, the BIND daemon is fairly straightforward on a Red Hat distribution. The BIND
package names start with the word bind, as shown here on CentOS:

rpm -qa | grep ^bind
bind-libs-lite-9.9.4–29.el7_2.3.x86_64
bind-libs-9.9.4–29.el7_2.3.x86_64
bind-utils-9.9.4–29.el7_2.3.x86_64
bind-9.9.4–29.el7_2.3.x86_64
bind-license-9.9.4–29.el7_2.3.noarch
#

As you would expect, the service name and the daemon are both called named. The daemon
runs under the named username, as shown here on CentOS:

systemctl status named | grep -i active
 Active: active (running) since Thu 2016–03–17 11:23:48 EDT; 1min 20s ago
#
ps -ef | grep ^named
named 2956 1 0 11:23 ? 00:00:00 /usr/sbin/named -u named
#

On Ubuntu, the BIND package name is only slightly different (bind9) than on a Red
Hat–based distribution, as shown here:

$ sudo apt-cache show bind9 | grep -i status
[sudo] password for christine:
Status: install ok installed
$

To control the BIND DNS services on Ubuntu, the bind9 service name (instead of
named) is used, as shown here:

$ service bind9 status
 * bind9 is running
$

Also, you can see that on an Ubuntu distribution, the /usr/sbin/named daemon is run-
ning, but it runs under the bind username (instead of named), as shown here:

$ sudo ps -ef | grep ^bind
[sudo] password for christine:
bind 1242 1 0 08:20 ? 00:00:00 /usr/sbin/named -u bind

382  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 382

$
$ grep bind /etc/passwd
bind:x:117:126::/var/cache/bind:/bin/false
$

Other distribution BIND differences exist in the configuration files and their locations,
which is typical. We needed to specifically address these BIND package, service, and dae-
mon name differences, prior to further review of BIND DNS implementation.

Exploring BIND’s Files on Linux
The main configuration file for BIND is /etc/named.conf or /etc/bind/named.conf,
depending on your distribution. Here is a snipped version of the /etc/named.conf file on a
CentOS distribution:

cat /etc/named.conf
//
// named.conf
//
// Provided by Red Hat bind package to configure ISC BIND [...]
[...]
options {
 listen-on port 53 { 127.0.0.1; };
 listen-on-v6 port 53 {::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 allow-query { localhost; };
[...]
 recursion yes;

 dnssec-enable yes;
 dnssec-validation yes;

 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";

 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";
};

Configuring a DNS Server  383

c08.indd  09/14/2016  Page 383

logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

#

The named.conf file provides many different configuration settings. To understand the var-
ious settings, it is useful to break them down into groupings (also called clauses) as follows:

Comments    Comment fields within the named.conf file often provide very helpful configu-
ration information or warnings. Comment lines either begin with // or they are encased by
/* comment */. You can also add a comment at a line’s end, as long as the comment is pre-
ceded by a hash mark (#). Because the named.conf file default structure can vary so greatly
among the different distributions, it is worthwhile to review this file’s comments as part of
your BIND setup investigation process.

Options    Within the options section, global options are set. Individual zone options are
set within the zone section(s) or files, and they override global options.

The listen-on and listen-on-v6 settings specify what port number to listen to for UDP
and TCP traffic and which IP addresses (also called the address match list), including the
local host address, will listen for any incoming queries.

The directory setting indicates the primary directory for the named daemon. This is the
directory where the zone files are located, as well as other important files. The directory is
typically set to /var/named/, and it is the default BIND configuration.

The dump-file directive defines where a cache and/or zone database is dumped. The database(s)
is dumped only when the rndc dumpdb command is issued. (The rndc command is covered later
in this chapter.)

Records within the named.conf file are either inert or active. Comments
are inert (inactive). Any record that ends with a semicolon (;) is an active
statement, which causes a BIND configuration directive to take effect.

384  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 384

When the rndc stats command is issued, it will write any server statistics to the file indi-
cated by the statistics-file setting. If this global option is not set, the stats are written
to the /directory/named.stats file, where directory is the defined directory option.

The memstatistics-file setting determines where DNS server memory usage statistics are
recorded when the server exits. In older BIND versions, this occurred only when an addi-
tional setting (deallocate-on-exit) was set to yes. However, in BIND 9, these memory
usage statistics are written by default.

The allow-query directive is an important setting concerning access and security. You can
specify an IP address match list of systems allowed to make queries to this DNS server. The
IP addresses are listed within the curly brackets ({}) and separated by a semicolon (;). The
designation of localhost within an address match list means that the server’s IP address and
its loopback address, 127.0.0.1, are included in the match list and allowed to make queries.

It’s important to include the allow-query directive in your named.conf
file’s options section. If you do not include it, the default is set to allow-
query{any;}, which effectively allows any system from anywhere to make
queries to your DNS server. If your DNS server is a Recursive Name Server
that has a public IP address, and you do not set the allow-query directive,
your server could become involved in a DNS amplification attack.

Also, as of BIND v9.4, there is a new directive, allow-query-cache, which
has syntax similar to the allow-query directive and should be set to allow
only designated systems access to this server’s DNS cache.

The recursion setting, if set to yes, tells BIND that this DNS server is to act as a Recursive
Name Server. This server type was covered earlier in the chapter. You should set recursion
to no if you are configuring an authoritative server, such as a primary or secondary DNS
server. These server types were also covered earlier in the chapter.

The dnssec-enable directive is set to yes by default (for BIND v9.5 and up). This enabling
can be for securing zone transfers, for DNS Security Extensions (DNSSEC), for safeguard-
ing DNS query responses, for securing DDNS updates, and so on. These important topics
are covered later in this chapter.

Hand in hand with the dnssec-enable directive, the dnssec-validation directive is part
of the DNSSEC process and is set to yes by default (for BIND v9.5 and up). However,
either the managed-keys or trusted-anchors option must be set as well for this setting to
be effective.

The bindkeys-file directive sets the location of a trusted keys repository for use with zone
keys. Zone keys are covered later in this chapter.

The DNSSEC process uses keys. These keys are kept in the file designated by the manage-
keys directive. If dnssec-validation is enabled (set to yes), this directive should be
included for the global option.

Configuring a DNS Server  385

c08.indd  09/14/2016  Page 385

The pid-file directive specifies a file to hold the BIND daemon’s (named) process ID (PID).
If the directive is not set, the file used is named.pid, and it is typically located in one of the
following directories, /run/named/, /var/run/, or /etc/, depending on your distribution.

BIND allows dynamic updates to zones. A key used to update a zone is placed in the file
designated by the session-keyfile setting.

Logging    Within the logging section, directives configure the BIND logging system. Logs can
assist in troubleshooting DNS problems as well as tracking security and performance issues.

The various named channel settings determine where and what information is logged. In
the preceding named.conf example, the file directive names the log file and its location. In
this case, the location is a subdirectory (data) under the directory directive /var/named/
directory setting. The severity directive determines what possible information is logged.
It can be set to very little information, critical (only critical errors), or to a great deal of
information, dynamic (debugging data, notices, warnings, and so on). Some distributions
have logging set in their configuration file by default while others do not.

Zones    Because a zone defines what a domain name server has authority over, BIND’s
focus is on zones instead of on domains. Thus, the zone directives are very important.
Individual zone options override any global options.

If a zone is defined here, it is typically the root zone, as is the case in the preceding named
.conf example. The zone "." (also called the root zone depicted earlier in Figure 8.2)
directive sets the authoritative root server (depicted earlier in Figure 8.3) to query. Various
root server addresses are normally stored in the named.ca file. The type hint setting
denotes that the selected root server from this file can respond with the needed authoritative
information. The root zone directive is needed so that any zone not defined within the
local system’s DNS configuration can have a query for it fulfilled. This root zone direc-
tive is often called a Hint for Root Level Servers and is noted as such in the certification
objectives.

Additional zones can be defined in this file, but on most distributions they are not. Zone
directives are often put into their own separate files and then included in the named.conf
file via an include statement, as described next.

Include Files    Additional configuration settings can be stored in separate files and then
included using an include statement. In the preceding named.conf example, there are
two include statements. The first loads the default zone configuration file, /etc/named
.rfc1912.zones. The second include statement loads the DNS root key for the root zone.
Keys are covered later in this chapter.

Some distributions, such as Ubuntu, have all of the named.conf configuration settings
stored in include files. For example, here are the only active statements in an Ubuntu /etc/
bind/named.conf file:

$ cat /etc/bind/named.conf
[...]

386  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 386

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";
$

Several more groupings (clauses) and settings are available for the named.conf file. To
see them all, type man named.conf at the command line.

The /sbin/named-checkconf utility will conduct a syntax check on your
named.conf file, which is helpful if you modify it. The utility does not
check any configuration files loaded via the include statements, but you
can check these files by passing their names to the utility. Learn more by
typing man named-checkconf at the command line.

Zone configuration files are covered in depth later in this chapter. However, it’s helpful
to look at the default zone configuration file on a Linux DNS client where BIND has been
installed.

On some distributions, this default zone configuration file is /etc/named.rfc1912.zones.
On other distributions, the zone file is /etc/bind/named.default-zones. You can often find
your distribution’s default zone file name by looking through its named.conf file or one of
the named.conf file’s include files.

The default zone configuration contains only zone directives, and it is typically created
when BIND is installed. Each zone directive points to zone files (also called databases)
located in the /var/named or /etc/bind directory, depending on your distribution. Here is
a snipped default zone configuration file example from a CentOS distribution:

cat /etc/named.rfc1912.zones
// named.rfc1912.zones:
[...]

zone "localhost.localdomain" IN {
 type master;
 file "named.localhost";
 allow-update { none; };
};

zone "localhost" IN {
 type master;
 file "named.localhost";
 allow-update { none; };
};
 [...]

Configuring a DNS Server  387

c08.indd  09/14/2016  Page 387

zone "0.in-addr.arpa" IN {
 type master;
 file "named.empty";
 allow-update { none; };
};

#

The directives look fairly similar to the root zone directive shown in the preced-
ing named.conf file example. In fact, if your distribution does not include a root zone
directive in its named.conf file, it’s most likely here in the default zone configuration
file.

The type master directive indicates that this zone file contains the primary (mas-
ter) authoritative configuration for this particular zone. These zone configuration files
(databases) are described in detail later in this chapter. For now, just be aware of these
files.

Your distribution may not only have a different location for zone files (databases), but
the files may have different naming conventions. For example, on a CentOS distribution,
the zone files are called /var/named/named.label, as shown in one column here:

ls -1 /var/named/named.*
/var/named/named.ca
/var/named/named.empty
/var/named/named.localhost
/var/named/named.loopback
#

On an Ubuntu distribution, these zone files are typically called /etc/bind/db.label.
Here is a directory listing showing these files on an Ubuntu distro:

$ ls -1 /etc/bind/db.*
/etc/bind/db.0
/etc/bind/db.127
/etc/bind/db.255
/etc/bind/db.empty
/etc/bind/db.local
/etc/bind/db.root
$

Both the primary DNS configuration file, named.conf, and the default zone
configuration file are loaded when BIND is started.

388  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 388

Configuring BIND on Linux
BIND provides DNS services via the named daemon. By default, the daemon listens for both
UDP and TCP traffic on port 53.

The certification objectives focus on configuring BIND to function as a
caching-only DNS server. Thus, this section also focuses on only this DNS
server type.

A caching-only DNS server is worth exploring. This type of server is sometimes called
a resolver, and it is often set up locally to reduce query times for local systems. When a
caching-only DNS server has an answer for an FQDN to IP address translation query, it
saves it to file or memory (BIND saves it to memory). Other local systems can then have
their queries answered by the local caching-only server, until the answer’s TTL value is
reached or BIND is restarted. Substantial improvements in query time can be achieved if
the caching-only DNS server is physically close to the other systems it is serving.

Keep in mind that many DNS terms thrown around, such as resolver, can
cause confusion. Though a caching-only DNS server may sometimes be
called a resolver, recall that a resolver is also a system’s library routine or
program that checks its own cache and/or files for an answer to the DNS
query. If it can’t find the answer, it forwards the query to another resolver
on another system.

Before you can configure BIND on your system, you need to have the proper software
installed. Even though you are only configuring a caching-only DNS server, it’s still a good
idea to have the various BIND tools and utilities from the bindutils package installed
as well. Installing BIND and its utilities on a Linux system was covered earlier in this
chapter.

On some distributions, the installed BIND configuration files come already configured
to provide client-side caching-only DNS name services. So you may just need to make a few
minor adjustments to meet your requirements. Other distributions require several BIND
configuration file changes in order to get a caching-only server up and running.

Be aware that some distributions, such as Ubuntu, come with dnsmasq pre-
installed and set to run on boot. If you are installing and configuring BIND
on such a distribution, some caching oddities may occur. The dnsmasq
BIND alternative was covered earlier in the chapter.

Before making any configuration file changes, first decide what local servers will be
allowed to query the caching-only DNS server. Once you have chosen those servers, using
super user privileges, change the allow-query directive in either the named.conf or named
.conf.options configuration file, depending on your distribution. Though you could just

Configuring a DNS Server  389

c08.indd  09/14/2016  Page 389

add the IP addresses of the chosen servers to the allow-query directive, it’s better first to
create an access control list using the acl (Access Control List) directive, as shown here:

acl chosen {
 192.168.52.0/24;
 localhost;
 localnets;
};

In the preceding example, the acl directive is given a name, chosen. You can pick
any name for your server’s acl. The local servers are listed between the curly brackets,
with each designation ending in a semicolon (;). In the preceding example, any servers
within the 192.168.52 subnet are allowed to query this DNS caching-only server via the
192.168.52.0/24 setting. Also, the keywords localhost and localnets are included. The
localhost keyword indicates that the current server can access its own DNS caching from
internal DNS queries. The localnet keyword indicates that any servers on the current sub-
net may use this server’s DNS cache.

It is important to keep this DNS caching-only server private, behind a fire-
wall, and allow only designated servers to use it. If you do not take these
actions, your DNS caching-only server could be used in a DNS amplifica-
tion attack, which allows malicious people to overwhelm other servers and
thus deny access to them.

Once your acl list is created, you modify the allow-query directive within the options
group (clause) in the same configuration file. Using the example acl list, named chosen,
from the preceding example, here is how the modified allow-query directive would look:

allow-query { chosen; };

You also may need to modify the listen-on directive. For testing purposes, you can
set it to any, but once your caching-only DNS server has been tested, change the setting to
your acl list’s name, as shown here:

listen-on port 53 { chosen; };

Keep in mind that if you are using IPv6 instead of IPv4, not only will your acl list set-
ting configuration need to be different than shown in the example, but you will also need to
modify the listen-on-v6 directive in the configuration file.

When you are first setting up your caching-only DNS server, put the key-
word any in your allow-query and listen-on settings instead of an acl
list name. You can then test your service, and once you have it working
correctly, come back and replace any with your acl list’s name.

390  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 390

By default, the recursion directive is already set to yes. If for some reason it is set to no
in your named.conf or named.conf.options file, you will need to change it. No matter what
access to the cache you have granted, no access will be granted if recursion is set to no.

After you complete the necessary changes, double-check the configuration file’s syntax
using the named-checkconf command. By default, it will check the /etc/named.conf file, so
if you had to modify a different configuration file (due to your distribution’s BIND imple-
mentation), tack on the configuration file’s name as shown here:

named-checkconf /etc/named.conf
#

No response from the utility means that the syntax is OK. If you did receive a response,
it would tell you the configuration file line number, where the problem is located, and give
you a brief indication of the syntax problem. It’s typical to forget to put a semicolon (;) at a
directive setting’s end.

If needed, modify the system’s firewall to allow access to port 53, or whatever port you
have DNS using. Do this prior to starting up the BIND daemon. Firewalls are covered in
Chapter 12.

Now you can start up the BIND service, called named or bind9 (depending on your dis-
tribution), which will load up the modified configuration files. Here’s an example of start-
ing up named on a CentOS distribution:

systemctl start named
#

Here’s an example of starting up bind9 on an Ubuntu distribution:

$ sudo service bind9 start
$

You can use several methods for starting and stopping BIND, as well as
reloading BIND configuration files. These various methods are explored
later in this chapter.

Now that you have BIND up and running with the modified configuration, you can test your
caching-only DNS server. On the caching-only server, use the nslookup command along with an
FQDN to look up and the caching-only DNS server’s IP address, as shown in this example:

nslookup www.sybex.com 192.168.0.103
Server: 192.168.0.103
Address: 192.168.0.103#53

Non-authoritative answer:
Name: www.sybex.com

http://www.sybex.com
http://www.sybex.com

Configuring a DNS Server  391

c08.indd  09/14/2016  Page 391

Address: 208.215.179.132

#

In the preceding example, the FQDN to look up is www.sybex.com. The caching-only
DNS server’s IP address is 192.168.0.103. The response displaying a non-authoritative
answer of an FQDN and its associated IP address indicates that the caching-only DNS
name server is working.

To ensure that everything is functioning, it’s worthwhile to perform nslookup tests on
the various systems that you are allowing to use this caching-only DNS name server. In
addition, for comparison purposes, use the time command along with the nslookup com-
mand to see any DNS query time improvements. Here’s an example on another system,
where the nslookup command was timed without using the local caching-only DNS server:

$ time nslookup www.sybex.com
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: www.sybex.com
Address: 208.215.179.132

real 0m0.320s
user 0m0.013s
sys 0m0.018s
$

To test the local caching-only server and obtain a quick look at the time that you may
be saving by employing this DNS type, try the same command as shown in the previous
example, but direct the query to the local caching-only DNS server, as shown here:

$ time nslookup www.sybex.com 192.168.0.103
Server: 192.168.0.103
Address: 192.168.0.103#53

Non-authoritative answer:
Name: www.sybex.com
Address: 208.215.179.132

real 0m0.192s
user 0m0.015s

http://www.sybex.com
http://www.sybex.com
http://www.sybex.com
http://www.sybex.com
http://www.sybex.com

392  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 392

sys 0m0.009s
$

The difference between the real time output and the time command output will help
you to see if there is any improvement. In these previous two examples, there is a slight
improvement. Of course, there are many potentially influencing factors on the time com-
mand’s output for the nslookup command, but the output will give you a general idea.

You may want to secure your caching-only DNS server using a chroot jail.
This topic is covered later in this chapter.

On your caching-only DNS server, set the BIND daemon to start on system boot if it’s
not already configured to do so. The method you use depends on your particular system
distribution. Here’s an example of using systemd on a CentOS distribution to configure
BIND to start at system initialization:

systemctl enable named
ln -s '/usr/lib/systemd/system/named.service'
'/etc/systemd/system/multi-user.target.wants/named.service'
#

Once you have your caching-only DNS name server configured and tested, you will
need to configure the other local systems to use this name server for their name resolu-
tion queries. Enter the caching-only DNS name server’s IP address into the local system’s
/etc/resolv.conf file. Here a local Ubuntu distribution system has its file modified and
tested:

$ grep nameserver /etc/resolv.conf
nameserver 127.0.1.1
$
$ sudo nano /etc/resolv.conf
[sudo] password for christine:
$
$ grep nameserver /etc/resolv.conf
nameserver 192.168.0.103
nameserver 127.0.1.1
$
$ dig +short +identify www.sybex.com
208.215.179.132 from server 192.168.0.103 in 3 ms.
$

First, the local caching-only DNS name server’s IP address is added to the Ubuntu sys-
tem’s resolv.conf file. Next, the dig utility is used to test a name resolution query. With
the +short and +identify options, a short listing of the name resolution along with the

http://www.sybex.com

Configuring a DNS Server  393

c08.indd  09/14/2016  Page 393

information source (192.168.0.103) is displayed. This shows that the caching-only DNS
name server cache is successfully being used to answer the query.

For older distributions, modifying the resolv.conf file, as shown in the preceding
example, is all that is needed. However, most current distributions reconfigure the /etc/
resolv.conf file upon boot, and to persistently set the local caching-only DNS name
server, you need to modify other files. The various distributions handle setting persistent
name servers differently.

For a current Ubuntu distribution, the first file to modify is the /etc/network/
interfaces file. Here is the file prior to the needed modification:

$ cat /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback
$

Here is the file after the needed modification:

$ cat /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp
dns-nameservers 192.168.0.103 192.168.0.1
$

Keep in mind that if you are not using DHCP for a network interface but a static IP
address instead, your configuration will look slightly different. The important part of this
modification is the addition of the dns-nameservers directive. In this case, it directs a
resolver query to go to the 192.168.0.103 system, which happens to be the local caching-
only DNS name server.

Because the modification in the preceding example is using DHCP, another file modifica-
tion is also needed. (You do not need to make this modification if you are using static IP
addresses.) The dhclient.conf file in the /etc/dhcp/ directory should have any preceding
hash marks (#) removed and then the desired name servers listed, as shown here:

$ grep prepend /etc/dhcp/dhclient.conf
prepend domain-name-servers 192.168.0.103;
$

Once you make the necessary changes, you can reboot the system. After a restart, check
the resolv.conf file to see if it was properly updated by the system, as shown snipped here:

$ cat /etc/resolv.conf
[...]

394  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 394

nameserver 192.168.0.103
nameserver 192.168.0.1
$

The resolv.conf file looks correct with the desired name servers in the correct
order. You can now test to see if the Ubuntu system is using your local caching-only
DNS name server. An example using the dig utility on a configured Ubuntu system is
shown here:

$ dig +short +identify www.sybex.com
208.215.179.132 from server 192.168.0.103 in 1 ms.
$

The dig command and its options show that the current system is using the local
caching-only DNS server located at IP address 192.168.0.103. DNS query times should
now improve for this system.

Current Ubuntu distributions typically use the dnsmasq utility for providing
local caching and lightweight DHCP services. If you decide to use a local cach-
ing-only DNS server instead, you will need to disable the dnsmasq service.
To do so, edit the NetworkManager.conf file located in the /etc/Network/
Manager/ directory. Place a hash mark (#) in front of the dns=dnsmasq line,
save the file, and restart your network manager.

For a CentOS distribution, the process is fairly similar. You update the DNS name server
to use, denoted by the DNS1 directive, in the following file:

/etc/sysconfig/network-scripts/ifcfg-interface

If your configuration does not already have the DNS1 setting, you can add it using the
example caching-only DNS server IP address used previously, as follows:

DNS1=192.168.0.103

You can also add a secondary DNS name server using the DNS2 directive, if needed.
Once you restart the network services (or reboot the system), you can perform the tests
shown for the Ubuntu distribution.

Your system may come with the /sbin/lwresd utility preinstalled. The
lwresd is a simple caching-only DNS name server daemon. It listens for
queries on the IPv4 loopback interface, 127.0.0.1. The lwresd daemon is
installed as part of the bind9 package on Red Hat–based distributions.
For an Ubuntu system, you can install it using the sudo apt-get install
lwresd command. Once installed, you can find out more by typing man lwresd
at the command line.

http://www.sybex.com

Configuring a DNS Server  395

c08.indd  09/14/2016  Page 395

Now your local systems should see improved DNS query response times. Be sure to test the
query response times periodically in order to ensure that all are still performing as expected.

Starting, Stopping, and Reloading BIND
Several methods are available for starting and stopping BIND as well as for reloading
modified BIND configuration files without stopping the BIND service. Because there are
so many methods, it’s worthwhile to explore them so you can choose the right method for
your server(s) needs.

Looking at Traditional Methods
The more traditional methods for starting and stopping the BIND service include using the system
initialization daemons. In addition, you can send the BIND service signals via the kill command.

The various traditional methods are shown here. Because some methods are dependent
on your system’s initialization method (systemd or SysV), they may not work for your
particular server:

■■ Starting BIND

■■ systemd: systemctl start BINDname
■■ SysV: service BINDname start

■■ Stopping BIND

■■ systemd: systemctl stop BINDname
■■ SysV: service BINDname stop
■■ N/A: kill -s SIGTERM BIND_PID
■■ N/A: kill -s SIGINT BIND_PID

■■ Restarting BIND

■■ systemd: systemctl restart BINDname
■■ SysV: service BINDname restart

■■ Reloading BIND configuration files

■■ systemd: systemctl reload BINDname
■■ SysV: service BINDname reload
■■ N/A: kill -s SIGHUP BIND_PID

In the preceding commands, the BINDname variable is either named or bind9, depend-
ing on your distribution. Also, the BIND_PID is the BIND daemon’s process ID (PID). The
BIND daemon’s PID is typically stored in the /run/named/named.pid or /var/run/named
.pid file, depending on your distribution. Therefore, you can use the kill command to
reload configuration files, as shown here:

kill -s SIGHUP $(cat /run/named/named.pid)
#

396  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 396

Though the traditional methods work, they are not considered best practices. This is
especially true with the kill command (even though it is mentioned in the certification
objectives), because sending the wrong signal to the BIND daemon could have unintended
consequences. The best way to control the BIND daemon is via the rndc utility, which is
covered next.

Exploring rndc
The /usr/sbin/rndc tool is the primary utility for managing BIND. It has many features,
including the ability to use a TCP connection to communicate with a remote name server
and send it commands authenticated with digital signatures.

To see all of the various features of your rndc utility, just type rndc and press Enter, as
shown snipped here:

rndc
Usage: rndc [-b address] [-c config] [-s server] [-p port]
 [-k key-file] [-y key] [-V] command

command is one of the following:

 reload Reload configuration file and zones.
 reload zone [class [view]]
 Reload a single zone.
[...]
 reconfig Reload configuration file and new zones only.
[...]
 stop Save pending updates to master files and stop the
 server.
 stop -p Save pending updates to master files and stop the
 server reporting process id.
 halt Stop the server without saving pending updates.
 halt -p Stop the server without saving pending updates
 reporting process id.
 flush Flushes all of the server's caches.
 flush [view]
 Flushes the server's cache for a view.
 flushname name [view]
 Flush the given name from the server's cache(s)
 flushtree name [view]
 Flush all names under the given name from the
 server's cache(s)
 status Display status of the server.

Configuring a DNS Server  397

c08.indd  09/14/2016  Page 397

[...]
 *restart Restart the server.

* == not yet implemented
[...]
#

Not all of the rndc features are shown in the preceding example! The utility provides
several commands that offer finer control for stopping BIND and/or reloading configura-
tion files.

You can get a quick and nicely formatted BIND daemon status using the rndc tool, as
shown snipped here:

rndc status
[...]
CPUs found: 1
worker threads: 1
UDP listeners per interface: 1
number of zones: 101
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/0/1000
tcp clients: 0/100
server is up and running
#

The reload command, which reloads the configuration and zone files, is fairly simple as
well:

rndc reload
server reload successful
#

However, be aware that while you can stop the BIND daemon using rndc, you cannot
start or restart it using the rndc utility. Here is an example:

rndc stop
#
rndc restart
rndc: 'restart' is not implemented
#

398  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 398

systemctl start named
#
rndc status
[...]
server is up and running
#

The systemctl command had to be used on this particular distribution in order to start
the BIND daemon back up. Be aware that if the BIND daemon is not running, the rndc
status command may produce an odd message, as shown here:

rndc stop
#
rndc status
rndc: connect failed: 127.0.0.1#953: connection refused
#
systemctl start named
#

Because the rndc utility does not (yet) have every feature that you may need to control
the BIND daemon, you should still know how to use the other methods (covered earlier) for
controlling BIND.

Configuring BIND Logging
An important part of setting up your BIND configuration is determining how you want
BIND messages to be logged as well as the desired message detail level. Though it was
briefly covered earlier in this chapter, taking a more-in-depth look at configuring BIND
logging is worthwhile. Logs can assist in troubleshooting DNS problems as well as tracking
security and performance issues. Therefore, you may want to configure BIND to provide
more complex logging than its default configuration provides.

Typically, BIND logging is configured in the named.conf file. The logging directives
determine what is logged and where it is logged. Here is the general syntax for the BIND
logging configuration:

logging {
 [channel channel_name {
 (file path/name
 [versions (number | unlimited)]
 [size size_spec]
 | syslog syslog_facility
 | stderr
 | null);
 [severity (critical | error | warning | notice |

Configuring a DNS Server  399

c08.indd  09/14/2016  Page 399

 info | debug [level] | dynamic);]
 [print-category yes | no;]
 [print-severity yes | no;]
 [print-time yes | no;]
 };]
 [category category_name {
 channel_name; [channel_name; ...]
 };]
[...]
};

The logging directives can be broken up into two primary groupings: channel and
category. A channel is either a predefined channel directive or it is a custom channel. It
controls where messages are logged and filters what is logged. A category directive defines
DNS message types to be logged.

Looking at Logging Channels
As an example, here is a snipped named.conf file from a CentOS distribution showing the
logging configuration for this system:

cat /etc/named.conf
[...]
logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};
[...]
#

The default configuration shown has only one channel set, default_debug. This set-
ting is a predefined channel directive. There are four predefined channel directives, briefly
described here:

■■ default_debug: Write log messages to named.run in the specified directory, with the
severity filter directive set to dynamic.

■■ default_stderr: Write log messages to stderr (while running BIND in the foreground
for debugging) with the severity filter directive set to info.

■■ default_syslog: Write log messages to syslog or rsyslog, with the severity filter
directive set to info.

■■ null: Write all log messages to /dev/null (do not keep log messages).

400  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 400

You can modify the default settings of these predefined channel directives. For example,
the default_debug channel would normally send log messages to the named.run file in the
directory (where directory is set earlier in the named.conf file or defaults to the /var/
named/ directory). This default was overwritten in the preceding example, and log messages
are sent to the directory/data/named.run file.

You are not stuck with the predefined channel directives. You can set up multiple custom
channels to finely control your BIND logging. As long as each channel is uniquely named,
you can set as many unique logging directives as desired for that channel.

Within a custom channel, you can set where the log messages are sent. These locations
include a file, a syslog facility, standard error (stderr), or null, which essentially throws
out log messages.

For the file directive, at a minimum, the file’s name must be specified. To control the file’s
location, the path setting, you can do any one of the following:

■■ Accept the default location of the /var/named/ directory.

■■ Accept the location set by the directory directive (typically located earlier in the
named.conf file).

■■ Set a path relative to the directory directive.

■■ Set a custom path via declaring an absolute directory path.

You can even control the log file’s size through the size setting. The log file’s version
numbers are managed via the versions directive.

The severity directive is a filter that has seven levels. A message whose classified
severity is equal to or higher than the specified severity level is logged through the
declared channel. Going from the lowest severity to the highest, the levels that you
can set are these:

■■ dynamic

■■ debug level
■■ info

■■ notice

■■ warning

■■ error

■■ critical

For the debug severity filter, you can specify a debug level. The higher the debug level
number, the more information is logged. If no level is specified, it defaults to debug
level 1. Debugging can be turned off by specifying level 0. The dynamic severity filter is
similar to debug severity, but it uses any debugging level set when the named daemon is
started.

The print- directives allow you to control additional information that is logged. If not
set, they default to no. If set to yes, print-category logs the category (covered soon in this

Configuring a DNS Server  401

c08.indd  09/14/2016  Page 401

chapter), print-severity logs the actual severity level (as opposed to the set severity filter
level), and print-time will log the date and time.

Once you have set where information will be logged and how that logging data will be
filtered via the channels, you then set the category.

Looking at Logging Categories
Categories determine what DNS information will be logged, and categories are pointed
to channels so that the log messages are filtered and recorded to the desired location. The
category general syntax within a logging directive is shown snipped as follows:

logging {
[...]
 [category category_name {
 channel_name; [channel_name; ...]
 };]
[...]
};

Each log message category can go into a single declared (or default) channel or into
multiple channels. You have a lot of flexibility as to how to filter and record these various
log message categories.

If no category is defined, it defaults to

category default { default_syslog; default_debug; };

The category’s name is default, which essentially captures all of the various categories’
messages that are normally captured without being declared. The default category does
not capture a particular category if that category is also declared within the named.conf
file. In the preceding example, the categories’ messages are sent to two different channels:
default_syslog and default_debug.

Because of the rather confusing nature of DNS logging, it’s a good idea to
start out with a simple logging directive. Configure your DNS logging to
capture all of the various categories, set a low severity filter (debug 3),
and send the log messages to a single file. Over time, you will get an idea
of what particular messages you want to log, what to filter out, and how
to divide the log messages among the various logging facilities. Slowly
change and test your logging settings as you make these discoveries.

There are several log message categories. A few category names to use within a category
directive are shown in Table 8.1. You will notice that potentially a lot of overlap can occur
among the various log message categories.

402  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 402

Ta b le 8 .1     DNS logging category names

Name Log Message Description

client Client request operations.

config Configuration file analyzing and handling.

database Internal zone and cache database operations.

default All category messages normally captured without being declared.
Does not include categories declared within the named.conf file.

delegation-only Queries that receive a “domain not found” message (NXDOMAIN) in
response to a delegation-only zone or a delegation-only in a hint
or stub zone declaration.

dispatch Incoming packet transmissions (dispatch) to server modules for
processing.

dnssec Packet operations via the DNSSEC and TSIG protocols. These pro-
tocols are covered later in this chapter.

edns-disabled Queries in which a server fails to respond, because the query is
not understood (typically, a query that is not following proper pro-
tocols) or packet loss has occurred.

general DNS items that are not classified into a particular category. Also
called the catch-all.

lame-servers Remote server (lame server) misconfigurations discovered during
a query process.

network Network operations.

notify NOTIFY (DNS zone change notification) operations.

queries Query operations.

query-errors Query operations that failed.

resolver DNS name resolution operations.

RPZ Response Policy Zone (RPZ) operations.

security Request approval and denial operations.

update Dynamic DNS (DDNS) update operations.

Creating and Maintaining DNS Zones  403

c08.indd  09/14/2016  Page 403

Name Log Message Description

update-security DDNS update request approval and denial operations.

xfer-in Server receiving zone transfer(s) operations.

xfer-out Server sending zone transfer(s) operations.

Once you have set what DNS BIND category messages are to go to what channels
and how to filter them in the named.conf configuration file, you need to either restart
BIND or reload the configuration file into BIND. This topic was covered earlier in the
chapter.

Some DNS managers set each individual category into its own channel,
with that channel having a high severity filter (so few messages are filtered
out) and recording the log messages to a file. While this may prove useful as
you start exploring DNS logging, be aware that you will have numerous log
files, which may quickly become rather large.

There are more categories than those listed in Table 8.1. Also, the BIND developers may
add additional log message categories in the future. You can stay up to date on current
BIND 9 logging category additions and other BIND enhancements by visiting the ISC’s
website at https://www.isc.org/.

Creating and Maintaining DNS Zones
Domain Name Space is broken up into different zones. A zone defines what a name server
has authority over. It includes maintaining the zone’s authoritative data files, called either
zone files or zone databases. The various configuration files are explored in this section
along with how to make needed modifications for your DNS needs.

Exploring BIND Zone Files
Zone files can be loosely broken into two categories: zone configuration files and zone
databases. Each category is important to understand in order to maintain your zone(s)
properly.

Looking at Zone Configuration Files
The default zone configuration files were briefly covered earlier in this chapter and are
typically loaded via include statements within the BIND configuration file, named.conf,

https://www.isc.org/

404  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 404

or another included configuration file. Here is a snipped Ubuntu distribution’s /etc/bind/
named.conf file showing the include statements used to load the zone configuration files:

$ cat /etc/bind/named.conf
[...]
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";
$

Zone configuration files typically contain only zone directives. Each zone directive
points to zone files (also called databases) located in the /var/named or /etc/bind
directory, depending on your distribution. As an example, here is a snipped zone
configuration file on an Ubuntu system:

$ cat /etc/bind/named.conf.default-zones
[...]
zone "localhost" {
 type master;
 file "/etc/bind/db.local";
};

zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
};

zone "0.in-addr.arpa" {
 type master;
 file "/etc/bind/db.0";
};

zone "255.in-addr.arpa" {
 type master;
 file "/etc/bind/db.255";
};
$

Each zone statement in the zone configuration file contains the zone keyword followed
by the zone’s name in double quotation marks. The type directive determines the zone’s
type, which can be set to one of the following:

■■ master: Indicates this is the zone’s primary name server.

■■ slave: Designates this as the zone’s secondary name server.

■■ forward: Indicates that this is a forwarding server for this zone.

Creating and Maintaining DNS Zones  405

c08.indd  09/14/2016  Page 405

■■ hint: Specifies the Hint Zone, which is a list of current root name servers.

■■ redirect: Designates the redirect zone, which is used to answer queries when domain
not found messages (NXDOMAIN) are received for the queries.

■■ stub: Sets this as a stub zone, which is like a secondary name server zone, except that
it uses only the primary zone’s transferred records and ignores the rest of a zone. (Stub
zones are a limited supported BIND feature and are not part of the DNS standard.)

■■ static-stub: Indicates that this is a special stub zone, where the primary zone records
are not transferred, but instead the zone records are statically configured.

■■ delegation-only: Specifies that this zone is to enforce a root zone’s delegation-only status.

Zone statements differ depending on their set type. For a master type zone statement,
there will be a file directive, indicating the name and, if needed, the location of the zone
file (database). There may also be control statements that direct zone transfers and updates.
For example, the allow-update directive can prevent a zone from being updated via

allow-update { none;};

or instead allow a zone to be updated by listing various servers allowed to provide dynamic
updates between the curly brackets (in place of the none directive).

Many different control statements are available for defining a zone. To see
all of the various control statements, look in the Administrator Resource
Manual (ARM) located in the /usr/share/doc/bind9/ or the /usr/share/
doc/bind-version/ directory, depending on your distribution.

For a slave type zone statement, the file directive is optional, but it is still often used
to avoid zone transfers (discussed later in this chapter) when BIND is restarted. The file-
name is typically the same as the zone name. There may also be control statements specific
to slave type servers. For example, the allow-notify directive determines which local
server is allowed to send NOTIFY (DNS zone change notification) messages to this second-
ary server. Here is an example of a secondary name server zone statement:

zone "secondary.example.com" IN {
 type slave;
 file "/etc/bind/secondary.example.com";
 masters {192.168.0.104;};
 allow-notify {192.168.0.104;};
};

You will notice that some zone statements contain an IN. This indicates
the statement’s class. The class can be either IN (Internet), CH (Chaosnet
network protocol), or HS (for the Hesiod network software). Typically, you
see only the IN class listed in zone records.

406  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 406

The forward type zone statement has fewer possible settings than the other two types.
Here is the basic syntax for this statement type:

zone zone_name [class] {
 type forward;
 [forward (only|first);]
 [forwarders { [ip_addr [port ip_port]; ...] };]
};

The optional forward directive has two possible settings. If it is set to only, the server
only forwards queries to the servers in the forwarders list. If it is set to first, the server
will at first forward queries to the forwarders servers, and if no answer is found, the cur-
rent server will attempt to answer the query.

Typically, a forwarding zone is used for security purposes. Your
environment may have several servers that should not send queries
beyond the firewall protecting its local network. In this environment,
you would set up a designated forwarding and caching server, which
is allowed to send queries past the firewall. This is sometimes called a
split configuration.

For the forwarders setting, one or more server IP addresses are listed. These servers are
queried one after the other for the name resolution answer, until an answer is found or all
of the servers have been queried.

Here is a simple example of a forwarding name server zone statement:

zone "forward.example.com" IN {
 type forward;
 forwarders {192.168.64.106; 192.168.64.107;};
};

The hint type zone was covered earlier in this chapter. It may be included within the
named.conf configuration file or a specific zone configuration file, depending on your
distribution. Here is the hint type zone statement from a CentOS systems named.conf file:

cat /etc/named.conf
[...]
zone "." IN {
 type hint;
 file "named.ca";
};
[...]
#

Creating and Maintaining DNS Zones  407

c08.indd  09/14/2016  Page 407

To find out information concerning the redirect, stub, static-stub, and
delegation-only zone type statements, see the BIND Administrator Resource
Manual (ARM). Aside from the one on your system, you can find a copy on the
Internet Software Consortium’s website at www.isc.org.

Looking at Zone Databases
Zone databases (also called zone files) contain information in plain text concerning zones.
This information is called authoritative data.

Zone databases can be produced by the BIND installation, typically for default setups.
Here is an example of an Ubuntu distribution’s /etc/bind/db.0 zone file produced by
installing BIND:

$ cat /etc/bind/db.0
;
; BIND reverse data file for broadcast zone
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
$

You can also create the zone databases, such as when you need to set up primary (master)
and secondary (slave) name servers for a zone you administer. In this case, your zone data-
bases will reside on your primary name server.

Secondary name servers receive their authoritative zone information from the primary
name server’s zone databases. When this authoritative zone information is copied over to
the secondary name server, it is called a Zone Transfer.

Zone transfers can occur for many different reasons. A few reasons are as follows:

■■ The secondary server’s BIND daemon has started or restarted.

■■ The zone data’s refresh time has expired (explained later in this section).

■■ The master server (designated by the named.conf file’s allow-notify directive) has sent
the secondary server a DNS zone change notification.

■■ A zone data refresh was requested manually via the rndc utility (explained later in this
chapter).

http://www.isc.org

408  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 408

On current BIND implementations, a secondary server will not read
the zone database in its text form. The secondary server expects to
receive zone database information from the primary server in raw binary
form. This can pose problems if you are conducting name server tests.
Fortunately, BIND provides a utility, /sbin/named-compilezone, which
you can use to convert zone database data from plain text to raw binary
form and vice versa.

You’ll typically find your default zone databases located in either the /var/named/
directory or the /etc/bind/ directory, depending on your server’s distribution. You
should store any created zone databases in the appropriate directory, along with default
BIND zone databases.

Zone authoritative data comes in two forms: directives and resource records. Zone data-
base directives are optional, but they control some useful settings. Each directive is capital-
ized and preceded by a $ symbol. Here are the most common directives.

$ORIGIN    The $ORIGIN directive sets a domain name that is added to any file record’s end
that does not have a full domain name. The general syntax is

$ORIGIN domain-name. [comment]

Notice the dot (.) at the domain-name’s end. This is an important part of the directive. To
understand how this works, here is an example $ORIGIN directive:

$ORGIN example.com.

Now if a zone resource record contains just www, with this directive set, it will be read as
www.example.com. In essence, it provides a handy shortcut method for dealing with domain
names.

$INCLUDE    The $INCLUDE directive operates just like the include statement in a zone
configuration file. It reads in the designated file and processes any directives or resource
records in the file. The general syntax is as follows:

$INCLUDE filename [origin] [comment]

If the origin keyword is included in the directive, $ORIGIN is set to the origin value for the
designated file’s processing. If it is not included and $ORIGIN has been previously set, it is
used instead.

$TTL    The $TTL directive sets the default time to live (TTL), which determines how long
name server data for a particular resolution is held in cache. The general syntax is

$TTL seconds [comment]

The seconds can be designated anywhere from 0 to 2,147,483,647 (about 68 years). This
setting is valid only if a resource record does not define its own TTL.

http://www.example.com

Creating and Maintaining DNS Zones  409

c08.indd  09/14/2016  Page 409

Resource records are not optional. These records provide the zone’s authoritative name
resolution information. There are several different resource record types. The most com-
mon ones are shown in Table 8.2. Each resource record type is described fully in a Request
For Comment (RFC) document, which is also specified in the table.

Ta b le 8 . 2     Resource record types

Type Description

A A host address record for IPv4 addresses. (RFC 1035)

AAAA A host address record for IPv6 addresses. (RFC 1886)

CNAME A canonical name record maps an alias name to a host name. (RFC 1035)

MX A mail exchange record declares a preference value(s) followed by a mail
exchange host name(s). (RFC 974 & 1035)

NS A name server record specifies the zone’s authoritative name server. (RFC 1035)

PTR A pointer record points to another domain namespace location and is typically
used in reverse lookups. (RFC 1035)

SOA A start of authority record identifies the authority zone’s start and includes the zone’s
authoritative data. Only one SOA record per zone should be created. (RFC 1035)

TXT A text record holds free-form text enclosed in quotation marks, which can serve
various purposes, such as domain name identification. (RFC 1035)

To explore the various resource record types and directives in a zone database, we’ll use
an example zone configuration. The example zone is for a made-up domain called example
.com, and it consists of the following servers:

■■ serv1.example.com: The example zone’s primary (master) name server

■■ serv2.example.com: The example zone’s secondary (slave) name server

■■ maila.example.com: The example zone’s primary mail server

■■ mailb.example.com: The example zone’s secondary mail server

■■ LPIC2.example.com: An example.com subdomain that contains many other servers

For this example zone configuration, an example zone database has been created and is
shown here:

$ cat /var/named/example.com.zone
;

410  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 410

; BIND data file for example.com
;
; Zone Database Directives
;
$TTL 604800 ; TTL is 7 days
$ORIGIN example.com.
;
; Zone Database Resource Records
;
@ IN SOA serv1.example.com. hostmaster.example.com. (
 0 ; serial
 2H ; refresh
 30M ; retry
 2W ; expire
 7D ; minimum
)
;
@ IN NS serv1.example.com.
serv1 IN A 192.168.64.110
;
@ IN NS serv2.example.com.
serv2 IN A 192.168.64.111
;
@ IN MX 0 maila.example.com.
maila IN A 192.168.64.112
;
@ IN MX 5 mailb.example.com.
mailb IN A 192.168.64.113
;
LPIC2 IN A 192.168.64.120
www IN CNAME LPIC2
;

Let’s dissect this example BIND zone data file. Notice the first five lines of this zone
database, which are comment lines. Each comment is preceded by a semicolon (;), and it
can take up an entire file line. Comments can also be included at a line’s end, as long as the
text is preceded by a semicolon.

After the comment lines, two directives are included in this database: $TTL and $ORIGIN.
After the directives and a few more comment lines, the zone’s resource records are listed.

There should be no spaces or tabs in the beginning of a resource record.

Creating and Maintaining DNS Zones  411

c08.indd  09/14/2016  Page 411

The first resource record is a start of authority (SOA) record, and it should always be the
first record. It essentially defines the zone as well as additional details concerning how this
zone is to be managed. It has the following contents:

■■ @: Indicates the domain’s name. (The at sign (@) is used as a shorthand reference to the
domain’s name, indicated in this example by the $ORIGIN directive.)

■■ IN: Designates that this is an Internet class record.

■■ SOA: Indicates that this is a SOA type record.

■■ serv1.example.com.: Specifies this server’s name, with a required trailing dot(.), where
this database is located.

■■ hostmaster.example.com.: Designates the username (hostmaster) as this server’s
email contact, with a required trailing dot (.).

■■ Authority values: Specified between the two parentheses, these values control the fol-
lowing settings:

■■ serial: A manually incremented number, which starts at 0 (indicating no modi-
fications have been made). It should be incremented by 1 every time a change is
made to this file, so secondary servers know the file has been modified and they
should copy it (an update is needed).

■■ refresh: Sets how often a secondary server should check the master server file and
see if an update is needed.

■■ retry: If the secondary server checks the master server file for a needed update
and a failure occurs, this sets how long the secondary server should wait before
trying the check again.

■■ expire: Sets the maximum time for a secondary server to use the authoritative
zone data without a successful data refresh from the primary server. Once the time
has passed, the zone data is considered non-authoritative.

■■ minimum: Also called the TTL setting, this sets the time before the zone data is
flushed from the server’s cache.

Any authority values that are time values can be specified different ways. A plain num-
ber indicates the value is in seconds. For minutes, tack on an M; for hours use an H; for days
use a D; and to indicate weeks, add a W.

Use an email alias for your server’s email contact. The hostmaster shown
in the SOA record is a typical alias.

After the SOA resource record in the preceding example zone database, there are two
resource records describing the primary (master) name server responsible for the example
.com. domain. These records are shown here:

@ IN NS serv1.example.com.
serv1 IN A 192.168.64.110

412  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 412

The first record starts with the shorthand reference (@) to the domain’s name, and the NS
states that this is an authoritative name server for the domain defined in the SOA record.
The record ends with the name server’s name.

The second record starts with the name server’s host name (serv1), and the A declares
this record to be an address resource record. At the record’s end is the IP address for the
primary server.

Though an @ for the domain name is shown in these examples, you could
actually type out the domain name (example.com. in this example zone
database). In addition, you can leave it blank, and it will default to the last
domain name specified.

After the primary name server resource records in the example zone database are two
resource records describing the secondary name server responsible for the example.com.
domain. Recall that for each zone, there must be a primary server and at least one other
server type, such as a secondary (slave) or forwarding server. This server is defined by the
records shown here:

@ IN NS serv2.example.com.
serv2 IN A 192.168.64.111

After the secondary name server records are mail server records. These records, dis-
played here, are used to declare specific servers to act as mail servers for the domain:

@ IN MX 0 maila.example.com.
maila IN A 192.168.64.112
;
@ IN MX 5 mailb.example.com.
mailb IN A 192.168.64.113

In the preceding example, the MX indicates that these two servers are mail exchange
servers. Notice that one record (maila.example.com) has a 0 listed in it, while the other
record (mailb.example.com) has a 5 listed. These numbers indicate a preference ranking. In
other words, the resource records indicate that the maila server (ranked 0) should be used
before the mailb server (ranked 5).

The example zone database’s last two active lines define a system’s authoritative DNS
record within this domain and set up an alias (also called a Canonical Name) for it:

LPIC2 IN A 192.168.64.120
www IN CNAME LPIC2

The CNAME in the second line declares that this resource record is a canonical name
record. The record declares that www is an alias for LPIC2 and that www.example.com maps
to the host address record for LPIC2.example.com.

http://www.example.com

Creating and Maintaining DNS Zones  413

c08.indd  09/14/2016  Page 413

Canonical names are a good idea to create if you have several hostnames that map to
a single IP address or if you have changed a server’s hostname. Be aware that SOA and MX
resource record types should not point to a CNAME record. In addition, CNAME record types
should not point to other CNAME record types but should point to host address (A) record
types only.

Resource records are case insensitive, so you can use WWW.EXAMPLE.COM,
www.example.com, or www.Example.com in your records. Traditionally, all
lowercase is used.

Here is an actual zone database for the local loopback interface, which is located on an
Ubuntu system:

$ cat /etc/bind/db.local
;
; BIND data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 2 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
@ IN A 127.0.0.1
@ IN AAAA ::1
$

As a review, consider using the preceding actual zone database, and go back through
this section, its examples, and Table 8.2 to see if you can determine what each directive
or resource record is declaring. The more zone database authoritative data you review, the
more familiar you will start to feel with zone database syntax.

On Ubuntu, additional zones are typically added to the /etc/bind/named
.conf.local file instead of being created in their own file. For a CentOS dis-
tribution, additional zones are typically added to their own files and stored in
the /var/named/ directory. See your distribution’s documentation for details.

Once you have created a zone database, you may need to take additional steps to have
BIND load the zone database at startup. On this Ubuntu distribution, additional zones are

http://www.example.com
http://www.Example.com

414  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 414

added to the named.conf.local file, and it is already included in a file BIND loads upon
startup, /etc/bind/named.conf, as shown here:

$ grep local /etc/bind/named.conf
[...]
include "/etc/bind/named.conf.local";
$

On a CentOS distribution, zone files are stored within the /var/named/ directory. A
zone directive must be added to the /var/named/named.conf file so that a newly added zone
database will be loaded at BIND startup as follows:

zone "example.com" IN {
 type master;
 file "example.com.zone";
 allow-update { none; };
};

As an alternative on a CentOS system, you could put the zone directive within its own exter-
nal file and then use an include statement to pull the zone directive into the named.conf file.

Once you have the proper BIND configuration files modified, if needed, you can restart
BIND or reload its configuration files. Look back to the “Starting, Stopping, and Reloading
BIND” chapter section for how to do this if you need a reminder.

Looking at Reverse Zones
A Reverse Zone is a special zone that provides a mapping from an IP address to a FQDN
(reverse of traditional DNS name server resolution). You need a named.conf reverse zone
record and a reverse zone database to employ this special zone.

Continuing with the example.com.zone database created earlier for the example.com.
domain (192.168.64.), here is the needed named.conf file record for a reverse zone:

zone "64.168.192.in-addr.arpa" IN {
 type master;
 file "example-reverse.com.zone";
 allow-update { none; };
};

Notice that it is slightly different from earlier named.conf zone entries in that a partial
IP address (first three octets) is used instead of the server name. Also note that the partial IP
address is backwards. Instead of 192.168.64, it is written as 64.168.192. In addition, you
must tack on .in-addr.arpa to the backwards partial IP address.

Following along with this created example, here is the needed reverse zone database:

$ cat /var/named/example-reverse.com.zone
;
; BIND reverse zone data file for example.com
;

Creating and Maintaining DNS Zones  415

c08.indd  09/14/2016  Page 415

; Zone Database Directives
;
$TTL 604800 ; TTL is 7 days
$ORIGIN 64.168.192.in-addr.arpa.
;
; Zone Database Resource Records
;
@ IN SOA serv1.example.com. hostmaster.example.com. (
 0 ; serial
 2H ; refresh
 30M ; retry
 2W ; expire
 7D ; minimum
)
;
@ IN NS serv1.example.com.
;
110 IN PTR serv1.example.com.
111 IN PTR serv2.example.com.
;
112 IN PTR maila.example.com.
113 IN PTR mailb.example.com.
;
120 IN PTR LPIC2.example.com.
;

The primary differences between this reverse zone file and other zone files are the $ORIGIN
directive and the PTR resource records. The $ORIGIN directive uses the partial reverse IP
address, followed by in-addr.arpa and a trailing dot (.). There are five PTR resource records,
one for each system in the example zone. A PTR resource record starts with the host’s final
IP octet, includes the IN class and PTR type directives, and ends with the host’s FQDN plus
a trailing dot. With this zone file, a reverse DNS lookup for 192.168.64.120 will return the
LPIC2.example.com FQDN.

Watch your zone database file-naming conventions. Different distributions
have different DNS zone file-naming conventions, and the zone filenames
in these examples may not apply to your particular distribution. See your
distribution’s documentation for its zone file-naming conventions.

Checking Your Zone Files
Once you have your zone databases configured, you should check their syntax prior to
loading the zones. This is fairly easy due to the handy /sbin/named-checkzone utility.

416  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 416

The basic named-checkzone utility syntax is as follows:

named-checkzone [options] domain-name zone-database

To make sure that you get the zone’s domain-name correct, use grep to pull out the
$ORIGIN directive (if it is used) from the zone database. Here is a named-checkzone demon-
stration using grep and the example reverse zone database from the preceding section. The
named-checkzone command is broken between two lines for clarity:

grep ORIGIN /var/named/example-reverse.com.zone
$ORIGIN 64.168.192.in-addr.arpa.
#
named-checkzone 64.168.192.in-addr.arpa. \
> /var/named/example-reverse.com.zone
zone 64.168.192.in-addr.arpa/IN: loaded serial 0
OK
#

At the end of the preceding example’s listing, you’ll see the word OK. That means all is
well with the zone database’s syntax.

When running named-checkzone against a zone database, if you receive
errors such as ignoring out-of-zone data and has 0 SOA records, you
most likely have entered the wrong domain-name or your specified domain-
name has a typographical error.

The name-checkzone utility does give you a little leeway in specifying the zone’s domain-
name. Here is an example showing the example zone file (from earlier in the chapter) being
checked using the domain-name with the trailing dot (.) and again without the trailing dot:

grep ORIGIN /var/named/example.com.zone
$ORIGIN example.com.
#
named-checkzone example.com. /var/named/example.com.zone
zone example.com/IN: loaded serial 0
OK
#
named-checkzone example.com /var/named/example.com.zone
zone example.com/IN: loaded serial 0
OK
#

Receiving the OK response means the example.com.zone file’s syntax is in order. You can
do this simple test prior to conducting more extensive tests on your zone configuration.

Creating and Maintaining DNS Zones  417

c08.indd  09/14/2016  Page 417

Managing BIND Zones on Linux
After configuring and checking your zone files, you must maintain them. This includes
various items, such as delegating a zone if needed and troubleshooting problems when they
arise. This section will help you get started managing your zone(s).

Delegating a Zone
By its tree structure, DNS already has and uses delegated zones. For example, a DNS
query (that cannot be answered locally) that is asking for the www.example.com server’s
IP location will first go to the root zone, then to the .com TLD server location, and on to
the .example name server, which will finally provide the desired IP number. This is DNS’s
inherent delegated nature.

Recall that a DNS zone defines what a domain name server has authority over, including
maintaining the zone’s authoritative data files. When you manage a zone, you are managing
that zone’s authoritative data. There may be times when a managed zone (or a portion of it)
that you control needs to be delegated to another name server(s). Simply stated, delegating a
zone means that a zone’s authority data is put on another name server(s) and zone authority
is given to that name server(s).

Be aware that some zone delegation terms apply to DNS’s inherent dele-
gated nature. Other zone delegation terms apply to delegating a zone. This
section focuses on delegating a zone.

A zone (sometimes called a parent zone) often has zone subsections (sometimes called
subdomains or child zones). For load and performance reasons, a parent zone may need to
perform zone delegation to an active child zone.

Using the example zone created in the “Looking at Zone Databases” chapter section,
imagine that the example.com zone has these additional servers in it:

■■ LinuxEssentials.example.com

■■ LPIC1.example.com

■■ education.LPIC2.example.com

■■ faq.LPIC2.example.com

■■ objectives.LPIC2.example.com

■■ partners.LPIC2.example.com

■■ practicetests.LPIC2.example.com

Also imagine that the LPIC2 child zone servers are rather heavily traveled, causing the
example.com primary name server, serv1.example.com, to have performance issues. You
could delegate a zone in this situation to ease the problem.

In this case, the child zone, LPIC2.example.com, would become the primary name server
for the LPIC2.example.com child zone.

http://www.example.com

418  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 418

In order to accomplish this zone delegation, you need to do the following:

■■ Pick another server in the child zone to act as either a secondary server or a forward-
ing/caching server.

■■ Install BIND on LPIC2.example.com and the other chosen server.

■■ On the master LPIC2.example.com server

■■ Configure the BIND named.conf file.

■■ Configure the zone file(s).

■■ Configure BIND to start as desired.

■■ Configure the chosen server as appropriate for its role.

One more important issue in this zone delegation is how the zone parent configuration
points to this delegated zone on the child zone’s master server. To do this, on the parent
zone name server, add a few records directly to the parent zone’s database file’s bottom or
to the named.conf.local file’s bottom, depending on your distribution. Here is a snipped
example on a parent zone CentOS system:

$ cat /var/named/example.com.zone
[...]
;
; subdomain LPIC2.example.com
;
@ IN NS LPIC2.example.com.
LPIC2 IN A 192.168.64.120
;

The last record in the preceding example is sometimes called the glue record. A glue
record provides a child zone’s master name server’s IP address for zone delegation purposes.
This avoids a deadlock situation, which can occur in DNS if glue records are not provided
and which speeds up DNS queries involving the child zone.

Once you have added the glue records and have restarted BIND or reloaded its configuration
files on the parent zone server, you have finished. The zone has been delegated.

Troubleshooting BIND
Whether you have set up a caching-only DNS server or are just trying to find a DNS query
problem’s root cause, several tools are available to help. Each one has its own merits. The
following are the primary tools that you can use in troubleshooting efforts:

■■ host

■■ dig

■■ nslookup

■■ rndc

Creating and Maintaining DNS Zones  419

c08.indd  09/14/2016  Page 419

The first utility is a rather simple one. The host utility performs basic DNS name resolu-
tions (also called lookups). An example is shown here:

$ host www.sybex.com
www.sybex.com has address 208.215.179.132

Not much information is provided, but the host command does allow you to see if name
resolution is working. By default, the host command queries the name servers in the /etc/
resolv.conf file.

In this example, the network cable was not properly connected. Thus, the host com-
mand provided an error message:

$ host www.sybex.com
;; connection timed out; no servers could be reached
$

It’s a swift and useful test. It allows you to determine quickly if a serious problem is
occurring or if DNS is humming along.

Consider checking your resolv.conf file, covered earlier in the chapter. If
the name servers are not listed in this file, that may be the source of your
server’s DNS problem.

The dig utility is very handy in trying to determine what might be at a DNS problem’s
heart, and it can help you with auditing your name resolution process in order to improve it.

Depending on the options given, the dig utility will ask certain questions of DNS name
servers and display any answers received. Here is a simple dig query/answer on a CentOS
system example:

$ dig sybex.com

; <<>> DiG 9.9.4-RedHat-9.9.4–29.el7_2.3 <<>> sybex.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21258
;; flags: qr rd ra;QUERY: 1,ANSWER: 1,AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;sybex.com. IN A

;; ANSWER SECTION:
sybex.com. 900 IN A 208.215.179.132

http://www.sybex.com
http://www.sybex.com
http://www.sybex.com

420  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 420

;; Query time: 60 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Thu Mar 31 11:45:01 EDT 2017
;; MSG SIZE rcvd: 54

$

In the preceding example, a great deal of information is displayed. Generally, you’ll
only want to pull out some of the display. For example, status: NOERROR indicates
that the server exists. Also notice the line beneath ANSWER SECTION. This line gives you
the IP address for the server. Notice the A in the line as well. The dig command, by
default, asks for A resource record types (look back at Table 8.2 for the resource record
types list).

Another useful data tidbit in the returned information is the Query time result. This
shows how quickly the answer was received to the dig utility’s question. This is useful
information in determining how well your name resolution is happening and can be espe-
cially helpful when you are setting up a local caching-only DNS name server (as covered
earlier in this chapter).

The host command can produce somewhat similar (though briefer)
output to the dig command’s output. Type host -a server at the command
line.

If you’d like a shorter answer to your dig query, you can use the +short option, or you
can pipe the dig utility’s answer into the grep command. These two methods are shown
here:

$ dig +short sybex.com
208.215.179.132
$
$ dig sybex.com | grep sybex
; <<>> DiG 9.9.4-RedHat-9.9.4–29.el7_2.3 <<>> sybex.com
;sybex.com. IN A
sybex.com. 795 IN A 208.215.179.132
$

By default, the dig command queries the name servers in the /etc/resolv.conf file. To
direct a dig query to a different name server, add the @ option to the command followed by
the IP address or the server’s name. Here is an example:

$ dig @192.168.0.101 +short sybex.com
208.215.179.132
$

mailto:@192.168.0.101

Creating and Maintaining DNS Zones  421

c08.indd  09/14/2016  Page 421

If you are just doing performance tests, then grep for the query time only, as shown
here:

$ dig sybex.com | grep Query
;; Query time: 39 msec
$

The dig returned query status can be an initial step in tracking down DNS problems.
Here is an example, where a bogus server name was used in the dig query:

$ dig sybex_fake.com | grep status
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 351
$

Notice in the preceding example that the status NXDOMAIN was returned. This indicates
that the name servers believe the sybex_fake.com server does not exist. If you receive
a REFUSED status, the name servers are refusing the dig query for this server (typically
because of set zone policies).

You may get an address returned for the sybex_fake.com website. This is
typically due to people using FQDNs within published materials for mali-
cious purposes. You may need to make up your own bogus server name to
use in a dig query in order to receive the NXDOMAIN status.

You can also do reverse DNS lookups. Use the -x option and follow it with an IP
address. You are likely to get a great deal of information back, as shown in this snipped
example here:

$ dig -x 208.215.179.132
[...]
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2197
[...]
;; QUESTION SECTION:
;132.179.215.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
[...]
132.179.215.208.in-addr.arpa. 900 IN PTR onewiley.net.
[...]
132.179.215.208.in-addr.arpa. 900 IN PTR onewiley.com.
[...]
132.179.215.208.in-addr.arpa. 900 IN PTR onewiley.org.

422  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 422

[...]
;; Query time: 97 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Thu Mar 31 11:53:20 EDT 2017
;; MSG SIZE rcvd: 2861

$

Notice that in this case the PTR records are returned. This test can be useful when you
have set up a new reverse zone and you want to ensure that it’s working properly.

Don’t forget that you can use the dig +short +identify server command
to see what name server or whose cache is providing answers to name server
lookups. This is especially useful if you have just set up a local caching-only
DNS server and wish to test it.

In your troubleshooting process, if you need to bypass a cache and follow the DNS name
resolution path, the +trace option is useful. This option is shown snipped here because of
the verbose output:

$ dig +trace sybex.com
[...]
. 447619 IN NS b.root-servers.net.
[...]
com. 172800 IN NS m.gtld-servers.net.
[...]
sybex.com. 172800 IN NS ns.wileypub.com.
[...]
sybex.com. 900 IN A 208.215.179.132
[...]
$

In the dig +trace output, you should see a progression from root zone servers to the TLD
servers and finally to name servers, which can provide an authoritative answer to the query.
This option can be very helpful in troubleshooting when managing your own DNS zone.

If you have mail servers, you can check their name resolution by using the dig utility as
well. Just pass the MX option as shown here:

$ dig MX +short ivytech.edu
0 ivytech-edu.mail.protection.outlook.com.
$

Besides mail servers, you can also determine a zone’s name server(s). Instead of passing
the MX option to dig, simply pass the NS option or the ANY option to get all of the various

Creating and Maintaining DNS Zones  423

c08.indd  09/14/2016  Page 423

resource records types. Just remember that if you are trying to view your managed zone’s
name server(s), you’ll need to add the @ option covered earlier.

The host command will allow you to view mail servers as well. Type host
-t MX server at the command line to see a zone’s mail servers.

The dig utility is very flexible and zone managers are always coming up with new and
creative ways to use this utility. Type linux dig tutorial in your favorite web browser.
You’ll find many sites that can provide various insights into using this tool.

The nslookup utility is a troubleshooting tool with an interesting history. Near the
millennium’s turn, it was decided to deprecate this utility. In 2004, the BIND developers
changed their minds and decided to “un-deprecate” it. The nslookup utility has its detrac-
tors, but it is still a useful tool (and mentioned in the certification objectives).

What makes the nslookup utility unique is that it can operate in either an interactive or
a non-interactive mode. For the non-interactive mode, you enter the server whose informa-
tion you wish to view (and optionally a name server to query), as shown in the example
here:

$ nslookup sybex.com
Server: 192.168.0.1
Address: 192.168.0.1#53

Non-authoritative answer:
Name: sybex.com
Address: 208.215.179.132

$

Like host and dig, if you don’t include a name server, by default the nslookup command
queries the servers in the /etc/resolv.conf file. Here is an example where nslookup is
directed to query a particular name server:

$ nslookup sybex.com 192.168.0.103
Server: 192.168.0.103
Address: 192.168.0.103#53

Non-authoritative answer:
Name: sybex.com
Address: 208.215.179.132

$

424  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 424

Notice that in both of the preceding examples a non-authoritative answer is given. You
can force nslookup to retrieve an authoritative answer, but first you must find an authorita-
tive server via the -query=ns option, as shown snipped here:

$ nslookup -query=ns ivytech.edu
Server: 192.168.0.1
Address: 192.168.0.1#53

Non-authoritative answer:
ivytech.edu nameserver = nsext4.ivytech.edu.
[...]
Authoritative answers can be found from:
nsext1.ivytech.edu internet address = 168.91.17.181
[...]
$

Once you have an authoritative server’s IP address, pass it along with nslookup query as
is done here:

$ nslookup ivytech.edu 168.91.17.181
Server: 168.91.17.181
Address: 168.91.17.181#53

Name: ivytech.edu
Address: 208.40.244.223

$

The preceding query does not show a non-authoritative answer line. This indicates that
an authoritative answer was received.

You can enter into the nslookup utility’s interactive mode by simply typing nslookup at
the command line and pressing Enter. Here is an example of entering into interactive mode
and conducting a query similar to earlier examples:

$ nslookup
>
> server 192.168.0.103
Default server: 192.168.0.103
Address: 192.168.0.103#53
>
> sybex.com
Server: 192.168.0.103
Address: 192.168.0.103#53

Non-authoritative answer:

Creating and Maintaining DNS Zones  425

c08.indd  09/14/2016  Page 425

Name: sybex.com
Address: 208.215.179.132
>
> exit

$

In the preceding example, the server command is used to designate a name server to
query. You simply type a server name, sybex.com in the example, and press Enter to get an
answer. Finally, type exit to leave the nslookup utility’s interactive mode.

If you are experiencing DNS problems after a recent change to the
BIND zone configuration or a zone database, remember that you have
two important tools to help you resolve these problems. You can use
the named-checkconf utility to check your named.conf and the named-
checkzone tool to verify that your zone database file syntax is correct.

Troubleshooting BIND with rndc
Earlier we covered the /usr/sbin/rndc utility regarding stopping BIND and/or load-
ing modified BIND configuration files. You can also do troubleshooting with the rndc
utility.

Using rndc you can control troubleshooting items such as modifying the debugging level
on the fly. A few rndc troubleshooting-related commands are shown snipped here:

rndc
Usage: rndc [-b address] [-c config] [-s server] [-p port]
 [-k key-file] [-y key] [-V] command
[...]
 stats Write server statistics to the statistics file.
 querylog newstate
 Enable / disable query logging.
 dumpdb [-all|-cache|-zones] [view ...]
 Dump cache(s) to the dump file (named_dump.db).
[...]
 trace Increment debugging level by one.
 trace level
 Change the debugging level.
 notrace Set debugging level to 0.
[...]
 status Display status of the server.
[...]
#

426  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 426

The cache and/or zone databases are dumped to a file (defined by the named.conf file’s
dump-file directive) when the rndc dumpdb command is issued. Name server statistics can
be written to a file (defined by the named.conf file’s statistics-file setting) when the
rndc stats command is used. Looking through these various files can assist you in track-
ing down name server problems.

Don’t forget your various logging options set in the named.conf file. These DNS logs can
also be very helpful in troubleshooting BIND problems.

Recent BIND versions save secondary server zone files in a raw binary
format. While this provides a performance improvement, it can make
troubleshooting and debugging difficult. To help in troubleshooting, try
using the named-compilezone utility to convert the zone files temporarily
to text. As an alternative, you can change the secondary server zone files
back to text for a while. Use the masterfile-format text directive in the
named.conf files’ secondary name server zone statement.

In Exercise 8.1, you will try out various troubleshooting tools on your Linux system.

E x e rc i s e 8 .1

Trying Out Troubleshooting Tools

To experiment with DNS troubleshooting tools, follow these steps:

1.	 Start up a Linux Red Hat–based or a Debian-based distribution system (it can be a
virtualized Linux system) that has Internet access.

2.	 Log in as an ordinary user.

3.	 If one is not already open, open a command-line terminal.

4.	 Pick your favorite college or university’s primary website, and record the URL. (If you
don’t have a favorite college or university, use Purdue.edu instead.)

5.	 Perform a simple DNS lookup by typing host purdue.edu (or substitute the URL
you recorded in step 4) and press Enter.

6.	 Record the IP address returned by the host command.

7.	 Perform a reverse DNS lookup by typing dig -x IP-address, where IP-address is
the IP address you recorded in the previous step. In the resulting output, you should
see the URL you entered in step 5 (though it may have www tacked onto the front of
the URL).

8.	 Try a simple DNS lookup using the nslookup command. At the command line, type
nslookup purdue.edu (or substitute the URL you recorded in step 4) and press
Enter. You should receive the same IP address that you received in step 6. Also, you
might see a Non-authoritative answer phrase.

Securing a DNS Server  427

c08.indd  09/14/2016  Page 427

9.	 Locate the name servers that have authority over this particular URL by typing nslookup
-query=ns purdue.edu (or substitute the URL you recorded in step #4) and press Enter.
You should see one or more hostnames, preceded by nameserver. Pick a name server,
and record its hostname. (For example, you may pick ns1.rice.edu).

10.	 Request an authoritative answer using nslookup by typing at the command line nslookup
purdue.edu ns1.rice.edu (or substitute the URL you recorded in step 4, followed by
the hostname you recorded in step 9), and press Enter. You should receive the IP address
but this time without the Non-authoritative answer phrase.

11.	 Trace through the various name servers by typing at the command line dig +trace
purdue.edu (or substitute the URL you recorded in step 4) and press Enter. You’ll see a
great deal of information scroll by on your screen as it traces through domain namespace.

12.	 Experiment with the host, dig, and nslookup commands. View their man pages, and
try out their different options.

Securing a DNS Server
Unfortunately, security is an ever-changing topic, because malicious attackers never seem to
stop. This section attempts to help you get started in securing your DNS server(s). But don’t
rely on this information alone. You need to keep up to date on the latest security issues,
enhancements, and lockdown tasks, which can change daily. The ISC keeps a website with
current security information, called the Security Advisory. Use your favorite search engine,
and type Internet Systems Consortium Security Advisory to locate the site.

Setting Up Basic Security
You can take some basic steps to ensure that your name servers or DNS clients are not com-
promised. These include keeping your BIND software current and not allowing too much
name server information to be obtained.

Several of the basic items covered here can help prevent security problems:

Keep BIND software current.    BIND software security vulnerabilities may be uncovered
via malicious hackers, security researches, BIND administrators, and so on. No matter
who uncovers the vulnerability, it is important to keep BIND and its dependencies updated.
Historically, the ISC is quick to release BIND security vulnerability patches, so be sure to
check regularly for updates.

Hide BIND information.    Besides keeping BIND software current, you should hide your
system’s BIND version. That information can be fairly easy to obtain using the dig com-
mand and the Chaosnet network protocol class, as shown snipped here:

$ dig @192.168.0.103 chaos version.bind txt
[...]

mailto:@192.168.0.103

428  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 428

;; ANSWER SECTION:
version.bind. 0 CH TXT "9.9.4-RedHat-9.9.4[...]
[...]
$

You can easily fix this by adding an additional clause to your named.conf file’s options, as
shown snipped here:

cat /etc/named.conf
[...]
options {
[...]
 version "null";
[...]
#

The version directive will now answer any version.bind queries with null. You can put
anything in the text you desire. Here is an example of the query’s answer now:

$ dig @192.168.0.103 chaos version.bind txt
[...]
;; ANSWER SECTION:
version.bind. 0 CH TXT "null"
[...]
$

Consider various views.    Some security experts recommend setting up a different view. A
view is an additional statement grouping (clause) within the named.conf file, which allows
you to separate and isolate various zones. You can use the view clauses in conjunction with
defined named.conf file access control lists (acl).

For example, you manage Zone A, which is accessed by external DNS clients as well as
internal DNS clients. In this case, you may only want to block BIND version informa-
tion for Zone A external clients. Therefore, you set up two view statements. One view
offers functionality for Zone A’s internal clients, which includes viewing BIND version
information. The other view offers functionality for Zone A’s external clients, which
can include ignoring any Chaosnet network protocol class and other security-related
settings.

A few items that you should consider including in managed Zone external clients’ views
(Internet and Chaosnet) are as follows. You should review these settings prior to imple-
mentation to see if they apply to your managed zone. Whether you need to implement them
depends on the DNS service you intend to provide to the external world:

■■ Ignore chaos queries via setting version to "null" or throw out the queries via
setting file to "/dev/null" in the root zone (zone ".") definition section.

mailto:@192.168.0.103

Securing a DNS Server  429

c08.indd  09/14/2016  Page 429

■■ Set recursion to no in order to instruct BIND that external clients cannot use this
DNS server as a Recursive Name Server. This prevents a DNS amplification attack
(see US-CERT alert TA13–088A).

■■ Turn off any external client view queries by setting allow-query to {none;} (no
one), which, in effect, turns off queries for the external views.

■■ Disallow external client access to this server’s cache via setting allow-query-
cache to {none;} (available only on BIND v9.4 and up).

■■ Turn off any external client access by setting allow-recursion to {none;} (no
one).

Keep in mind that some of these settings are duplicates. For example, if recursion is set to
no, then by default allow-query-cache is set to {none;}. However, it does not hurt to set
these directives implicitly.

Split your DNS server.    “Split configuration of BIND” is mentioned in the certification
objectives. A Split DNS server (also called a Dual Horizon or Split Horizon server) is one
that is serving two different DNS purposes (think split personality). For example, you may
have a DNS server for external clients as well as for internal clients. In other words, a single
server is providing two different DNS services, each with different protection needs. Using
the example, you want to limit what information external clients can get about internal
clients.

Obviously, the best security solution is to set up the different DNS server functionalities
on two different physical servers. However, this does increase administrative overhead,
especially if you have the internal client server behind a firewall and internal clients that are
physically separated over the Internet. Thus, should you decide to split a single DNS server,
you have a few important configuration items to consider.

Using the preceding external and internal clients’ example, the idea is to provide a different
query answer, depending on who is sending the query. One answer is for external clients.
A different answer is for internal clients.

First, on your primary (master) server, as covered previously, you need to set up two differ-
ent views: one view for external clients and one view for internal clients. This sets up access
control lists (acl) for each client type and essentially divides up the two groups.

Each view will get its own zone definition within the named.conf file. The only difference
between the zone definitions will be the zone database to which the file directive points.
In other words, you need different authoritative information stored in each zone database.
One zone database is for external views and one zone database is for internal views.

After you have your primary server set up with its different external and internal views
and answers, you need to set up your secondary (slave) server. Because the primary server
sends zone updates (via a zone transfer) to the secondary server, you need to ensure that the
right updates are sent (primary external zone database to secondary external zone data-
base and primary internal zone database to secondary internal zone database). This can be
tricky, because even though the different view zone databases have different filenames, they

430  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 430

have the same zone name in their SOA resource records. To prevent mix-ups during zone
transfers, you can set up TSIG communication, which is covered later in this chapter.

Run only BIND.    Any public DNS server you manage, which is outside your firewall,
should run only BIND and not provide other services, such as hosting web pages. This
lowers your attack surface, so there are fewer security risks. Less software and fewer
services provide a reduced chance of security vulnerabilities. If you have an important
internal DNS server, it’s a good idea to do the same for it as well.

Run BIND as a non-root user.    Most current distributions already implement this. Here
is a snipped example of a CentOS distribution showing that BIND is running as the user
named, and it belongs to the group named:

systemctl status named
[...]
 Process: 2812 ExecStart=/usr/sbin/named -u named [...]
[...]
 CGroup: /system.slice/named.service
 └─2815 /usr/sbin/named -u named
#
groups named
named: named
#

On older distributions, you may need to do this manually. First, create a BIND username
and group. Traditionally, the non-root username for BIND is either named or bind. Following
that, modify startup files to make BIND run as a non-root user by adding -u BIND_user to
where BIND is invoked (/usr/sbin/named) in the script. Double-check that any files that
BIND needs to access, such as zone files and dump files, have write or read access granted to
the BIND username and/or group. Here are the settings on the /var/named/ directory on the
previous CentOS system:

ls -l /var/named
total 16
drwxrwx---. 2 named named 103 Mar 20 03:11 data
drwxrwx---. 2 named named 58 Apr 3 18:08 dynamic
-rw-rw----. 1 root named 2076 Jan 28 2013 named.ca
-rw-rw----. 1 root named 152 Dec 15 2009 named.empty
-rw-rw----. 1 root named 152 Jun 21 2007 named.localhost
-rw-rw----. 1 root named 168 Dec 15 2009 named.loopback
drwxrwx---. 2 named named 6 Mar 16 09:40 slaves
#

Control zone updates.    To keep zones from being updated by malicious attackers, it’s best
to lock down your zone dynamic updates. Some security researchers recommend not using
dynamic updates at all but instead implementing scripts to update zone databases as needed.

Securing a DNS Server  431

c08.indd  09/14/2016  Page 431

Within each zone configuration file in the zone directive, restrict needed zone dynamic
updates via the allow-update directive. Set the directive to none to eliminate any dynamic
updates, or set it to an IP servers list, with servers that are allowed to dynamically update
the zone. If you have external and internal views set up, be sure to disallow any updates in
the external views. Here is an example of eliminating any updates:

allow-update { none;};

In addition, you should consider locking down the allow-update-forwarding directive per
view and per zone. This directive determines which servers are allowed to submit dynamic
updates to a secondary server. In this case, the secondary server then dynamically updates
the primary server.

The allow-notify directive determines which server is allowed to send NOTIFY (DNS
zone change notification) messages to a secondary server. By default, the primary server is
the only one that can send a NOTIFY message to a secondary server. However, it’s a good
idea to implicitly list the master server’s IP address.

To help prevent malicious attacks associated with dynamic updates and update notifica-
tions, it’s a good idea to secure the communication concerning these items. This is done via
TSIG, covered later in this chapter.

Control zone transfers    Not every server needs a zone database copy. The master server
has the original, and if you maintain a secondary server, it will occasionally need a copy
(look back at zone transfers if you need a refresher on what triggers a zone transfer).

To restrict access, start in the named.conf configuration file and globally turn off all zone
transfers via the option allow-transfer {"none";}. Within each zone configuration file in
the zone directive, turn on any needed zone transfers by again using the allow-transfer
setting, listing allowed servers (or using an acl). Remember that a zone setting will over-
ride any global options that you set in the named.conf file. This allows you to finely control
each zone and allow zone transfers only to those servers that need them (secondary servers).

Besides the basic things to do to ensure that your name servers or internal DNS clients
are protected, there are some additional important security measures. These measures are
covered next.

Jailing BIND
We tend to think of jailing someone when they have done something bad, but in this case,
jailing BIND adds an additional security level. The jail is called a chroot jail, and it pre-
vents a process from navigating outside a specified directory (the jail).

The name chroot jail comes from the chroot command. This command
allows you to run a shell command (or interactive shell), forcing the com-
mand to treat your specified directory as the root (/) of the Linux directory
structure. In essence, you have “changed the root.”

432  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 432

The basic steps to create the chroot jail are as follows:

1.	 Create a root directory structure for BIND within the Linux virtual directory
structure. Typically, /chroot/named or /chroot/bind is chosen as the new root (/),
but it can vary.

2.	 Create the appropriate subdirectories under the chroot jail directory, such as etc/,
etc/bind/, home/named/, proc/, var/run/, and var/log/. The subdirectories that you
need to create will be highly dependent on your distribution and BIND configuration.

3.	 Copy any files needed for BIND to operate properly, such as the /etc/timezone file.

4.	 Copy over the BIND configuration files to the chroot jail directory structure.

5.	 Copy any zone configuration and database files to the chroot jail directory structure.

6.	 Modify the BIND user account so that the home directory now points to the chroot
jail directory’s home subdirectory for the BIND user account.

7.	 Modify the chroot jail directory structure and files within so that ownership, group,
and permissions match the originals. A script can prove useful here.

8.	 Modify startup files to mount the /proc filesystem in the chroot jail directory using the
mount -o command.

9.	 Modify the startup files that make BIND run as a non-root user and by adding
-u BIND_user to where BIND is invoked (/usr/sbin/named) in the script.

It’s best to try this out on a non-production system using a caching-only server setup.
It’s such a complicated configuration that it’s worthwhile to test it and work out any kinks
prior to implementing a chroot jail on a current production DNS server.

You may have additional steps to take, depending on your distribution and
server configuration. For instance, if you are using the /dev/null device
file or any other device files within your BIND configuration, you will need
to create these device files within your chroot jail as well using the mknod
command.

Fortunately, some current distributions have recognized how difficult this can be to set
up. Thus, the bind-chroot package is available, and it does most of the work for you via
creating the chroot jail (/var/named/chroot/) and creating hard links to the original BIND
configuration files.

The basic steps for using the bind-chroot package on a current CentOS distribution are
as follows:

1.	 Configure your BIND DNS if you have not done so already.

2.	 Install the bind-chroot package.

3.	 Run the setup shell script using super user privileges as follows:

/usr/libexec/setup-named-chroot.sh /var/named/chroot on

Securing a DNS Server  433

c08.indd  09/14/2016  Page 433

4.	 If BIND was previously set up and running, stop and disable it:

systemctl stop named
#
systemctl disable named
#

5.	 Start and enable bind-chroot to run BIND:

systemctl start named-chroot
#
systemctl enable named-chroot
#

Once you have this set up, you will need to remember that your BIND files now exist in
/var/named/chroot/var/named/ instead of the /var/named/ directory. Even though this
is easier to set up than the other chroot jail method, it is still worthwhile to test the jailed
BIND configuration on a non-production DNS server.

Exploring Asymmetric Encryption and Hashing

Eventually, when discussing computer security, the topics of encryption and hashing
arise. Both are heavily used to provide better security. However, if you don’t understand
them, you are liable to incorrectly implement the products and services that employ
them. This often leaves holes in your systems that malicious attackers can use to their
advantage.

Encryption is a process that uses a mathematical algorithm to convert plain text (text that
humans and machines can read) into cipher text (text that humans and machines cannot
read). Often, a key or set of keys is involved in this process. An encryption key is a piece
of data required by the algorithm to complete the encryption successfully. To reverse the
process (decrypt cipher text into plain text), the same mathematical algorithm is used
along with any keys used in the encryption process.

Asymmetric encryption (also called private/public key encryption) uses two keys, called
a key pair. A key pair consists of a public key and a private key. The key pair’s public key
is public and there is no need to keep it secret. It is used to encrypt data (along with the
algorithm). The key pair’s private key is kept secret, and it is used to decrypt the data.
Thus, data that has been encrypted with the public key can only be decrypted with its
private key. The advantage of asymmetric cryptography is heightened security.

434  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 434

Using DNSSEC
Imagine if you asked someone a question, and before you got the answer, it was stolen and
replaced by an incorrect answer. This can happen in the name resolution process. A resolv-
er’s DNS query is sent, but the answer gets hijacked. Instead of the correct answer, the DNS
resolver receives a phony answer. The application employing the resolver uses the phony
answer, and it is thus tricked into going to a malicious website. That’s a scary scenario.

The BIND DNS Security Extensions (DNSSEC) can help protect your systems from
these scenarios. Its primary goal is to protect DNS answers by ensuring that the answers
match what is in the responding server’s zone database and have not been altered in transit.

Keep in mind that DNSSEC does not protect zone transfers between
primary and secondary name servers. It also doesn’t handle dynamic
updates.

Exploring DNSSEC
Though DNSSEC does not encrypt DNS query responses, it does use asymmetric encryp-
tion to provide digital signatures. DNSSEC uses additional DNS resource record types
(beyond those covered in Table 8.2) and message header bits.

DNS messages that pass back and forth between a resolver and a name
server consist of five standard parts (described fully in RFC 1035). The first
of these five parts is the message header. In a DNS message header, vari-
ous bits describe the message. For example, it contains a 16-bit message
identification (Message ID) number and a single-bit query response (QR),
which is set to 0 for a DNS query and to 1 for a response message.

A couple of important DNSSEC resource record types are the public key (DNSKEY) and
the digital signature (RRSIG). The DNSSEC message header bits are AD to indicate authenti-
cated data and CD to indicate that checking is disabled.

Before launching into DNSSEC, it’s important to know a few terms associated with the
BIND security extensions. Understanding these terms will help you follow how DNSSEC
provides protection and comprehend the use of DNSSEC resource record types.

Hashing uses a one-way mathematical algorithm, turning plain text into hashed text.
You cannot reverse the process. Often it is used to provide a digital signature. A digital
signature is data that has been run through a hash algorithm. Once it is hashed, the
data is then encrypted using a private key. This encrypted hash is then appended to
the original data, and it is considered a digital signature.

Securing a DNS Server  435

c08.indd  09/14/2016  Page 435

Validating Resolver    DNSSEC works using validating resolvers configured with trust
anchors. A validating resolver is a DNS resolver that executes DNSSEC data validation
(described soon) on the data it receives.

Trust Anchor    A trust anchor is a DNSKEY resource record on a validating resolver. The
validating resolver uses this public key to validate a response’s digital signature.

Chain of Trust    DNSSEC is based on a chain of trust. This particular chain of trust has
a higher zone (such as the root . zone) digitally sign a lower zone’s key (such as the .com
TLD), which in turn signs a lower zone’s key (such as example.com). To keep this chain
valid, it is important to update periodically the digital signatures and keys.

Zone Signing Key    A zone signing key (ZSK) is the encryption key used to digitally sign
a particular zone’s resource records. The produced digital signature is stored in an RRSIG
record. It is suggested that these keys be renewed on a yearly basis at minimum.

Key Signing Key    A key signing key (KSK) is the encryption key used to sign a particular
zone’s ZSK. This key is applied via the chain of trust described earlier.

DNSSEC Data Validation    This data validation process occurs when a validating resolver
retraces the chain of trust and verifies an answer’s authenticity. The validating resolver
attempts to validate the digital signatures’ chain to the original root zone. This process
essentially verifies that the public key (KSK) stored in its DNSKEY resource record is valid.
Once the chain of trust is validated, it can verify an answer’s authenticity.

The answer’s authenticity is verified using the validated public key (KSK), stored in the
DNSKEY resource record, to decrypt the digital signature stored in the RRSIG resource record.
The resulting hash is compared to an answer hash. If they match, nothing has been modi-
fied in transit and all is well.

If both the chain of trust and the answer’s authenticity are successfully validated, the
DNS response is proved trustworthy. If the data does not successfully validate, a SERVFAIL
response is given by the validating resolver.

This is a rather complicated and difficult topic, and you may feel a little
overwhelmed. Thankfully, the certification objectives require you to have
only a general awareness of DNSSEC and its basic tools.

Using the chain of trust, DNSSEC digitally signs all of a zone’s resource records. This
adds an additional layer of security. BIND 9 is DNSSEC-capable, and it typically comes
with some security extensions set up by default.

Here is a snipped named.conf example from a CentOS system. Various DNSSEC settings
are shown:

cat /etc/named.conf
[...]
 dnssec-enable yes;

436  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 436

 dnssec-validation yes;
[...]
#

The dnssec-enable directive is set to yes, which you may think means that DNSSEC is
being used. However, that is not the case. Set to yes, this means that a security service is
being used that could be DNSSEC or even TSIG (covered later in this chapter).

The dnssec-validation directive is also set to yes. This indicates that a name server
that uses DNS cache will attempt to perform DNSSEC data validation. However, unless a
trusted-keys or managed-keys grouping (clause) statement is included, this does not occur.

While the DNSSEC process is all well and good, a problem can exist in it.
Because of the chain of trust, the DNSSEC data validation will not work if
any of your higher zones are not digitally signed. To deal with this particu-
lar issue, the DNSSEC Lookaside Validation (DLV) process was invented.
It allows DNSSEC to provide a trust anchor, even if higher zones are not
signed. You are encouraged to use this as only a temporary solution, if
needed. Find out more at the dlv.isc.org/doc site.

Keys are typically either declared in the named.conf file or stored in a separate file,
which is pointed to by the bindkeys-file directive within the name.conf file. To declare a
key, you can use either the trusted-keys or managed-keys clause.

The difference between the two clauses is that trusted-keys has to be manually updated.
If a key expires in your trusted-keys declaration, your DNS name server is unable to per-
form the data validation process successfully until the key is updated. With a managed-keys
clause, an initializing key is used to load a managed key database. Once keys are in place,
they are automatically updated as needed (RFC 5011).

Here is an example on a CentOS system’s BIND default installation. Within the named
.conf file, the bindkeys-file directive points to a DLV key file, as shown snipped here:

cat /etc/named.conf
[...]
 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";
[...]
#

Looking at the DLV key file, you can find the managed-keys grouping, as shown here
using the grep command:

grep managed /etc/named.iscdlv.key
managed-keys {
#

Securing a DNS Server  437

c08.indd  09/14/2016  Page 437

A DLV key is important to have as a temporary solution. Digging further into the previ-
ous named.conf file, a root key is found, as shown here:

cat /etc/named.conf
[...]
include "/etc/named.root.key";
#

This included file also has a managed-keys grouping, as shown snipped here:

cat /etc/named.root.key
managed-keys {
 # DNSKEY for the root zone.
 # Updates are published on root-dnssec-announce@icann.org
 . initial-key 257 3 8
"AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF
[...]
QxA+Uk1ihz0=";
};
#

In this particular example, since the root zone has been signed and a root key is pro-
vided in the managed-keys grouping, there is no longer a need to keep the DLV key. You
can simply comment it out in the named.conf file.

If your distribution does not provide BIND DNSSEC trusted keys, you can
obtain them from www.isc.org/downloads/bind/bind-keys. The ISC has
a bind.keys file that you can download via FTP, which has both a root key
and a DLV key (if you are temporarily using the DLV solution).

You can test whether your name server is using DNSSEC via the dig command on
your loopback address. You are looking for two flags: ad (Authenticated answer) and do
(DNSSEC Okay). Here is a snipped example:

dig +dnssec 127.0.0.1 edu. ns | grep flags
;; flags: qr rd ra ad; [...]
; EDNS: version: 0, flags: do; udp: 512
;; flags: qr rd ra ad; [...]
; EDNS: version: 0, flags: do; udp: 512
#

mailto:root-dnssec-announce@icann.org
http://www.isc.org/downloads/bind/bind-keys

438  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 438

Because the preceding example has those two flags, DNSSEC authoritative information
is available to your server. Another way to test this is to search for the SERVFAIL response,
as shown here:

dig +dnssec 127.0.0.1 edu. ns | grep SERVFAIL
#

If you do not receive a SERVFAIL response to the dig query using the +dnssec option,
DNSSEC is working.

Signing Your Zone
The following general steps are used for signing a zone that you manage. Keep in mind that
the actual steps you need to take depend on your currently installed BIND version as well
as your name server’s distribution.

1.	 Create a directory to hold your zone key.

2.	 Set proper permissions on the zone key directory.

3.	 Generate zone keys.

4.	 Add any needed key directives to the named.conf file.

5.	 Sign your zone automatically via reloading the zone’s configuration files or sign it manually.

6.	 Verify the signature.

7.	 Notify the parent zone.

Because these steps and their details can vary greatly depending on your
particular situation, it’s recommended that you visit www.isc.org. The
DNSSEC for BIND Quick Reference Guide can help get you started setting
up DNSSEC and signing any managed zones. It also makes a good study
sheet for certification purposes.

Generally speaking, at some point, you will employ the dnssec-keygen utility. To generate
a zone key, you will pass three options: -a Encryption_algorithm, -b keysize, and -n ZONE.
The Encryption_algorithm and associated keysizes that you can use are listed in the man
pages. The -n ZONE option is required to create a DNSSEC zone key.

With no additional options, a zone signing key is generated. If you need a key signing
key, add the -f KSK option. Here is an example of generating a zone signing key, split into
two command lines for clarity:

dnssec-keygen -a RSASHA512 -b 2048 -n ZONE \
> -r /dev/urandom example.com.
Generating key pair.......++++++
Kexample.com.+010+63698
#

http://www.isc.org

Securing a DNS Server  439

c08.indd  09/14/2016  Page 439

Notice that at the command’s end you must pass the zone’s name, followed by a dot (.). Be
aware that this utility will take a long time to run, especially if you do not use the -r /dev/
urandom option. It’s best to tack on an & and run it in the background.

The dnssec-keygen utility allows a -r option, as was used in the preced-
ing example. This option allows you to specify a randomness or entropy
source. If one is not specified, the dnssec-keygen utility can take a very
long time to complete its operation, because it is gathering entropy. You
can specify /dev/urandom, /dev/random, or keyboard (but you’ll have to
type on the keyboard for a long time) to speed up the process. Though
debated, /dev/urandom is typically the best choice.

The dnssec-keygen utility creates two files. One file holds the private zone key (ending
in .private), while the other holds the public zone key (ending in .key). Once these are
created, move these files to the appropriate directory for the zone keys. The files created
from the preceding example are shown here in a single-column format:

ls -1 Kexample.com.*
Kexample.com.+010+63698.key
Kexample.com.+010+63698.private
#

If you do not set up automatic signing via the auto-dnssec and inline-signing direc-
tives in your named.conf file, you will need to load your keys manually into BIND using the
rndc loadkeys zone command. Also, you will need to sign your zone manually using the
dnssec-signzone command.

Not all of the DNSSEC utilities may be needed in current distributions. However, if you
have an older DNS name server or do not use automatic signing, they may prove useful.
Here is a DNSSEC utilities list:

man -k dnssec-
dnssec-checkds (8)—A DNSSEC delegation consistency checking tool.
dnssec-coverage (8)—checks future DNSKEY coverage for a zone
dnssec-dsfromkey (8)—DNSSEC DS RR generation tool
dnssec-keyfromlabel (8)—DNSSEC key generation tool
dnssec-keygen (8)—DNSSEC key generation tool
dnssec-revoke (8)—Set the REVOKED bit on a DNSSEC key
dnssec-settime (8)—Set the key timing metadata for a DNSSEC key
dnssec-signzone (8)—DNSSEC zone signing tool
dnssec-verify (8)—DNSSEC zone verification tool
#

DNSSEC does provide a solid extra layer of protection, but it does not protect zone transfers
or dynamic updates. Fortunately, another DNS security utility can help, and it is covered next.

440  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 440

Connecting via TSIG
BIND allows the use of Transaction Signature (TSIG), which signs DNS messages with a
digital signature. This provides point-to-point authentication as well as message integrity
checking. Via TSIG, any DNS messages that have been altered in transit are revealed. This
helps prevent malicious attacks against certain DNS communications.

TSIG can be used for these purposes:

■■ DNS zone change notification operation (NOTIFY) messages

■■ Dynamic updates

■■ Recursive Name Server query communication

■■ Zone transfers between primary and secondary name servers

Before making any configuration file changes to use TSIG, you’ll need to generate a key
file on your primary name server. In this case, you’ll use the dnssec-keygen utility but
employ different options. Here is an example on a CentOS distribution split onto two lines
for clarity:

dnssec-keygen -a HMAC-SHA512 -b 512 -n HOST \
> -r /dev/urandom texample
Ktexample.+165+10948
#

You’ll notice a few changes from generating a DNSSEC key. For a TSIG key, the -a
option specifies the HMAC-SHA512 key algorithm, along with the biggest key possible for this
algorithm, -b 512. The -n option is set to HOST.

The other change is the key name. You can use just about any key name, and there is no
key name standard. However, the key name must be unique for the DNS servers that will
be using it. In the preceding example, the key name texample is used.

Though it’s available for generating TSIG keys via the dnssec-keygen util-
ity, it is not advisable to use the HMAC-MD5 algorithm. It is no longer consid-
ered secure.

Two key files are generated by this process as shown here, but you need only the file with
the .private extension.

ls -1 Ktexample.*
Ktexample.+165+10948.key
Ktexample.+165+10948.private
#

The .private key file contains the needed private key. Here the texample key’s .private
key file is displayed:

Securing a DNS Server  441

c08.indd  09/14/2016  Page 441

cat Ktexample.+165+10948.private
Private-key-format: v1.3
Algorithm: 165 (HMAC_SHA512)
Key:
PDYUe5i9PeA5PN/u5hoxQGL2qPcUy0sf1+FXy0PtDG5ccKACW3sWI
hvCp76r43o9l4XfN6tL+6d7oa4zw+9+QA==
Bits: AAA=
Created: 20160405022334
Publish: 20160405022334
Activate: 20160405022334
#

The next step is to create a primary server key configuration file for use in the BIND con-
figuration files. Typically, these key configuration files are stored in the same directory as zone
databases. Here a key configuration file is created for the texample key on a CentOS system:

cat /var/named/texample.key
/* TSIG Key */
key "texample" {
 algorithm HMAC-SHA152;
 secret
"PDYUe5i9PeA5PN/u5hoxQGL2qPcUy0sf1+FXy0PtDG5ccKACW3sWI
hvCp76r43o9l4XfN6tL+6d7oa4zw+9+QA==";
};
#

In the key configuration file, the key directive sets the key’s name. The algorithm direc-
tive denotes what encryption algorithm was used when the key was generated. Be sure to use
the exact same algorithm name that you used with the dnssec-keygen -a option. Finally,
the secret directive is followed by the private key within double quotation marks. As always
with BIND configuration files, watch your curly bracket and semicolon placements.

It’s not advisable to write down the key and try to hand type it into the key
configuration file. You can easily introduce typographical errors into the
key. Instead, cut and paste or copy the key into the key configuration file.

Now that the key configuration file is completed, you can modify the primary server’s
named.conf file to include the key file. Here is a snipped example including the texample
key configuration file on a CentOS system:

cat /etc/named.conf
[...]

442  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 442

include "/var/named/texample.key";
#

You will also need to copy the key configuration file over to any servers (typically a sec-
ondary server) that will be using this TSIG key for communication. After the key configura-
tion file is copied over and placed in the zone directory, it will need to be included into that
server’s named.conf, as was done on the primary server.

Unlike DNSSEC’s asymmetric encryption and digital signatures, TSIG uses
symmetric encryption via a secret private key shared among the communicat-
ing servers. Thus, it is very important to protect your generated TSIG keys.

How the TSIG key will be used for specific communication events (as well as your distribution
and BIND version) can vary the rest of the needed steps. Looking only at zone transfers between
primary and secondary servers, on the primary server you also will need to modify directives that
determine who is allowed to transfer zones. For example, within the secondary server’s zone con-
figuration file, change the allow-transfer { acl;} directive to something like this:

allow-transfer { key "texample"; };

Essentially, you are replacing an access control list (acl) with a named key. Zone trans-
fers will be allowed only for those holding this key.

On the secondary server (assuming you already have the key configuration file copied
and included in the named.conf file), you will need to modify the key configuration file and
add something like this to its bottom:

server primary-server-ip-address{
 keys { texample; };
};

At this point, you can reload the BIND configuration files on both the primary and sec-
ondary name servers using rndc or whatever utility your particular distribution uses. Test
out a zone transfer, and if problems occur, review your DNS logs and use the various DNS
troubleshooting methods.

TSIG uses timestamps to prevent messages from being reused (a mali-
cious attacker may try to reuse messages). Therefore, if your servers do
not have precise time, you may encounter errors using TSIG for DNS com-
munications. Consider implementing the Network Time Protocol (NTP)
daemon to provide precise server time.

Employing DANE
DANE, which stands for DNS-based Authentication of Named Entities, is an additional
security measure that you can employ. It is described in detail in RFC 6698 and further

Securing a DNS Server  443

c08.indd  09/14/2016  Page 443

clarified in RFC 7791. To understand how DANE adds security, you must first understand
the security problem it helps to eliminate.

Secure TCP communications between a client and a web server are often done via the
Transport Layer Security (TLS) protocol (which was called Secure Sockets Layer, or SSL,
in years past). When this protocol is employed, part of its securing communications pro-
cess involves a certificate. This certificate is trusted because typically another party, called
a trusted public certificate authority (CA), has issued and signed the certificate. Once the
certificate is accepted, a key is provided to use for encrypting the TCP traffic between the
client and the web server.

The problem lies in the trusted public CA model. Instead of just one or two CAs, there
are hundreds. In addition, any CA can issue a certificate for any domain name. Lots of
CAs, all capable of issuing signed certificates for any web server, make the trust model
weak.

Unfortunately, as predicted, some CAs have been compromised and false replacement
certificates have been issued. A client application, such as a web browser, accepting a com-
promised certificate can allow a compromised encryption key to be installed. In turn, a
malicious person can use the compromised key to decrypt and read encrypted TCP traffic.
This breaks the original trust granted to the CAs.

DANE attempts to correct the CA problem. It associates the web server’s official and
correct certificate or public key (or the trusted certificate-issuing authority) with the web
server’s domain name using a DNS query. For DANE to work properly, this DNS query
is secured via DNSSEC. This association is called a certificate association. The certificate
association data is stored in a DNS resource record, called a TLSA record.

According to RFC 7671, TLSA is not an acronym. However, for certification
purposes, you can remember its purpose by thinking of it as the Transport
Layer Security Authority (TLSA).

If you want to employ DANE, you must first pick the system that will be responsible for
maintaining a TLSA record within the chosen DNS zone. This system is called the TLSA
publisher. The chosen DNS zone must first employ DNSSEC (described earlier) and, in cer-
tain cases, have a validated DNSSEC chain of trust (also called a trust anchor) established.

To understand how a TLSA resource records works, it is important to
understand what kinds of data a digital certificate may contain. The cer-
tificates discussed here will contain at least the issuer name to whom the
certificate was issued, an expiration date, and a digital signature.

The TLSA portion of a resource record has this basic syntax: certificate_usage selector
matching_type content. The following items explain the TLSA resource record fields:

certificate_usage    This field is set to a single digit (0–3) and specifies the particular asso-
ciation that must match during the TLS securing communications process. Its setting also
determines whether a trust anchor must be pre-established.

444  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 444

A 0 indicates that the record specifies an authorized and trusted public CA. This certificate
usage is often called a CA constraint, because it limits which CA can be used to issue cer-
tificates for a given service on a host. A trust anchor must be pre-established. Because this
particular usage type offers no additional security, it is not recommended.

The number 1 specifies a trusted certificate or its public key. This certificate usage is often
called a service certificate constraint, because it limits which certificate can be used by a
given service on a host. A trust anchor must be pre-established. Because this particular
usage type offers no additional security, it is not recommended.

A 2 indicates that the record specifies a new and non-public CA certificate or its public key.
Typically, this usage is employed if you are acting as your own CA. A trust anchor does not
need to be pre-established, because you are establishing one. Thus, this certificate usage is
often called a trust anchor assertion, because it allows a new trust anchor to be specified.
This particular usage type does offer additional security.

The number 3 specifies a server certificate (or public key), issued by the BIND adminis-
trator. It allows you to bypass a third-party CA, and it is often called a domain-issued
certificate. This particular usage type also offers additional security.

selector    The selector field is set either to 0 or 1. A 0 indicates this record is for a
digital certificate. A 1 in the selector field designates the record is using a public key
instead.

matching_type    The matching_type field is set to 0, 1, or 2. A 0 indicates that content
(CA, certificate, or public key data following this field) is not hashed. The number 1 indi-
cates that the content was hashed by the SHA-256 hash algorithm, and a 2 specifies that
the content was hashed by the SHA-512 algorithm. It is recommended to use the same hash
algorithm that was used in the certificate’s digital signature.

The entire resource record for a TLSA record contains a few additional items. Here is a
snipped example of a TLSA resource record:

_443._tcp.www.example.com. IN TLSA (
 2 1 2 f6c4b71c216a50292b2f74e3fe51d48c
 [...])

In the preceding example, the 443._tcp. indicates that TCP port 443 (HTTPS) is being
used for the www.example.com. server. The IN indicates that a record’s class is Internet, and
the TLSA designation designates this record as a TLSA record. Within the parentheses are the
certificate usage (2), selector (1), matching type (2), and finally the snipped hashed content.

Once all of the appropriate fields are added, a TLSA record contains the needed certifi-
cate association data. TLSA resource records are placed within the TLSA publisher’s appro-
priate DNS zone files.

Obviously, DNS security is a rather complicated topic, much like DNS itself. The infor-
mation provided here will help you get started securing your DNS servers. The better you

http://www.example.com

Exam Essentials  445

c08.indd  09/14/2016  Page 445

research and work toward a secure DNS server configuration, the easier it will be to keep
out malicious attackers. Just remember to stay current on DNS security topics as well as
implement new security protections.

Summary
The DNS network protocol is a complicated system that provides name resolution using a
distributed database (Domain Name Space) to accomplish its task. The BIND package is
popular on Linux for providing DNS services. Setting up DNS via BIND can be a compli-
cated process. It involves modifying BIND configuration files, creating and maintaining
zone configurations and databases, and implementing DNS server security. Hopefully, this
chapter has started you on the right path for success.

Exam Essentials
Explain how to install and configure BIND.    On current Red Hat–based distributions,
you need to install the bind and bindutils packages, and on current Ubuntu distribu-
tions, you need to install bind9 and bind9utils. The main configuration file for BIND is
named.conf, and it is located in either the /etc/ or the /etc/bind/ directory, depending on
your distribution. The named.conf file has various items such as comments, global options,
logging directives, and zone configuration information, and it pulls in additional configu-
ration settings from other files using include statements. DNS zones are configured via
zone configuration information, which may be stored in separate files from the named.conf
file (and pulled in via include statements) or entered directly into the named.conf file. Zone
authoritative information comes in the form of resource records, which are stored in zone
databases, also called zone files.

Describe how to set up a caching-only DNS server.    A caching-only DNS server, some-
times called a resolver, is a name server that receives its information from a primary (or sec-
ondary) server and caches the information locally in order to provide fast name resolutions
for additional DNS queries. The named.conf file on this server must be modified. It’s wise
to create an access control list (acl) directive to list IP addresses of any servers allowed to
query this name server’s cache. The allow-query directive can be set either to the acl name
or an IP address list of any servers allowed to query this name server’s cache. You must also
set the recursion directive to yes if it is currently set to no. The listen-on setting may
need to be modified as well. Once the configuration settings are in place, test the named
.conf file using the named-checkconf utility. If the utility returns no errors, either restart
BIND or reload the configuration files using the system’s initialization daemon, the kill
command, or the rndc utility.

446  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 446

Describe how to troubleshoot BIND.    Besides viewing BIND logs, you can use four pri-
mary troubleshooting utilities: host, dig, nslookup, and rndc. The host tool performs
basic DNS name resolutions. The dig utility is very flexible. By default, it queries the name
servers in the /etc/resolv.conf file, but you can direct a dig query to a different name
server by adding @IP address or @server name to the command. With the +trace option,
you should see a progression from root zone servers to the TLD servers and finally name
servers that can provide an authoritative answer to the dig query. The once-deprecated
nslookup utility is unique in that it performs DNS lookups in either an interactive or a non-
interactive mode. The rndc utility is designed specifically for BIND DNS, and it has mul-
tiple troubleshooting options that include displaying the DNS server’s status, writing server
stats to a file, changing the debugging level, and so on. (You can also stop BIND or reload
its configuration files using rndc.)

Summarize implementing basic BIND security.    Important topics in securing BIND include
keeping the BIND software up to date, running the BIND daemon as a non-root user, hiding
BIND data such as BIND version information from external DNS clients, and not providing
other major services (such as Apache or CUPS) on your DNS name server(s). You can also
make BIND configuration modifications to include different views for external and internal
clients, eliminate dynamic updates, globally turn off zone transfers (turning them on only
for zones that need them), and split any DNS servers that provide multiple DNS functions.
You can also protect your DNS server by implementing a chroot jail, using DNSSEC, pro-
tecting transactions by using TSIG, and employing DANE. Most important, you need to
stay knowledgeable personally about the various malicious attacks that can happen against
BIND-implemented DNS and modify your BIND configuration to mitigate them.

Review Questions  447

c08.indd  09/14/2016  Page 447

Review Questions
You can find the answers in the Appendix.

1.	 The .edu domain is considered which domain type? (Choose the best answer.)

A.	 Root domain

B.	 TLD

C.	 First-level domain

D.	 ICANN

E.	 Second-level domain

2.	 Domain Name Space is broken into different zones. Which of the following could be one of
those zones? (Choose all that apply.)

A.	 The hint zone

B.	 A first-level domain and all of its subdomains

C.	 A first-level domain and a portion of its subdomains

D.	 A root server

E.	 The root zone

3.	 Which of the following server combinations could be the minimum two name servers
required for a zone? (Choose all that apply.)

A.	 Primary server and secondary server

B.	 Secondary server and forwarding server

C.	 Primary server and forwarding server

D.	 Secondary server and caching server

E.	 Primary server and caching server

4.	 A program or library routine that creates a DNS query, checks its own cache for the
answer, and if it doesn’t find it there, sends the query to another name server, is called
what? (Choose the best answer.)

A.	 Name server

B.	 Cache

C.	 Name resolution

D.	 Resolver

E.	 Zone

5.	 Which of the following software provides either full or partial DNS protocol implementa-
tion? (Choose all that apply.)

A.	 BIND

B.	 dnsmasq

C.	 pdnsd

448  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 448

D.	 Bundy

E.	 PowerDNS

6.	 The BIND daemon is which program in the /usr/sbin/ directory? (Choose the best answer.)

A.	 bind9

B.	 bind

C.	 named

D.	 named.conf

E.	 bindutils

7.	 Which of the following are legitimate groupings (clauses) in the BIND’s primary configura-
tion file, named.conf? (Choose all that apply.)

A.	 options

B.	 logging

C.	 include

D.	 named-checkconf

E.	 comments

8.	 When setting up a local DNS caching-only server, which directives should be set and or
modified in the named.conf file? (Choose all that apply.)

A.	 acl

B.	 allow-query

C.	 logging

D.	 listen-on

E.	 recursion yes

9.	 Ignoring distribution differences and assuming you have the appropriate privileges, which
of the following commands will stop the BIND service? (Choose all that apply.)

A.	 rndc flush

B.	 service bind9 stop

C.	 kill -s SIGTERM BIND_PID

D.	 rndc stop

E.	 systemctl stop named

10.	 A logging category directive determines what? (Choose the best answer.)

A.	 Where DNS messages are to be logged

B.	 The DNS message types to be logged

C.	 How to restart BIND to load logging

D.	 How DNS messages are filtered

E.	 The DNS channel log sizes

Review Questions  449

c08.indd  09/14/2016  Page 449

11.	 Which of the following are legal zone type directives? (Choose all that apply.)

A.	 master

B.	 secondary

C.	 hint

D.	 delegation

E.	 root

12.	 Which of the following are legal zone statement classes? (Choose all that apply.)

A.	 CH

B.	 DN

C.	 HS

D.	 IN

E.	 IS

13.	 Why might authoritative zone information be copied from the primary name server’s zone
databases over to the secondary name server (called a zone transfer)? (Choose all that apply.)

A.	 The primary server’s BIND daemon has restarted.

B.	 The secondary server’s BIND daemon has started up.

C.	 The rndc utility was used on the secondary server, and a manual zone data refresh was
requested.

D.	 The secondary server’s zone data’s refresh time has expired.

E.	 The secondary server’s BIND daemon was stopped, and its configuration files were
removed.

14.	 The default zone databases are typically stored in which directories? (Choose the two best
answers.)

A.	 /etc/named/ directory

B.	 /var/bind/ directory

C.	 /var/named/ directory

D.	 /etc/bind9/ directory

E.	 /etc/bind/ directory

15.	 A zone database has resource records of various types. One such record identifies the author-
ity zone’s start and includes the zone’s authoritative data. Which one of the following is this
resource record type? (Choose the best answer.)

A.	 CNAME

B.	 A

C.	 PTR

D.	 NS

E.	 SOA

450  Chapter 8  ■  Directing DNS

c08.indd  09/14/2016  Page 450

16.	 Which of the following best describes a Reverse Zone? (Choose the best answer.)

A.	 A record used in zone delegation, which provides a child zone’s master name server’s IP
address

B.	 The process of copying over authoritative zone information to a name server

C.	 A special zone that provides a mapping from an IP address to an FQDN

D.	 A zone directive typically located in the named.conf file, which has a type hint setting

E.	 A Domain Name Space portion, which delineates what a name server has authority over

17.	 Which of the following are methods for securing your DNS services? (Choose all that
apply.)

A.	 Run only BIND services on the server.

B.	 Run the BIND daemon as a non-root user.

C.	 Implement a Dual Horizon server.

D.	 Update your BIND software yearly.

E.	 Hide BIND version information.

18.	 When setting up a chroot jail, the new root directory is typically which directory? (Choose
two answers.)

A.	 /etc/bind/

B.	 /etc/named/

C.	 /var/bind/

D.	 /chroot/named/

E.	 /chroot/bind/

19.	 In the BIND DNSSEC security extension, the encryption key used to digitally sign a particular
zone’s resource records is called what? (Choose the best answer.)

A.	 Digital signature

B.	 Key signing key

C.	 Zone signing key

D.	 Chain of trust

E.	 DNSKEY

20.	 Which utility is used to create either TSIG or DNSSEC keys? (Choose the best answer.)

A.	 dnssec-keygen

B.	 dnssec-signzone

C.	 dnssec-dsfromkey

D.	 dnssec-tsig-keygen

E.	 tsig-keygen

c09.indd  09/14/2016  Page 451

Chapter

9
Offering Web
Services

The following exam objectives are
covered in this chapter:

✓✓ 208.1 Basic Apache configuration

✓✓ 208.2 Apache configuration for HTTPS

✓✓ 208.3 Implementing Squid as a caching proxy

✓✓ 208.4 Implementing Nginx as a web server and a reverse
proxy

c09.indd  09/14/2016  Page 452

The most popular use of Linux in the server environment is
as a web server. Linux web servers dominate the Internet,
and they are also very popular for hosting corporate intranet

applications. Everything from serving static web pages to hosting dynamic web applications
often runs faster and more efficiently on a Linux server platform.

This chapter looks at how to configure your Linux system to support different types of
web server environments. First, it takes a look at just what a web server is and what soft-
ware is required to convert your Linux server into a web server. Next, the chapter examines
how to install and configure the Apache software package, which is the most popular web
server in use today. Because the Apache software is so versatile, it can be somewhat confus-
ing to set up. The chapter walks you through just what is needed to get your website up and
running. After that, it covers how to implement the Squid proxy web server. Using a proxy
web server helps out in environments that may need to cache web page access to save net-
work bandwidth and increase performance. Finally, the chapter takes a look at the nginx
web server, an up-and-coming web server product that’s gaining in popularity thanks to
some interesting new features.

What Is a Web Server?
Before we explore how to install and use a web server in Linux, let’s first look at just why
we need a web server and how they work. This section discusses the basics of what web
servers are all about and the protocols that are required to run them.

Web Server Basics
The power behind the Internet is the free and open transfer of information. In the early
days of the Internet, though, access to data files on remote systems required having a user
login account as well as using complicated file transfer programs. To help with the open
and speedy sharing of data, a new method of sharing files needed to be developed.

Enter the Hypertext Transfer Protocol (HTTP). HTTP was developed to help out with
the easy transfer of data anonymously between systems. For public data that doesn’t need
to be protected, HTTP allows a client to connect to a server anonymously, retrieve data
files, and then disconnect. This process has greatly helped speed up retrieving data from the
remote systems connected to the Internet, and it is what has made the Internet a popular
place for sharing data.

However, anonymously moving text documents around still had its disadvantages. It was
still cumbersome trying to find out what data was stored in which text files, and what text

What Is a Web Server?  453

c09.indd  09/14/2016  Page 453

files needed to be retrieved from which servers. To solve that problem, a method of linking
related data files together needed to be developed, and a new standard needed to be created.

The Hypertext Markup Language (HTML) provided just the interface needed to facili-
tate easy retrieval of information from multiple data files located on multiple servers. HTML
allows authors to create documents that automatically link to other documents using hyper-
links. Hyperlinks reference remote files by specifying the server name and a path where to
find the file. Authors just need to embed hyperlinks into their standard text documents to
make it easy for readers to move from one document to another.

Another feature of HTML is the ability to format data presented within a text file. Word
processing documents provide formatting of data (such as using different fonts and font
styles) by embedding binary data inside the document. Unfortunately, you can’t do that with
text documents. Instead, HTML uses text tags to identify text formatting. The HTML stan-
dard defines tags for most standard page formatting needs, such as identifying headings, sep-
arating paragraphs, and applying simple font features such as boldfacing or italicizing text.

With the development of HTML for formatting text, all that was needed was an applica-
tion that could access HTML documents and display them using the specified formatting.
This is where client browsers and web servers came in. Browsers connect to a specified
remote web server on a standard TCP port, retrieve the specified data file, and then apply
the embedded HTML formatting tags to the data content in the file to display the document
as intended by the author. The browser handles embedded hyperlinks by automatically going
to the specified URL when the site visitor clicks the link.

The HTTP Standard
The developers who created HTTP decided to use a text-based client/server protocol to
provide an easy way to transfer data between the server and clients. Because HTTP is text
based, all commands are sent by the client in text, and all server responses are returned in
text. Figure 9.1 shows a basic session between a client browser and a web server to retrieve
a web page file.

F i gu r e 9 .1     Basic HTTP session

Web client Web server

TCP connection request

HTTP GET /

TCP connection terminate

TCP connection end

HTTP 200 OK

HTML data

TCP connection ack

454  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 454

The browser sends an HTTP request to the web server, requesting a specific resource
on the server. In turn, the web server returns a specially formatted HTTP response along
with the data file. It helps to know the basic requests and responses, especially if you need
to troubleshoot issues with a web connection. The following sections walk you through the
basics of HTTP for both client requests and server responses.

Client Requests
Once an HTTP connection is established with a remote server, the client must send requests
upon which the server can act. HTTP requests consist of a keyword, optionally followed by
additional information that the server may need to process the request (such as the name of a
file to return). Table 9.1 shows the standard HTTP client request keywords that are available.

Ta b le 9 .1     HTTP client requests

Request Description

CONNECT Convert the connection into a tunnel, usually for security.

DELETE Delete the specified resource.

GET Request the specified resource.

HEAD Request the title of the specified resource.

OPTIONS Retrieve the HTTP requests that the server supports.

PATCH Apply a modification to a resource.

POST Send specified data to the server for processing.

PUT Store specified data at a specified location.

TRACE Send the received request back to the client.

As shown in Figure 9.1, when you ask to view a web page from your client browser, the
browser sends an HTTP GET request to the server, specifying the web page filename. The
server then responds with a response code along with the requested data. If the client doesn’t
specify a filename in the GET request, most servers have a default file with which to respond.

Server Responses
With HTTP, the web server must respond to each client request received. If the client sends
a request that the server can’t process, the server must send some type of error code back to
the client indicating that something went wrong.

What Is a Web Server?  455

c09.indd  09/14/2016  Page 455

The first part of the server response is a status code and text that the client uses to deter-
mine whether the submitted request was successful. The format of the HTTP response uses
a three-digit status code followed by optional text message that the browser can display.
The three-digit codes are broken down into five categories:

■■ 1xx—Informational messages

■■ 2xx—Success

■■ 3xx—Redirection

■■ 4xx—Client error

■■ 5xx—Server error

The three-digit status code is crucial to knowing just what happened with the response.
There are lots of status codes defined in the HTTP standards, providing some detailed
information on the status of client requests. Table 9.2 shows the standard HTTP server
response codes defined.

Ta b le 9 . 2     Common HTTP server response status codes

Status code Text message

100 Continue

101 Switch Protocols

102 Processing Request

200 OK

201 Created

202 Accepted

206 Partial Content

207 Multi-Status

208 Already Reported

226 IM Used

300 Multiple Choices

301 Moved Permanently

302 Found

456  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 456

Status code Text message

303 See Other

304 Not Modified

305 Use Proxy

306 Switch Proxy

307 Temporary Redirect

308 Permanent Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Payload Too Large

414 URI Too Long

415 Unsupported Media Type

Table 9 .2    Common HTTP server response status codes  (continued)

What Is a Web Server?  457

c09.indd  09/14/2016  Page 457

Status code Text message

416 Range Not Satisfiable

417 Expectation Failed

418 I’m a Teapot

421 Misdirected Request

422 Unprocessable Entity

423 Locked

424 Failed Dependency

426 Upgrade Required

428 Precondition Required

429 Too Many Requests

431 Request Header Fields Too Large

451 Unavailable for Legal Reasons

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

506 Variant Also Negotiates

507 Insufficient Storage

508 Loop Detected

510 Not Extended

511 Network Authentication Required

458  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 458

As you can see from Table 9.2, a web server can return many possible responses. It’s the
client’s job to parse the response and determine the next action to take.

If the response indicates that the request was successful, the server will follow the
response with the data from the request, such as the contents of an HTML file. The client
must then display the requested file, applying the HTML formatting tags to the data.

Secure HTTP
As mentioned, by default HTTP uses a text-based request/response method. While that
helps simplify the communication between the client and the server, it doesn’t provide
any type of security to protect the communication. For applications that require security,
instead of using a different protocol, web servers use encryption to encrypt the standard
HTTP network traffic.

HTTP Secure (HTTPS) uses shared key encryption to encrypt the traffic sent across the
network between the client and the server. It uses the standard HTTP client requests and
server responses, but it encrypts the requests and responses at the network level to help pre-
vent network snooping.

To encrypt the communication stream, the client and server must agree on an encryption
protocol and pass an encryption key. In the past, the Secure Sockets Layer (SSL) protocol
was used to encrypt the data, but because of its limitations, the Transport Layer Security (TLS)
protocol is becoming more popular.

With either encryption protocol, before the secure communication can start, the client
and server must pass a shared encryption key that both can use. HTTP uses the public/
private key method for encryption. The server contains a private key that only it has. It
passes a public key to each client that wants to communicate with the server. It’s the client’s
responsibility to validate that the public key the server passes is valid and that the server is
authentic. That’s done using a digital certificate. A server requests that a well-known certificate
authority (CA) digitally sign the certificate, validating the authenticity of the server. The
client browser software trusts the CA and, in turn, trusts the public key to use for commu-
nication. Figure 9.2 demonstrates this process.

F i gu r e 9 . 2     The HTTPS communication process

TCP connection request

TCP connection ack

request public key

return public key

encrypted HTTP request

encrypted HTTP response

validated public key

What Is a Web Server?  459

c09.indd  09/14/2016  Page 459

In HTTPS, the client first establishes an unencrypted connection to the web server using
a special TCP port (443). The server accepts the connection, and then it negotiates a com-
mon encryption protocol that both the server and client support. Once that is determined,
the server sends the public key as part of a signed certificate. The client contacts the CA
to validate the certificate and, if accepted, trusts the public key and uses it for encrypting
traffic to the server.

The CA is vital to this process. The browser must trust that the CA validates the
web server, and it vouches that the web pages are safe to view. All commercial browsers
have a list of trusted CAs, which are frequently updated using patches to the browser
software.

Linux Web Servers
Many different types of web server software packages are available for the Linux platform.
Fortunately, the LPIC-2 exam focuses on only three web server platforms commonly used
in the Linux environment:

■■ Apache

■■ Squid

■■ Nginx

This section provides some background on each server and how to use it in your network
environment.

Apache
By far the most popular web server on the Internet today is the Apache web server applica-
tion. It is an open source project, maintained by the Apache Software Foundation. Since
it’s open source, it is available free of charge for any purpose, both commercial and private,
and it now is commonly included in most Linux distribution repositories, making it easy
to install.

Over the years, the Apache web server project has pioneered many new features that
define just what web servers should support:

Loadable Dynamic Modules    The ability to activate and deactivate features on the fly as
the web server is running.

Scalable Multisession Support    The ability to handle easily multiple client requests at the
same time is crucial for modern web servers.

Limiting Concurrent Connections    While multiuser support is crucial, so is the ability
to limit the number of clients that can connect at the same time to help prevent system
overload.

Bandwidth Throttling    The ability to regulate the output from the web server to prevent
overloading the network, even if the system can handle more connections.

460  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 460

Web Caching (Also Called Web Proxy)    The ability to store web pages requested by mul-
tiple clients and read additional requests from the cache rather than from the original data
source.

Load Balancing (Also Called Reverse Proxy)    The ability to act as a single point of connec-
tion for clients and then redirect requests to multiple backend servers for processing.

Common Gateway Interface    The ability to forward web page content to internal server
programs, commonly used for processing embedded scripting code.

Virtual Hosting    The ability to host multiple domains on a single web server.

User-Based Web Page Hosting    Allows individual users on the system to host their own
web pages.

With Apache, all of these features, plus a lot more, are easily enabled or disabled using
simple text-based configuration files.

One confusing issue with the Apache web server is that currently two
separate versions are supported. The 1.3.x version thread supports older
installations of the Apache web server. It’s mostly maintained to sup-
port bug fixes and security patches for legacy systems. New Apache web
server installations should use the 2.x version thread. Most Linux distribu-
tions differentiate the two versions by calling the 2.x version by the name
Apache2. The LPIC-2 exam (and thus this chapter) focuses on the Apache2
version features.

Squid
The Squid web server performs not as much as a stand-alone web server but as a web proxy
server. A web proxy server intercepts HTTP requests from multiple clients on a network
before they leave the network. It then resends the requests directly to the remote destination,
waits for the response, and then forwards the response back to the client. While this may
seem counterproductive, there are two benefits of this process:

■■ The web proxy server can filter client requests to block those that the network admin-
istrators deem inappropriate.

■■ The web proxy server can cache the remote server responses. If another client makes
the same request, the web proxy server can return the cached data instead of having to
re-download the data from the remote server. This can both speed up web page perfor-
mance and save network bandwidth.

Figure 9.3 shows a basic diagram of how this process works.
The Squid web proxy server has become the de facto web proxy server used in Linux

environments. Most Linux distributions include it in the standard software repository,
making it easy to install and set up.

The Apache Web Server  461

c09.indd  09/14/2016  Page 461

Nginx
While it too can operate as a standard web server, the nginx (pronounced “engine-X”) web
server is better known as a reverse proxy server. As you can probably guess, a reverse proxy
server does the opposite of what a web proxy server does. Instead of processing requests
from multiple clients to a single web server, a reverse proxy server processes requests from a
single client to multiple web servers. This technique is also known as load balancing.

A load balancing server receives HTTP requests from clients and sends them to a specific
server in a pool of common web servers for processing. Each web server in the pool contains
the same data and can process the same HTTP requests. The load balancing process helps
distribute the client load on multiple web servers in a high-traffic environment, helping pre-
vent overloading and slow performance.

The remainder of this chapter walks you through how to install and set up each of these
web servers in your Linux environment.

The Apache Web Server
With the overall popularity of the Apache web server, most Linux distributions have instal-
lation packages that make setting up a basic Apache web server easy. The difficult part
comes if you need to customize special features. This section walks you through both the
installation of a basic Apache web server setup and how to dig into the Apache configuration
files to help you customize your web environment.

F i gu r e 9 . 3     The Squid web proxy server

Internet

Web request

Cached
web pages

Network
client

Network
client

Network
client

Network
client

Web requestWeb requestWeb request

Access
control
list

Squid
server

462  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 462

Installing an Apache Server
As mentioned, most Linux server distributions include the Apache web server software as
easy-to-install software packages. For example, in Debian-based Linux distributions, the
Apache web server package is called apache2. You install the basic Apache server using a
single package:

$ sudo apt-get install apache2

This installs the latest version of the Apache 2.x web server supported by the Linux
distribution. Once you install the Apache server in Debian-based systems, the installation
package automatically configures the server to start at boot time and serve data files from
the /var/www/html folder on the server.

After the Apache server is running, you can open a browser and connect to your Linux
server. Figure 9.4 shows the default index.html file that is created for Ubuntu.

F i gu r e 9 . 4     The default Apache web page for Ubuntu

For Red Hat–based Linux distributions, the Apache package is called httpd. (This is
because the name of the Apache server program is httpd.) You can use the standard yum
package installer to install it:

yum install httpd

The Apache Web Server  463

c09.indd  09/14/2016  Page 463

While not specified in the filename, this is the Apache 2.x version of the server. Unlike
Debian-based Linux distributions, the Red Hat package doesn’t automatically start the
Apache web server, nor does it start it at boot time. To do that, you’ll need to use the
systemctl command:

systemctl start httpd
systemctl enable httpd

Often you’ll see the Apache web server referred to as httpd, which is the
name of the executable program. To avoid confusion, some Linux distribu-
tions rename the executable file to apache2.

The Red Hat–based distributions also serve data files from the /var/www/html folder by
default. Figure 9.5 shows the default index.html file that is created for CentOS.

F i gu r e 9 .5     The default Apache web page for CentOS

You can start, stop, restart, and check the status of the Apache program using the
apache2ctl utility (some Red Hat–based distributions, such as CentOS, use apachectl
even for the 2.x versions). Table 9.3 shows the commands that you can use with
apache2ctl.

464  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 464

Ta b le 9 . 3     The apache2ctl utility commands

Command Description

start Starts the Apache server

stop Stops the Apache server, terminating any active connections

restart Sends a SIGHUP signal to the Apache server to restart it, closing any
existing connections

fullstatus Displays a full status report from the Apache server

status Displays a short status report from the Apache server

graceful Restarts the Apache server, but existing connections are not terminated

graceful-stop Stops the Apache server, but existing connections are not terminated

configtest Parses the configuration files and reports any syntax errors

help Displays the list of commands

The status and fullstatus commands are a handy way to check on the Apache web
server. However, they display the Apache status as a web page, which requires a text-based
command-line browser. Most Linux distributions don’t install a command-line browser by
default. The Lynx command-line browser is the most popular, and it is usually available in
most Linux distribution repositories.

The core Apache software package for both Debian and Red Hat installs a
basic web server without many additional features. To customize the web
server to support advanced features such as server-side programming,
you’ll have to install additional software packages. Unfortunately, different
Linux distributions bundle different Apache features into different soft-
ware packages. Consult your specific Linux distribution documentation to
determine which packages you need to install to support the Apache
features that you want to use.

Configuring the Apache Server
A great feature of the Apache web server is that it uses simple text-based configuration files
to manage the behavior of the server. The configuration file controls every feature of the
server, giving you complete control over just how the Apache web server operates.

The Apache Web Server  465

c09.indd  09/14/2016  Page 465

Unfortunately, though, there isn’t a standard location or filename for the Apache con-
figuration file. The main locations and files that you’ll need to remember are listed here:

/etc/apache/apache.conf—Apache 1.3.x installation for Debian-based distributions

/etc/apache2/apache2.conf—Apache2 installation for Debian-based distributions

/etc/httpd/conf/httpd.conf—Apache 1.3.x and 2.x installation for most Red Hat–
based distributions

/etc/httpd/conf/httpd2.conf—Apache 2.x installation for some distributions

Another confusing issue that you’ll most likely run into is that not all of the
Apache configuration settings are necessarily stored in one configuration
file. Often, Linux distributions move configuration settings for separate
features into their own configuration files and use the INCLUDE directive in
the main configuration file to include them in the configuration. You will
need to consult the documentation for your specific Linux distribution on
how the Apache configuration files are arranged.

The following sections walk you through some of the different configuration settings
that you’ll run into in standard Apache configurations.

Basic Setup
When you look inside an Apache configuration file the first time, you’ll see many lines that
start with a pound sign (#). The pound sign denotes a comment line, allowing you to embed
comments within the configuration file.

You define actual configuration settings using a directive keyword and then optionally a
value for the setting, such as this:

DocumentRoot "/var/www/html"

This directive sets the default folder for the Apache server to the /var/www/html folder
on the Linux server. As you peruse the configuration file, you’ll see lots of directives setting
basic features for the server. Table 9.4 shows the main settings in which you’ll be interested.

Ta b le 9 . 4     Common Apache configuration directives

Directive Description

Listen The TCP port (and optional IP address) to listen for client requests

User The user account used to start the Apache server daemon

Group The group account used to start the Apache server daemon

ServerAdmin Email address of the server administrator

466  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 466

Directive Description

ServerName The domain name of the server.

ServerRoot The location of the base configuration files.

DocumentRoot The location of the default data folder.

DirectoryIndex The default file served when a client requests an index of a directory.

ErrorDocument The file to serve when a specific error type occurs.

ErrorLog The log file location to use for logging error messages.

LogFormat The format of each log file entry.

AccessFileName The file that lists restrictions on web page files in a folder.

Include Includes configuration settings defined in an external file.

StartServers The number of servers to start to handle concurrent requests.

MaxClients The maximum number of servers to handle concurrent requests.

MinSpareServers The minimum number of extra servers to have running.

MaxSpareServers The maximum number of extra servers to have running.

LoadModule Load and enable the specified feature module into the server.

By default, settings that you define in the main configuration area are called global settings.
They apply to the main Apache web server when it starts.

You can also define conditional settings, which apply only when specific conditions are
met, such as if an environment variable is defined.

You define conditional settings as a block of directives. The block uses the following
format:

<IfDefine variable>
 Directive
</IfDefine>

The <IfDefine> marker defines the start of the block, and the </IfDefine> marker
defines the end of the block. The Apache server processes only the directives listed in the
block if the variable is set.

Table 9 .4    Common Apache configuration directives  (continued)

The Apache Web Server  467

c09.indd  09/14/2016  Page 467

Likewise, you can use module settings that apply only when specific modules are loaded.
The <IfModule> condition specifies directives that are processed only when a specified
module is loaded using the LoadModule directive.

Finally, you can use directory settings, which apply only to specific directories on the
server. The <Directory> condition specifies the directives that apply only to the directory
path specified in the setting:

<Directory /var/www/html/mydata>
 Directive
</Directory>

The directives specified in this block apply only when clients attempt to access files
stored in that folder.

Apache Logs
The Apache web server creates two types of log files by default:

■■ Error logs

■■ Access logs

As you can probably guess, the error log keeps track of any errors that occur while the
Apache web server is running. The location of the error log is defined using the ErrorDocument
directive in the configuration file. Usually, the error log is located in the /var/log/apache2/
error.log file in Debian-based Linux distributions and the /var/log/httpd/error_log
file in Red Hat–based Linux distributions. (Note the underscore instead of the period in
the filename.)

You can customize the format for entries in the error log using the LogFormat directive
in the configuration file. By default, error log entries look like this:

[Sat Apr 16 14:58:47.516853 2016] [auth_digest:notice] [pid 4067] AH01757:
 generating secret for digest authentication …
[Sat Apr 16 14:58:47.517883 2016] [lbmethod_heartbeat:notice] [pid 4067]
 AH02282: No slotmem from mod_heartmonitor
[Sat Apr 16 14:58:47.599436 2016] [mpm_prefork:notice] [pid 4067] AH00163:
 Apache/2.4.6 (CentOS) configured—resuming normal operations
[Sat Apr 16 14:58:47.599640 2016] [core:notice] [pid 4067] AH00094: Command
 line: ‘/usr/sbin/httpd -D FOREGROUND’

Notice that the entries in the error log aren’t necessarily all errors. In this example, the
Apache web server is documenting notices that appear when it starts up.

The access log is normally located in the same folder as the error log, and it is called either
access.log (for Debian-based distributions) or access_log (for Red Hat–based distributions).
It documents all requests made by clients. By default, the access log entries look like this:

::1—- [23/Apr/2016:14:58:54 -0400] "GET / HTTP/1.1" 403 4897 "-"
"Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0"

468  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 468

::1—- [23/Apr/2016:14:58:54 -0400] "GET /noindex/css/bootstrap.min.css
HTTP/1.1" 200 19341 "http://localhost/" "Mozilla/5.0 (X11; Linux x86_64;
 rv:38.0) Gecko/20100101 Firefox/38.0"
::1—- [23/Apr/2016:14:58:54 -0400] "GET /noindex/css/open-sans.css
 HTTP/1.1" 200 5081 "http://localhost/" "Mozilla/5.0 (X11; Linux x86_64;
 rv:38.0) Gecko/20100101 Firefox/38.0"
::1—- [23/Apr/2016:14:58:54 -0400] "GET /images/apache_pb.gif HTTP/1.1"
 200 2326 "http://localhost/" "Mozilla/5.0 (X11; Linux x86_64; rv:38.0)
 Gecko/20100101 Firefox/38.0"
::1—- [23/Apr/2016:14:58:54 -0400] "GET /images/poweredby.png HTTP/1.1"
 200 3956 "http://localhost/" "Mozilla/5.0 (X11; Linux x86_64; rv:38.0)
 Gecko/20100101 Firefox/38.0"

The access log not only documents the file request, but it can also document the browser
type of the client, the OS of the client, and the IP address. (This example uses IPv6 address-
ing of ::1 for the localhost.) You can customize the output using the LogFormat directive
as well.

User Web Hosting
The default configuration for most Linux distribution Apache servers is to provide one
location for hosting files (called the DocumentRoot). The DocumentRoot directive defines
this location, and for both Debian and Red Hat–based distributions it is set by default to
the /var/www/html folder. Any files or folders that you want to make available to web clients
are normally placed under that folder structure.

The Apache web server also provides a feature that allows each individual user on the
Linux system to host their own files. To enable this feature, add the UserDir directive to the
global configuration settings. The UserDir directive specifies the name of the folder in each
user’s HOME folder where they can host files. The most common setting is

UserDir public_html

To access files in the user’s public_html folder, you must specify the username in the
URL. For example, to access the file /home/rich/public_html/test.html, you’d use the
URL http://localhost/~rich/test.html.

To allow access to files in your public_html folder, you must grant read
and execute privileges to the user or group account that runs the Apache
web server. Not only will that user or group need read and execute privi-
leges to the public_html folder, but it will also require these privileges for
the user’s HOME folder as well. This can make things somewhat complicated
for protecting other files in the user’s HOME folder.

http://localhost/
http://localhost/
http://localhost/
http://localhost/
http://localhost/~rich/test.html

The Apache Web Server  469

c09.indd  09/14/2016  Page 469

Virtual Web Hosting
The basic configuration for an Apache web server assumes that the host is serving files for
a single server, namely, the server name or IP address on which the Apache software is
running. However, Apache also allows you to host web pages for multiple domain names
or IP addresses on a single physical server. This is ideal for businesses that support multiple
customers, such as Internet service providers.

The ability to host multiple web environments on a single physical server is called virtual
web hosting. There are two ways to implement virtual web hosting in Apache:

■■ Name-based virtual hosting

■■ IP-based virtual hosting

With name-based virtual hosting, the physical server has multiple hostnames that point
to its IP address in the DNS system (see Chapter 8, “Directing DNS”). You then must con-
figure the Apache web server to use separate directories based on the hostname that the
client uses in the URL request to connect. You can do that by using the NameVirtualHost
directive and separate <VirtualHost> blocks, one for each virtual host:

NameVirtualHost 192.168.1.77

<VirtualHost 192.168.1.77>
 ServerName www.myhost1.com
 DocumentRoot /var/www/html/host1
</VirtualHost>

<VirtualHost 192.168.1.77>
 ServerName www.myhost2.com
 DocumentRoot /var/www/html/host2
</VirtualHost>

The NameVirtualHost directive defines the IP address on which the server listens.
Then you must create a separate <VirtualHost> block to define the IP address and use
the ServerName directive to define the hostname that the client uses in the request. Each
separate hostname points to a different DocumentRoot area by specifying separate
DocumentRoot directives.

With IP-based virtual hosting, the server must listen for incoming requests on multiple
IP addresses. Each IP address is assigned a different hostname in the DNS system. Again,
with IP-based virtual hosting, you must define multiple IP addresses on the server either by
having separate physical network cards in the server or by defining multiple IP addresses
for the same network interface using the ifconfig network command.

After you configure your Linux server to support multiple IP addresses, you must con-
figure the Apache web server to listen to each IP address using multiple Listen directives.

http://www.myhost1.com
http://www.myhost2.com

470  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 470

After that, just define separate <VirtualHost> blocks to define the hostname and
DocumentRoot area for each IP address:

Listen 192.168.1.77:80
Listen 192.168.1.78:80
<VirtualHost www.myhost1.com>
 Servername www.myhost1.com
 DocumentRoot /var/www/html/myhost1
</VirtualHost>
<VirtualHost www.myhost2.com>
 Servername www.myhost2.com
 DocumentRoot /var/www/html/myhost2
</VirtualHost>

One advantage to IP-based virtual hosting is that you can have two sepa-
rate Apache programs running at the same time, each one listening on a
different IP address. Each Apache program can have a separate configura-
tion, making it easier to separate out settings for each server.

Access Restriction
While the original intention of web servers was to provide easy access to public data, there
are times when it would be handy to provide restricted access to data, such as a corporate
intranet application. The Apache web server provides a few different methods for imple-
menting authentication, forcing clients to log in before granting access to documents based
on the provided authentication.

Apache provides authentication features using separate loadable modules. The LPIC-2
exam specifies the mod_auth and mod_auth_basic modules, which provided authentication
using a text-based file that lists user accounts and encrypted passwords. However, that
module has been replaced as of Apache 2.1 with other more advanced modules. The more
common authentication modules in newer versions of Apache are these:

mod_authn_file—Uses a text-based file to list user accounts and encrypted passwords
for access (the direct replacement for mod_auth)

mod_authn_anon—Uses a list of usernames but no passwords to restrict access

mod_authn_db—Uses a Berkeley database format file to list user accounts and pass-
words to restrict access

mod_authn_dbm—Uses a Unix dbm-formatted database file to list user accounts and
passwords to restrict access

mod_authnz_ldap—Uses an LDAP network database for user authentication

mod_authnz_mysql—Uses a MySQL database for user authentication

http://www.myhost1.com
http://www.myhost1.com
http://www.myhost2.com
http://www.myhost2.com

The Apache Web Server  471

c09.indd  09/14/2016  Page 471

mod_access—Uses a list of IP address, hostnames, or domains to restrict access

mod_access_compat—Uses the client’s hostname or IP address to restrict access

mod_authz_host—Uses the client’s hostname or IP address to restrict access

The mod_auth method (now called mod_authn_file) uses a text-based user file that’s cre-
ated using the htpasswd utility in Apache. To add a new user account to the authentication
user file, specify the file using the –c option; then specify the user account to add as follows:

htpasswd –c /var/www/html/passwords rich
New password:
Re-type new password:
Adding password for user rich
#

Once you create the user file, you must reference it in the Apache configuration file to
use for authentication. There are two approaches to doing that.

One method is to add the authentication configuration settings in the <Directory> section
for the block that you need to protect in the main Apache configuration file:

<Directory /var/www/html>
 AuthName "Restricted Area"
 AuthType Basic
 AuthUserFile /var/www/html/passwords
 Require valid-user
 DocumentRoot /var/www/html
</Directory>

You need a few different directives to tell Apache about the authentication protection.
The AuthName directive provides the title of the login dialog box that appears when it asks
for the userid and password. The AuthUserFile directive points to the password file created
using the htpasswd utility. When a user attempts to access a file in that folder, the browser
will produce a login dialog box, as shown in Figure 9.6.

F i gu r e 9 .6     Basic web page authentication

The other method to provide basic authentication is to use a special filename called
.htaccess in the folder that you need to protect. The .htaccess file contains the same
authentication directives that you used in the main configuration file. To tell Apache to

472  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 472

use the .htaccess file, the <Directory> block must contain the AllowOverride directive.
Using the .htaccess file decentralizes the authentication configurations instead of placing
them all in the main configuration file.

There’s also an AuthGroupFile directive that allows you to bundle user
accounts into groups. You can then grant the entire group access to spe-
cific areas on the web server.

The mod_access authentication method is another popular way to restrict access to web
pages. Instead of using a userid/password challenge, it allows you to restrict pages based
on the IP address of the clients. It uses simple Deny and Allow directives to list individual
IP addresses or network addresses to deny or allow access. Here’s an example of using that
method:

<Directory /var/www/html>
 Order Deny,Allow
 Deny from All
 Allow from 192.168.1.0/255.255.255.0
 DocumentRoot /var/www/html
</Directory>

The Order directive determines which rule set is checked first. In this example, you
first set it to deny (block) all clients but then allow only clients that are on the 192.168.1.0
subnet.

Hosting Dynamic Web Applications
In the old days, all content provided in web pages was static. To update the informa-
tion on your website, you had to open the appropriate HTML file manually, enter the
changes to the content, and then save the new version. In these days of constantly chang-
ing content, that just doesn’t work. It would be impossible for a large online store to
have programmers making manual changes to web pages for each new product that
comes in.

Instead, modern websites use dynamic web programming. Dynamic web programming
uses embedded program code inside an HTML file to generate content dynamically. Often,
the content is based on external data, such as items stored in a database. With dynamic
web programming, you just need to write the web application once and then modify the
data stored in the database as needed to update the web page content.

Apache supports dynamic web pages by supporting a host of different programming
languages. There are, however, two different ways that Apache does that. The following
sections describe each of these methods and show how to implement them in your Apache
web server.

The Apache Web Server  473

c09.indd  09/14/2016  Page 473

The Common Gateway Interface
The simple way for the Apache web server to process program code is to pass it off to
another program to process. The Apache server acts as a gateway to the main program
interpreter. This feature in Apache is thus called the Common Gateway Interface (CGI).

The CGI feature uses the filename extension to detect when a web page file has embed-
ded code, and then it passes the file off to an external program language interpreter based
on the filename extension. The interpreter then processes the code, and it passes any output
from the interpreter back to the Apache web server to send to the client as content. The
output must be standard HTML code for the client to process it as a web page.

The programming languages that you can use with CGI are limited only by the languages
that are installed on your Linux system. Because of the text nature of HTML pages, CGI
applications commonly use scripting languages, such as Perl, Python, and Bash shell scripts.
However, there are CGI interfaces for more advanced languages, such as C and C++.

To configure Apache to pass code to an external interpreter, you must first have the CGI
feature installed in your Apache setup. For Debian-based Linux distributions, running Perl
scripts means installing the libapache2-mod-perl2 module. For Red Hat–based distribu-
tions, it’s the perl-CGI module.

After you install the appropriate module, you must make some changes to the Apache
configuration file. You’ll need to add the ScriptAlias directive to point to the folder that
can contain scripts and the AddHandler directive to tell Apache which filenames to process
with CGI:

ScriptAlias /cgi-bin/ /var/www/cgi-bin
AddHandler cgi-script .cgi .pl

These lines allow you to place Perl scripts in the /var/www/cgi-bin folder. The scripts
must end with the .pl file extension for the Apache server to process them properly. Also,
the scripts must start with a line that invokes the required language interpreter:

#!/usr/bin/perl

This tells the bash shell to invoke the Perl interpreter to process the script.

Programming Modules
A faster way of handling embedded program scripts in web pages is to use installable
modules. Apache includes modules for most popular web programming languages, such
as these:

■■ mod_perl

■■ mod_php

■■ mod_python

■■ mod_ruby

The tricky part of using Apache programming modules is finding them in the Linux
distribution. In Red Hat–based distributions, the PHP module package is just called php,

474  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 474

while the Perl module package is called mod_perl. For Debian, you’ll need the php5 and
libapache2-mod-php5 packages for PHP and the libapache2-mod-perl2 package for Perl.

The nice thing about using the module packages is that they usually do all of the con-
figuration work for you. For example, after installing the PHP module, you should see
some new lines in your Apache configuration file:

LoadModule php5_module modules.libphp5.so
AddHandler php5-script .php
AddType application/x-httpd-php .php
DirectoryIndex index.html index.php

The AddHandler directive tells the Apache server that the PHP module should redirect
files ending with the .php file extension to the PHP server process.

Adding program processing to the Apache web server does open your
server to additional attack entry points. Be careful when adding these fea-
tures. For CGI, make sure that you restrict scripts to a specific folder and
monitor the scripts placed in that folder for unauthorized activity. For pro-
gram modules such as PHP and Perl, you have to be more careful, because
any document served on the server can contain embedded program code.

Creating a Secure Web Server
Protecting data transmitted across the Internet has become a high priority for most corpora-
tions. Using HTTPS for any type of transaction that involves personal information is a must.

The Apache web server supports HTTPS sessions, but it requires quite a bit of work.
You must have a private/public key pair to use for the encryption plus have a signed
certificate to pass your public key to clients. Creating an HTTPS server with Apache
involves six steps:

	 1.	 Install the Apache SSL module (or install an Apache package that has it built in).

	 2.	 Create a public/private key.

	 3.	 Create a Certificate Signing Request (CSR).

	 4.	 Have the CSR signed by a trusted CA to create a certificate.

	 5.	 Install the certificate and key files in your Apache setup.

	 6.	 Configure Apache to use the certificate.

The following sections walk you through each of these steps in getting your Apache web
server to use HTTPS.

Install SSL
To use SSL encryption on your Linux system, you’ll first need to ensure that the mod_ssl
Apache module is installed. Some Linux distributions provide a completely separate Apache

The Apache Web Server  475

c09.indd  09/14/2016  Page 475

installation package that has SSL built in, but usually you can install the standard Apache
package and the mod_ssl package.

Besides SSL support for Apache, you’ll need the OpenSSL software package installed.
The OpenSSL package is a popular open source software package that provides SSL
encryption capabilities for many network applications.

For Debian-based distributions, the mod_ssl module is normally installed as part of
the Apache2 basic installation. For Red Hat–based distributions, you’ll need to install the
mod_ssl package separately using yum.

The openssl package may or may not already be installed on your Linux distribution. If
it is not, you can install it using apt-get or yum.

The SSL configuration file and certificate files are normally installed in
the /etc/ssl folder. However, some Linux distributions use the /etc/pki
folder.

Create an Encryption Key
Once you have OpenSSL installed, you can create the encryption key used to encrypt the
SSL traffic. The openssl command to do that looks like this:

$ openssl genrsa -des3 -out server.key 2048
Generating RSA private key, 2048 bit long modulus
...
+++..........+++
e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying—Enter pass phrase for server.key:
$

The command creates a 2048-bit RSA key using 3DES encryption and stores it in the
server.key file in the current folder.

The passphrase that you set for the key is very important. You will need to
enter it every time the key is used. If you forget the passphrase, you won’t
be able to use the private key anymore. A drawback to this is that you will
need to enter the passphrase each time the Apache server starts at boot
up. To avoid that, you can remove the passphrase after you create the key
using this command:

$ openssl rsa –in server.key –out newserver.key

Create a Certificate Signing Request
The next step is to create a Certificate Signing Request (CSR) with the private key that
you just created. The CSR contains your key so that the CA can authenticate it and create

476  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 476

a certificate that contains your public key. Again, thanks to the openssl utility, this is a
simple process:

$ openssl req -new -key server.key -out newreq.pem
Enter pass phrase for server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.
——-
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Illinois
Locality Name (eg, city) []:Chicago
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Rich Blum
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:Rich Blum
Email Address []:

Please enter the following ‘extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
$

You must enter data identifying you (or your company) in the CSR. The Common Name
is used to identify either you or your server. The name of the output file is important. In the
next step, the CA signing tool will look for the newreq.pem file.

Sign the CSR
A CA validates that the key enclosed in the CSR is trustworthy. Because of that, commercial
CA companies usually charge a fee to perform a simple check on you or your company, vali-
dating that you are who you say you are. The benefit of that, though, is that they produce
a certificate file that your customers know is valid and thus are happy to use your website.
Most browsers incorporate certificates for the big-name CA companies so that they trust
certificates signed by them. If the CA you use isn’t trusted, the browser will produce an ugly
warning message to your website visitors, possibly scaring them away from your website.

However, for testing purposes, you don’t necessarily need to use a commercial CA to
sign your CSR. Instead, you can sign your own CSR, which in essence means that you’re
validating yourself. You’ll just need to validate your certificate in your browser when you
connect to your website. This is called a self-signed certificate.

The Apache Web Server  477

c09.indd  09/14/2016  Page 477

To create a self-signed certificate, use the openssl utility. The command line to create a
CA is somewhat complicated, but fortunately the OpenSSL package includes a Perl script
called CA.pl that walks you through the process.

First, you need to establish yourself as a CA:

$ /usr/lib/ssl/misc/CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate …
Generating a 2048 bit RSA private key
..
..+++
..
...+++
writing new private key to ‘./demoCA/private/cakey.pem’
Enter PEM pass phrase:
Verifying—Enter PEM pass phrase:
——-
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.
——-
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Illinois
Locality Name (eg, city) []:Chicago
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Rich Blum
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:Rich Blum
Email Address []:

Please enter the following ‘extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok

478  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 478

Certificate Details:
 Serial Number: 10204964800000470641 (0x8d9f516ad964ae71)
 Validity
 Not Before: Apr 25 19:20:59 2016 GMT
 Not After: Apr 25 19:20:59 2019 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 organizationName = Rich Blum
 commonName = Rich Blum
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 8C:4E:C9:7A:66:2A:11:49:FF:4F:35:08:55:65:19:05:F5:44:91:4E
 X509v3 Authority Key Identifier:

keyid:8C:4E:C9:7A:66:2A:11:49:FF:4F:35:08:55:65:19:05:F5:44:91:4E

 X509v3 Basic Constraints:
 CA:TRUE
Certificate is to be certified until Apr 25 19:20:59 2019 GMT (1095 days)

Write out database with 1 new entries
Data Base Updated
$

Congratulations, now you’re a CA! The next step is to use your new CA abilities to sign
the CSR that you created earlier. Make sure that you’re in the same folder as the newreq.pem
file that you created earlier, and use this command:

$ /usr/lib/ssl/misc/CA.pl -signreq
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 10204964800000470642 (0x8d9f516ad964ae72)
 Validity
 Not Before: Apr 25 19:37:23 2016 GMT
 Not After: Apr 25 19:37:23 2017 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois

The Apache Web Server  479

c09.indd  09/14/2016  Page 479

 localityName = Chicago
 organizationName = Rich Blum
 commonName = Rich Blum
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 5C:3A:50:3B:DF:14:18:23:DC:EE:49:B9:43:DF:D2:4B:43:72:E2:9F
 X509v3 Authority Key Identifier:

keyid:8C:4E:C9:7A:66:2A:11:49:FF:4F:35:08:55:65:19:05:F5:44:91:4E

Certificate is to be certified until Apr 25 19:37:23 2017 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem
$

The signed certificate is now stored in the newcert.pem file in your folder. It contains the
public key along with the self-signed CA certificate validating it.

Now you have the key file (server.key) and the signed certificate file (newcert.pem) that
you need to implement SSL on your Apache web server.

Install the Key and Certificate
To use the key and certificate files in Apache, you’ll want to place them in a secure location
on your server that’s readable by the Apache user account. It’s usually a good idea to create a
separate folder in the Apache configuration folder area to store the key and certificate files:

$ sudo mkdir /etc/apache2/certs
$ sudo cp server.key /etc/apache/certs
$ sudo cp newcert.pem /etc/apache/certs

Now that the key and certificate files are in place, the last step is to configure the Apache
web server to use them.

Configure Apache to Use SSL
You’re almost there—just a few more things to finish up. You’ll need to point the VirtualHost
block to the new key and certificate as well as enable SSL on the server itself.

480  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 480

First, look in the Apache configuration files for the Listen directive, and make sure that
you have a separate line to listen on TCP port 443 for encrypted SSL connections:

Listen 443

Next, look for the <VirtualHost> block that defines the area that you want to protect
with encrypted communication. In that block, add these new directives:

SSLEngine On
SSLCertificateFile /etc/apache2/certs/newcert.pem
SSLCertificateKeyFile /etc/apache2/certs/server.key

Save the new configuration files, and then stop and restart the Apache web server.

Many Linux distributions automatically make these entries in Apache con-
figuration files when you install the mod_ssl module. For Ubuntu, these
entries are in the default-ssl.conf configuration file.

Now when you attempt to connect to the website using an https:// URL, you should
get a warning from your browser about the self-signed certificate, as shown in Figure 9.7.

F i gu r e 9 .7     The self-signed certificate warning

https://URL

The Apache Web Server  481

c09.indd  09/14/2016  Page 481

Select the option to accept the self-signed certificate. You’ll then be passed to the web
page. You can use the browser Certificate Manager to view your self-signed certificate, as
shown in Figure 9.8.

F i gu r e 9 . 8     Viewing the self-signed certificate in Firefox

This is the basic setup to implement SSL in your Apache environment. There are, however,
some additional SSL directives used in Apache that can help you customize the setup and that
you may see on the LPIC-2 exam:

■■ SSLCACertificateFile—Points to a file that contains the CA certificate for validating
client certificates

■■ SSLCACertificatePath—Points to a folder that contains the CA certificate for validat-
ing client certificates

■■ SSLCertificateChainFile—Points to a file that contains multiple concatenated CA
certificates for validating client certificates

■■ SSLProtocol—Defines which version of SSL (or TLS) the server supports

■■ SSLCipherSuite—Defines one or more encryption protocols the server supports

■■ ServerTokens—Controls whether the server sends information about the OS in the
server response sent to clients

■■ ServerSignature—Controls whether the server sends a short footer message on server-
generated documents

■■ TraceEnable—Defines whether the server honors the HTTP TRACE command to debug
sessions

482  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 482

The LPIC-2 exam topics note that you should be aware of an oddity when
using SSL with name-based virtual hosting. When you create a CSR for
a real CA, the Common Name entry should be the fully qualified domain
name (FQDN) for your server. If you’re using name-based virtual hosting,
though, a single server can support multiple virtual hostnames, so the
same certificate can’t be used for all of the virtual hosts. You can use some
tricks to get around this problem. One such solution is an extension to the
SSL protocol called Server Name Indication (SNI). SNI allows the network
client to include the requested hostname in the start of the SSL handshake.
This allows the Apache server to determine the correct certificate to use
for the connection. If you need to implement SSL in a virtual hosting envi-
ronment, consult the Apache documentation for detailed instructions.

Using a Proxy Server
The Squid web proxy server can be a useful tool in controlling bandwidth utilization for
outbound Internet connections, as well as serving as a tool for restricting access to unau-
thorized web pages (such as preventing employees from watching YouTube all day long).
This section walks through how to install and configure Squid on your Linux server.

Installing Squid
The Squid package has become popular enough that most Linux distributions now include
it in their standard software repositories. You can load Squid in both Debian-based and
Red Hat–based Linux distributions by installing the Squid package. The current version of
Squid is 3.x, but the Squid package will install the latest version that’s been approved by
your distribution maintainers.

For Debian-based Linux distributions, the squid package automatically starts the Squid
server. You can use the ps command to check to see if it’s running:

$ ps ax | grep squid
 3734 ? Ss 0:00 /usr/sbin/squid3 -N -YC -f /etc/squid3/squid.conf
 3743 ? Ss 0:00 (logfile-daemon) /var/log/squid3/access.log
 3789 pts/0 S+ 0:00 grep—color=auto squid
$

For Red Hat–based Linux distributions, you’ll need to start the Squid server manually as
well as set it to start at boot time:

systemctl start squid
ps ax | grep squid
 4209 ? Ss 0:00 /usr/sbin/squid -f /etc/squid/squid.conf
 4214 ? S 0:00 (squid-1) -f /etc/squid/squid.conf

Using a Proxy Server  483

c09.indd  09/14/2016  Page 483

 4218 ? S 0:00 (logfile-daemon) /var/log/squid/access.log
 4328 pts/0 S+ 0:00 grep—color=auto squid
systemctl enable squid
Created symlink from /etc/systemd/system/multi-user.target.wants/squid.service
to /usr/lib/systemd/system/squid.service.
#

Unfortunately, unlike Apache, when you install Squid, it doesn’t really do much of any-
thing using the default configuration. It will listen to TCP port 3128 for incoming proxy
requests, but it will just forward them out to the remote server without caching any of the
returned content. You must change the default settings in the Squid configuration file to be
able to use it effectively on your network.

Configuring Squid
The Squid configuration files are stored in the /etc/squid3 folder for Debian-based distribu-
tions and the /etc/squid folder for Red Hat–based distributions. The main configuration
is the squid.conf file; however, similar to Apache, Squid supports the include directive,
which allows you to store configuration settings in other files too. It’s not uncommon to see
several different configuration files in the Squid configuration folder.

The configuration file uses several different types of directives to control the behavior of
the Squid server. The Squid server is very versatile and highly customizable, but there are a
few basic configuration settings about which you’ll need to be aware:

acl—Defines an access control list (ACL) to group similar entities for managing access

auth_param—Specifies a program to use to authenticate users

cache_dir—Specifies a folder on the hard drive to use to cache web requests, along with
the amount of space to allocate for caching and the number of subdirectories to allow

http_access—Specifies a rule for allowing or denying access for an ACL group

http_port—Specifies the TCP port to which the Squid server listens for incoming
connections

redirect_program—Specifies an external program to which you can redirect all web
requests

The following sections show you how to use the directives to configure Squid to perform
the web proxy features.

Web Cache
The basic use of Squid is as a web proxy server to cache outbound web requests for multiple
clients on a network. To set up your Squid server to do that, you’ll need to have two configu-
ration directives:

http_port 3128
cache_dir ufs /var/spool/squid3 100 16 256

484  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 484

The http_port directive defines the TCP port to which clients must point their browsers.
The cache_dir directive defines where and how Squid will store the cached web files. The
first parameter defines the filesystem type (the ufs type that can be used for standard Linux
filesystems). The second parameter defines where the cached files are stored. This can be
either a folder name (as shown here in this Debian-based example), or it can be a partition
name.

After that, the first number defines the total disk space (in MB) that Squid can use for
caching. The second number defines the number of top-level folders that Squid can create
in that folder, and the third number defines the maximum number of second-level folders
that it can create. To speed up performance, Squid tries to place as few cache files in each
folder as possible; thus, the more folders you allow, the better the performance you should
experience.

Web Access Control
The other feature for which Squid is often used is controlling access to remote websites.
It does this by allowing you to define an access control list and then apply the ACL to a
blocking rule.

You define an ACL by using the acl directive:

acl ourhosts src 192.168.2.0/255.255.255.0

The acl directive first defines a name for the ACL. It then defines the type of ACL.
There are several different ACL types to use:

src—A list of source IP addresses

dst—A list of destination IP addresses

port—A list of TCP ports

srcdomain—A list of source domain names

dstdomain—A list of destination domain names

time—A list of days or time-of-day

proto—A list of protocols

browser—A list of browser types

You can restrict or allow connections based on a source address or a destination
address. This example defines the ACL for source addresses on our local subnet.

After you define the ACL, you use the http_access directive to define the rule that
applies to the ACL:

http_access allow ourhosts
http_access deny all

These rules allow access to any client whose IP address matches the ourhosts ACL, but
it denies access to anyone else.

Using a Proxy Server  485

c09.indd  09/14/2016  Page 485

The combination of ACLs and rules is a powerful tool in Squid. While it may take some
time getting used to, once you have it mastered, you can fine-tune access for just about any-
thing in your system, for example:

acl socialmedia dstdomain www.facebook.com www.twitter.com
acl lunch MTWHF 12:00–13:00
http_access allow socialmedia lunch
http_access deny socialmedia

The first ACL directive defines destination domains, while the second ACL directive
defines a period of time (Monday, Tuesday, Wednesday, Thursday, and Friday, from 12
noon to 1 p.m.). The http_access directive applies the ACL to allow the rule, so access to
these websites is allowed during that time frame. Attempting to access those hosts at any
other time is denied.

One of the more confusing parts of the Squid configuration is the default
action taken by the server. The server takes the opposite action of the last
http_access rule in the configuration as the default action. Thus, if the last
rule defined is an allow, the default action is to block (deny) access. Like-
wise, if the last rule defined is a deny, the default action is to allow access.
Be careful when adding new rules to your configuration files.

Client Authentication
The Squid server also allows you to set up an authentication method to force clients to
authenticate and then apply ACL rules to individual clients based on their authentication.
The auth_param directive defines the authentication method the Squid server should use
to authenticate the clients.

The auth_param directive is somewhat confusing because you use the same directive to
define multiple settings for the authentication method. For example, you may see a group
of entries like this:

auth_param basic /usr/lib/squid/pam_auth
auth_param basic children 5 startup=5 idle=1
auth_param basic realm Squid proxy-caching web server
auth_param basic credentialsttl 2 hours

This tells Squid to use the system PAM authentication method to authenticate clients
along with a few parameters to define how to handle authentications.

After defining the authentication type, you can apply authentication to the rules you want:

acl ourhosts proxy_auth REQUIRED

This applies authentication to the previously defined ourhosts ACL. Anyone on the local
network must authenticate to the proxy server before it will pass web requests.

http://www.facebook.com
http://www.twitter.com

486  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 486

Squid supports many of the standard types of network authentication, and the setup
does get somewhat complicated. If you need to implement authentication on your Squid
server, consult the complete Squid documentation files.

Configuring Clients
After you have the Squid proxy server up and running on your network, you’ll need to
configure each client workstation to use it. That’s normally handled in the setup for each
browser. The browser should have a section for defining a web proxy server. Figure 9.9
shows where this is located in the Firefox version 38 browser.

F i gu r e 9 . 9     The web proxy settings in Firefox

After making the entries, close the window to save them. Now your browsing is con-
trolled by the ACL entries in the Squid configuration file. If you attempt to access a website
that is denied by an ACL, you’ll get a 403 error message, as shown in Figure 9.10.

Squid even allows you to customize the error page that’s returned when a website is
blocked, giving you complete control over what the clients see and experience.

To force your network clients to use the web proxy, you must block direct
access to all websites from your network. That usually requires firewall or
router settings to be made on your network.

The Nginx Server  487

c09.indd  09/14/2016  Page 487

The Nginx Server
While the Apache web server is by far the most popular web server running on the Internet,
it’s starting to get some competition from a new player. The nginx web server has made
some great strides in popularity, because it’s used for some very high profile commercial
websites.

One of the benefits of nginx is that it doesn’t use separate program threads to handle
each client as Apache does. Instead, it uses an asynchronous architecture that allows it to
spawn client threads within the main program as needed. This helps reduce the memory
footprint required for each client that connects to the web server, and thus the same server
can handle more clients.

Another benefit of nginx is its ability to work as a reverse proxy server. This allows you
to place a main nginx server at the front end of your network and place your application
servers behind a firewall, protected from the Internet. Your website visitors connect to the
nginx server on the frontend, and it forwards the requests to the backend servers.

This section walks you through the basics of setting up an nginx server and how to use
it as a basic reverse proxy server.

Installing Nginx
Because it’s relatively new, many Linux distributions don’t include the nginx software in
their main software repositories. Fortunately, the Debian-based Linux distributions do,
so installing it is easy:

$ sudo apt-get install nginx

This installs nginx and automatically starts it on your server.

F i gu r e 9 .10     The response from Squid for a denied website

488  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 488

Because nginx works as a normal web server, it will start on TCP port 80,
the default HTTP network port. If you already have the Apache web server
installed on your system, you’ll need to stop it while testing nginx and then
stop nginx if you want to restart the Apache web server. Alternatively, you
can configure them to listen on different TCP ports so that they can both
run simultaneously.

For Red Hat–based Linux distributions, the nginx software package is in the Extra
Packages for Enterprise Linux (EPEL) repository. To access that repository, you first must
configure it in your yum settings. Fortunately, there’s a software package that does that
for you:

$ sudo yum install epel-release
$ sudo yum install nginx

The Red Hat installation doesn’t start nginx automatically, so you’ll need to use the
systemctl command to do that. (Again, remember to make sure that the Apache web
server isn’t already running on the default HTTP port.)

$ sudo systemctl start nginx
$ sudo systemctl enable nginx

When you’ve successfully installed nginx, you can test out the default web settings by
opening your browser and going to the server address, as shown in Figure 9.11.

F i gu r e 9 .11     The nginx default web page

Configuring Nginx
As you would expect, the configuration files for nginx are stored in the /etc/nginx folder.
The nginx.conf file is the main configuration file, but as with the Apache web server, nginx
uses the include directive to allow configuration settings to be defined in external files.

The Nginx Server  489

c09.indd  09/14/2016  Page 489

For Debian-based distributions, the main website directives are defined in the /etc/nginx/
sites-enabled/default file.

The nginx configuration has many of the same features as the Apache web server, so
looking at the basic configuration, you’ll probably be able to pick out most of the settings:

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /usr/share/nginx/html;
 index index.html index.htm;

 # Make site accessible from http://localhost/
 server_name localhost;

 location / {
 try_files $uri $uri/ =404;
 }
}

The server section defines the basic settings for the server. The listen directives define
the TCP ports and network addresses to listen for incoming connections. The root directive
defines the DocumentRoot folder for the server. The index directive lists the default files
for which the server should look when a client requests a directory in the URL.

The location directive defines settings unique for specific locations on the server. The
entry shown in this example defines the error message that should be returned when a file
is not found in the root directory.

The beauty of nginx is in the location section. In there, you can define proxy addresses
for multiple backend web servers on which to implement the reverse proxy feature. Thanks
to this feature, the nginx web server is gaining in popularity and may very soon become the
de facto web server for Linux.

E x e rc i s e 9 .1

Testing a Web Server

This exercise demonstrates how to test a web server using the Telnet command-line
command. This allows you to submit HTTP requests to the server and see the HTTP
response codes that it returns. To do that, follow these steps:

1.	 Log in as root, or acquire root privileges by using su or use sudo with each of the
commands in this activity.

2.	 Ensure that you have the Apache web server installed. Open a command prompt;
then type sudo apt-get install apache2 to install the Apache web server package

http://localhost/

490  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 490

on your Debian-based system or type sudo yum install httpd to install Apache on
your Red Hat–based system. You won’t see any objects added to the menu when this
program is installed.

3.	 For Red Hat–based systems, start the Apache web server by typing sudo systemctl
start httpd.

4.	 Test the Apache web server by typing telnet localhost 80 at a command line. (You
may have to also install the Telnet package on your system.) If your system has the
Apache web server running, you should be greeted by the Telnet banner, but nothing
from the Apache web server, because it’s waiting for your request.

5.	 Request the default web page from the server by typing GET / and press the Enter
key to submit the request.

6.	 The Apache web server will return an HTTP status code if there is an error, or it will
return the HTML code contained in the index.html file from the /var/www/html folder.

7.	 Now test attempting to retrieve an invalid web page. Connect to the Apache web
server by typing telnet localhost 80 at a command line. At the prompt, type
GET /badfile.html and then press the Enter key. You should receive a 404 status
code, indicating that the requested file was not found. You may also see some HTML
code for a generic error message web page that the browser would display informing
you that it could not find the file on the system.

8.	 Exit from the command prompt to return to your desktop.

Summary
Web servers are the heart of the Internet, and Linux is the main server platform used for
supporting them. Many different web server software packages are available for Linux, but
the LPIC-2 exam focuses on just three of them.

The Apache web server is the oldest and most popular web server package. It is highly
customizable, and it has defined many of the features expected from web servers. Most
Linux distributions include the Apache2 server in their software repositories, so installing a
basic Apache web server is easy. The Apache server supports additional features using mod-
ules, which you can load when the server is started. You have to find the separate modules
in the packages for your specific Linux distribution.

Adding features to the Apache web server is as easy as changing configuration settings. You
use the UserDir directive to allow users to create their own websites on the server, separate
from each other. You use the VirtualHost directives to host web pages for multiple domains
on the same physical server. You can also implement client authentication on your website,
requiring clients to log in to access content. The Apache server also provides for secure trans-
actions by using HTTPS and encrypting network traffic between the client and the server.

E x e r c i s e 9 .1   (c ont inue d)

Exam Essentials  491

c09.indd  09/14/2016  Page 491

The Squid web server is best known as a web proxy server. A web proxy server inter-
cepts web page requests from multiple clients and forwards them to the remote servers. It
can then cache the responses so that future requests for the same page can be returned from
the cached data instead of resending new requests. Squid also allows you to restrict what
websites clients can access. You just create ACL lists and apply them to access rules.

The nginx web server is relatively new to the web server game, but it is a powerful player
already. It can support larger client bases on the same physical hardware than Apache can,
making it ideal for high-traffic environments. It also has made a name for itself in the reverse
web proxy world. A reverse web proxy sits in front of multiple backend application servers
and provides load balancing for clients.

Exam Essentials
Describe the Apache 2.x configuration environment.    Unfortunately, there is wide discrep-
ancy between Linux distributions on installing the Apache software. Debian-based distri-
butions use the /etc/apache2 folder to store configuration files, while Red Hat–based
distributions use the /etc/httpd/conf folder. The same is true for the main configuration
filename. Debian-based distributions use apache2.conf, while Red Hat–based distributions
use httpd.conf. Inside the main configuration file, Apache allows you to use the include
directive to reference external configuration files. Most Linux distributions utilize this to
provide configuration settings for additional features in separate files.

Describe the Apache 2.x log files.    The Apache server generates two types of log files: an
access log that tracks requests submitted to the server and an error log that tracks server
errors. These files are normally called access.log (or access_log in Red Hat–based
distributions) and error.log (or error_log in Red Hat–based distributions). The log files
and their location can be changed in the Apache configuration file, but they are normally
located within the /var/log folder structure.

Explain how individual users can host their own web pages.    The Apache server uses the
UserDir directive to provide a location for individual system users to host their own web
pages. The UserDir directive specifies the name of a folder that each user can create in their
own HOME folder. The Apache web server will provide access to that folder to clients.

Explain virtual hosting and how to use either name-based or IP-based virtual hosting.    The
virtual hosting feature allows a single physical server to support websites for multiple domains
or IP addresses. Name-based virtual hosting uses the NameVirtualHost directive to redirect
the client request based on the hostname in the URL to a separate <VirtualHost> block
in the configuration file. You can define separate DocumentRoot locations for each virtual
host. IP-based virtual hosting uses separate IP addresses, either with multiple network cards
or by using IP aliases on the same network card. Each <VirtualHost> block defines the
DocumentRoot area used for each separate IP address.

Describe how to implement access restriction on a website.    The Apache web server uses
the mod_auth module (or its more modern replacements) to implement authentication meth-
ods on the web server. You can use the mod_auth_basic module to utilize a text file that

492  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 492

contains user accounts and encrypted passwords. Use the htpasswd Apache utility to create
entries in this file for each user who requires access. The AuthUserFile directive for each
<Directory> block that needs to be protected points to the authentication file that contains
the users who are allowed access to that area. You can also use the AuthGroupFile direc-
tive to create user groups. Alternatively, you can use IP-based authentication with the mod_
access module. The Deny and Allow directives can define what IP addresses or networks
should have access to the directory.

What are dynamic web applications, and how are they implemented?    Dynamic web
applications use embedded program code in a web page to update dynamically the content
using external data, such as data stored in a database. The Apache web server must rec-
ognize that there’s embedded code in the file and ensure that the code is processed. In the
Common Gateway Interface (CGI) method, the Apache web server passes the code file to
an external program (such as the Perl or Python interpreters) to process the embedded code
and returns the results to the client. Alternatively, you can use program modules such as
mod_perl or mod_php to allow the Apache web server to process embedded code directly.

Describe how to implement an SSL web server.    The Apache web server allows you to use
a public/private key method for encrypting network traffic between the server and the cli-
ent. You must first generate an encryption key using the OpenSSL software. You can then
embed the public key in a certificate that will be passed to clients. For clients to trust your
certificate, it must be signed by a trusted certificate authority (CA). The OpenSSL software
allows you to create a Certificate Signing Request (CSR), which you can pass to a commer-
cial CA for signing. The CSR must be signed by a certificate authority (CA), validating that
the server is valid and that clients can trust it. For testing, you can use the OpenSSL pro-
gram to create your own CA and self-sign your own certificates. However, these certificates
won’t be trusted by clients by default and will produce ugly error messages. Once you have
your server key and certificate files, you use the SSLEngine, SSLCertificateKeyFile, and
SSLCertificateFile to define the location of the files and to define which areas on the web
server are allowed to use SSL.

Describe a web proxy server.    A web proxy server receives HTTP requests from multiple
clients on a network and submits them to the remote web servers. It then caches the responses
before returning them to the clients. Future requests for the same web pages are served from
the cached versions, decreasing network bandwidth requirements. Another feature of web
proxy servers is that they can be configured to restrict access to specific websites or from
specific clients. The Squid web proxy server allows you to define access control lists (ACLs)
that define what is being controlled and rules that define whether to block or allow the
ACL traffic.

What is the nginx server, and what makes it so special?    The nginx web server is a new
way of serving web pages. Instead of using multiple threads to serve pages, it uses asyn-
chronous events within the same program, saving memory for each client request. This
allows the physical server to support more clients than an Apache environment. The nginx
server can also be configured as a reverse proxy server, also known as a load balancer. It
can process a request from a client and redirect it to a server contained in a pool of servers.

Review Questions  493

c09.indd  09/14/2016  Page 493

Review Questions
You can find the answers in the Appendix.

1.	 What protocol defines how a web server responds to client requests?

A.	 HTML

B.	 SSL

C.	 HTTP

D.	 TLS

2.	 What standard defines how a client formats the content contained in a web page?

A.	 HTML

B.	 SSL

C.	 HTTP

D.	 TLS

3.	 What HTTP server response code indicates that the file requested by the client was not
found?

A.	 200

B.	 403

C.	 500

D.	 404

4.	 What utility allows you to stop the Apache web server gracefully?

A.	 systemctl

B.	 apache2ctl

C.	 httpd

D.	 apache2

5.	 What utility allows you to test an Apache web server configuration before actually starting
the server?

A.	 systemctl

B.	 apache2ctl

C.	 httpd

D.	 apache2

6.	 What directive defines the location on the server that will be shared with clients?

A.	 DocumentRoot

B.	 ServerRoot

C.	 Listen

D.	 DirectoryIndex

494  Chapter 9  ■  Offering Web Services

c09.indd  09/14/2016  Page 494

7.	 What configuration feature allows you to apply directives to specific folders in the filesystem?

A.	 <VirtualHost>

B.	 <IfDefined>

C.	 <Directory>

D.	 <IfModule>

8.	 What configuration directive defines what information appears in the Apache log file?

A.	 ErrorLog

B.	 LogFormat

C.	 ErrorDocument

D.	 DocumentRoot

9.	 Which Apache log file contains information about what web page requests were made by
clients?

A.	 error.log

B.	 apache2.conf

C.	 access.log

D.	 httpd.conf

10.	 What directive should you use to allow system users to create their own web folders?

A.	 AuthUserFile

B.	 UserDir

C.	 DocumentRoot

D.	 LoadModule

11.	 In name-based virtual hosting, what directive defines the domain name used?

A.	 DocumentRoot

B.	 NameVirtualHost

C.	 <VirtualHost>

D.	 ServerName

12.	 In IP-based virtual hosting, what directive defines the different IP addresses for the server
to listen on?

A.	 Listen

B.	 <VirtualHost>

C.	 NameVirtualHost

D.	 DocumentRoot

13.	 What Apache utility program allows you to create text userid/password files?

A.	 httpd

B.	 htpasswd

C.	 apache2

D.	 mod_auth

Review Questions  495

c09.indd  09/14/2016  Page 495

14.	 What directive points to the userid/password file that controls access?

A.	 AuthType

B.	 AuthName

C.	 AuthUserFile

D.	 Order

15.	 What dynamic web programming method allows the Apache server to utilize an external
program interpreter?

A.	 CGI

B.	 mod_perl

C.	 mod_auth

D.	 mod_php

16.	 What directive tells the Apache server to redirect .php files to the PHP server process?

A.	 LoadModule

B.	 AddHandler

C.	 DocumentRoot

D.	 DirectoryIndex

17.	 What directive tells the Apache server the location of the SSL certificate?

A.	 DirectoryIndex

B.	 SSLCertificateKeyFile

C.	 SSLEngine

D.	 SSLCertificateFile

18.	 What does a web proxy server do? (Select two.)

A.	 Caches web requests from multiple clients

B.	 Redirects requests from one client to multiple servers

C.	 Restricts what websites clients can access

D.	 Restricts what files a server can serve

19.	 What directive does Squid use to define client authentication settings?

A.	 mod_auth

B.	 auth_param

C.	 acl

D.	 http_access

20.	 What section in the nginx configuration file defines the basic server settings?

A.	 location

B.	 server

C.	 root

D.	 listen

c10.indd  09/14/2016  Page 497

Chapter

10
Sharing Files

The following exam objectives are
covered in this chapter:

✓✓ 209.1 Samba Server Configuration

✓✓ 209.2 NFS Server Configuration

✓✓ 212.2 Managing FTP Servers

c10.indd  09/14/2016  Page 498

There are many reasons why you may need to share files, such
as a collaborative work project. While file sharing on a single
system is rather easy, sharing files across different systems

can be tricky, especially in mixed system environments. In this chapter, we’ll explore three
methods that allow you to simplify sharing files across different systems: Samba, NFS,
and FTP.

Looking at Samba
Few computing environments are homogeneous. Often, you have a mix of systems, such
as Linux servers and Windows computers. In these cases, it’s helpful to have a file-sharing
method that can deal with these mixed-system network environments. Samba allows file
sharing to be accomplished in these environments, and it is especially useful because it can
handle Windows Active Directory and NetBIOS atmospheres.

Understanding Samba
Samba gets its name from the Service Message Block (SMB) protocol, upon which it is
based. Samba is an open-source SMB implementation. Using this protocol, you can allow
access to a server’s files and/or printers in order to share them among various comput-
ers. The various computers, even if they run different operating systems, can access these
shared files and/or printers (if they implement the SMB protocol.)

Around the mid-1990s, Microsoft created an SMB protocol-based software
package and named it the Common Internet File System (CIFS). Though
Microsoft’s current SMB protocol software is very different from the origi-
nal CIFS, you will still see it commonly referred to as CIFS or SMB/CIFS.
In fact, in the man pages, Samba is referred to as a “Windows SMB/CIFS
fileserver for UNIX.”

Over time, Samba has changed from a simple file-sharing program into one that can
provide additional functions, such as allowing a Windows/Linux user to have a single home
directory for both systems; act as an Active Directory member server; map Windows users
to Linux users for authentication/authorization; and so on. The focus here is primarily on
sharing files and printers.

Looking at Samba  499

c10.indd  09/14/2016  Page 499

Samba is maintained by the Samba Team, and their primary website is located at www
.samba.org. Current Samba versions are at 4.4.x and above.

A great deal of Samba documentation is available. If you have Samba installed, besides
the locally installed man pages, typically the /usr/share/doc/samba-version/ directory
or the /usr/share/doc/samba*/ directories (depending on your distribution) have current
documentation as well. You can also find Samba documentation at wiki.samba.org. If you
are seeking older Samba documentation, such as Samba version 3 documentation, visit the
www.samba.org/samba/docs/man/ web page.

Some Samba documentation is rather out of date. Because of constant
malicious attacks on Samba, be sure to verify with second or even third
sources prior to making changes to your Samba configuration files.

Before deciding what Samba packages to install, you need to know a few terms
and the difference between a Samba server and a Samba client. A Samba server offers
various files and/or printers for use. A Samba client accesses and uses the files and/or
printers.

A shared file is really a shared directory tree. In other words, on a Samba server, a direc-
tory is created and shared. Any files and/or subdirectories within that directory are also
shared. These shared directories can be mounted and their files accessed by Samba clients.
A Samba server’s shared files and printers are called shares or Samba shares.

Three daemons may be involved in providing Samba services. These daemons are described
here:

Samba Daemon    The Samba daemon, smbd, is used on the Samba server. It manages
offered SMB shares, provides share locking, handles user authentication, and so on. It is
controlled by the smb service.

NetBIOS Message Block Daemon    The nmbd daemon handles NetBIOS name service
requests. The Network Basic Input/Output System (NetBIOS), which is really now called
NetBIOS over TCP/IP, is an older protocol that was used on Microsoft systems for items
such as name resolution. For Microsoft operating systems newer than Windows Server
2000 and Windows XP, NetBIOS over TCP is handled via SMB. Therefore, unless you
have some legacy Windows Samba clients on your network, there is no need to employ this
daemon.

Name Service Switch Daemon    The winbindd daemon binds together and manages
connections between a Linux system and a Windows domain controller. It can employ
the Name Service Switch (NSS) and Pluggable Authentication Modules (PAM) (covered
in Chapter 11) to deal with authentication and authorization. Thus, Windows Active
Directory (AD) users are treated as Linux users via this daemon. The winbindd daemon
also acts as a Windows Internet Name Service (WINS) for older NetBIOS systems by
providing a mapping of systems’ names to IP addresses. It is controlled by the winbind
service.

http://www.samba.org/samba/docs/man/
http://www.samba.org
http://www.samba.org

500  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 500

If you are unfamiliar with Windows Active Directory, some terms in this
chapter may cause confusion. A domain controller is a server that manages
the Active Directory service. Active Directory (AD) is a directory service,
which maintains a network resource map. This network resource map con-
siders every mapped item, such as files, printers, users, and groups, as an
object. Object attributes, which are also maintained, include information
such as what permissions are needed to access the object. Thus, a particu-
lar Windows user (an object with attributes) can only access other mapped
objects (such as a file) if the user has the permission level to do so.

Configuring Samba
How you configure Samba depends on the Samba service(s) you wish to employ on a par-
ticular system. If you are configuring a Samba server that will be offering file shares, more
work is required than setting up a Samba client that will be using those shares. This section
takes you through some common configuration scenarios.

Installing Samba on Linux
There are several Samba packages available. Each has its own purpose in a Samba environ-
ment. The various packages are sometimes referred to as the Samba Suite.

Unfortunately, Samba packages can differ greatly among the various distributions. For
example, you’ll typically have the Samba client package preinstalled, but its name may be
samba-client or smbclient, depending on your distribution.

While you may use an older Samba version, Samba version 4.1 and below
are no longer supported. No Samba security patches are provided for
unsupported versions. Security problems, such as the 2016 Badlock bug,
make unsupported Samba systems vulnerable. Consider moving to a sup-
ported Samba version. See www.samba.org for details.

Generally, for a Red Hat–based distribution, you’ll find that the Samba packages listed
in Table 10.1 are either preinstalled or available to install. This is a general list, so be sure
to review your distribution’s documentation concerning Samba.

Ta b le 10 .1     Red Hat distribution Samba packages

Package Name Description

cifs-utils Samba client utilities for managing shares

libsmbclient Samba client libraries

libwbclient Samba client winbindd libraries

samba Samba server functions

http://www.samba.org

Looking at Samba  501

c10.indd  09/14/2016  Page 501

Package Name Description

samba-client Samba client functions

samba-client-libs Samba client libraries

samba-common Samba server and client configuration and documentation files

samba-common-libs Samba server and client libraries

samba-common-tools Samba server and client commands

samba-libs Samba server and client libraries

samba-winbind Samba winbindd functions and commands

samba-winbind-clients Samba winbindd client additional commands

Typically for a Debian-based distribution, such as Ubuntu, you’ll find the Samba pack-
ages listed in Table 10.2 are either preinstalled or available to install. Notice that some of
the packages have the same name and function as those listed in Table 10.1, but others are
completely different. This is not an exhaustive list, so be sure to review your distribution’s
documentation concerning Samba packages.

Ta b le 10 . 2     Debian distribution Samba packages

Package Name Description

cifs-utils Samba client utilities for managing shares

libsmbclient Samba client libraries

samba Samba server functions

samba-common Samba server and client configuration and documentation files

samba-common-bin Samba server and client commands

samba-libs Samba server and client libraries

smbclient Samba client functions

winbind Samba winbindd functions

If you are simply using your system as a Samba client, the samba-client or smbclient
package (depending on your distribution) is typically installed by default, so you may only

502  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 502

need to install the cifs-utils package. However, you will have to perform some configu-
rations, which are covered later in this chapter.

If you are setting up a Samba server, most likely you will need to, at a minimum, install
the samba package. Here is a snipped example of installing the package on a CentOS system:

yum install samba
Loaded plugins: fastestmirror, langpacks
[...]
Installed:
 samba.x86_64 0:4.2.10–6.el7_2

Dependency Updated:
 libsmbclient.x86_64 0:4.2.10–6.el7_2
 libwbclient.x86_64 0:4.2.10–6.el7_2
 samba-client.x86_64 0:4.2.10–6.el7_2
 samba-client-libs.x86_64 0:4.2.10–6.el7_2
 samba-common.noarch 0:4.2.10–6.el7_2
 samba-common-libs.x86_64 0:4.2.10–6.el7_2
 samba-common-tools.x86_64 0:4.2.10–6.el7_2
 samba-libs.x86_64 0:4.2.10–6.el7_2

Complete!
#

Once you have the Samba server package installed and its dependencies installed or
updated, you can start the configuration process. However, before configuring a Samba
server file share, it’s a good idea to review briefly the various directories and utilities used
by Samba.

Exploring Samba Directories and Files
Besides the documentation directory (described earlier), there are three primary Samba
directories where various Samba files are located. One of these directories is where Samba
stores its log files: the /var/log/samba/ directory.

Samba also uses the /var/lib/samba/ directory and its subdirectories for storing things
such as Samba user databases. For example, Samba user account information can be kept
in either the smbpasswd, tdbsam, or ldapsam databases, which are typically located in this
directory.

For smaller Samba implementations (less than 250 users), the tdbsam
user database is recommended. Larger implementations should use the
ldapsam user database with Active Directory or Lightweight Directory
Access Protocol (LDAP). The smbpasswd database is set to be deprecated
and should only be used for backward compatibility with older Samba
implementations.

Looking at Samba  503

c10.indd  09/14/2016  Page 503

Samba configuration files are stored within the /etc/samba/ directory. The primary
Samba configuration file is /etc/samba/smb.conf.

Older Samba versions used the /etc/, /etc/smb/, or /etc/samba.d/ direc-
tories for storing configuration files. In earlier Samba versions, the primary
configuration file was the /etc/smb.conf file. Be aware that some distribu-
tions still use these.

The /etc/samba/smb.conf file is typically provided whether you are setting up a Samba
client or a Samba server. Before configuring Samba via its smb.conf file, a brief overview of
Samba utilities is in order.

Exploring Samba Utilities
Samba has several utilities that can assist in testing configurations, troubleshooting Samba
problems, as well as managing Samba share access. In Table 10.3, the primary Samba
administration utilities are listed and briefly described.

Ta b le 10 . 3     Samba administration utilities

Name Description

mount.cifs Mounts a Samba share on a client.

net Administers a Samba server and remote servers. It is similar to the
Windows/DOS net utility.

nmblookup Looks up NetBIOS information, such as workgroup names, and pro-
vides IP addresses for the names.

pdbedit Manages any of the Samba user databases. The user databases
include ldapsam, smbpasswd, and tdbsam.

rpcclient Executes Samba client Microsoft Remote Procedure Call functions.

smbcacls Displays or modifies Samba file share access control lists.

smbclient Connects, lists shares, and allows FTP-like services for a file share.

smbcontrol Manages the Samba smbd daemon.

smbmount Mounts a Samba share on a client. Replaced on most distributions by
the mount.cifs command.

smbpasswd Manages the Samba smbpasswd or tdbsam database.

smbspool Sends files to a Samba printer share.

504  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 504

Name Description

smbstatus Displays current Samba server connections.

smbtar Creates Samba file share backups to a regular file or tape device. Per-
forms restores as well.

testparm Tests the smb.conf configuration file’s syntax.

wbinfo Displays Samba winbindd daemon information.

The samba-tool is another Samba utility that deserves mentioning. Though documented
as the “main Samba administration tool,” it is not installed on all distributions with the
provided Samba packages. The samba-tool is typically used when configuring the Samba
server as an Active Directory controller. It also proves useful for managing DNS on the
Samba server, when it is acting as such a controller.

Note that not all distributions may have all of the utilities listed. Also, the utilities you
use will often depend on configuration settings in the smb.conf file.

Configuring a Samba Server File Share
After you have installed the appropriate Samba server package(s) on your Linux system,
you can start to configure a Samba server file share. In this section, configuring a file share
to be used by another Linux client is covered (though many of the steps are similar to con-
figuring a file share for a Windows client). The basic steps are as follows:

1.	 Create a share file (directory tree).

2.	 Modify the smb.conf file as needed.

3.	 Check the smb.conf file’s syntax.

4.	 If needed, add a local system Samba client user account and give the account a password.

5.	 If needed, add a Samba login account to the appropriate database.

6.	 Check the Samba login account.

7.	 Start the Samba daemon.

8.	 Check the Samba share(s) being offered.

9.	 Set the Samba daemon to start at server boot time.

10.	 Modify the firewall as needed. (Firewalls are covered in Chapter 12.)

Creating a share file (directory) is no different than creating a regular Linux system
directory. In general, the best location is in the /srv/ directory. In the example here, the
/srv/ssharea/ directory is created:

mkdir /srv/ssharea
#

Table 10.3    Samba administration utilities  (continued)

Looking at Samba  505

c10.indd  09/14/2016  Page 505

ls -d /srv/ssharea
/srv/ssharea
#

The next step, modifying the Samba configuration file, /etc/samba/smb.conf, is more
complex. This file has many settings that manage and direct Samba’s overall operation as
well as individual shares.

This Samba configuration file has been modified on a CentOS system to provide a file
share. Only the file’s global, [global], settings section is displayed here:

cat smb.conf
#============= Global Settings ===========================
#
[global]
 workgroup = FIREFLYGROUP
 server string = Samba Server Version %v
 interfaces = enp0s*
 hosts allow = 192.168.56.0/24
#
#----------------- Logging Options -----------------
#
 log file = /var/log/samba/log.%m
 max log size = 50
#
#------------- Standalone Server Options -------------
#
 security = user
 passdb backend = tdbsam
#
[...]

Within the smb.conf file, anything after a semicolon (;) or a hash (#) is ignored (as are
blank lines). Typically, comments are placed after a hash and currently unused directives
are placed after semicolons.

The Samba configuration file is broken up into various sections. Each section is desig-
nated by a name placed between square brackets. These section names are not case sensitive.
The [global] section, shown in the previous example, contains directives that determine
how the Samba server will conduct networking, logging, name resolution, and so on.

Directives are not case sensitive. Also, when setting a directive in the
smb.conf file, any spaces before or after the equal sign (=) are ignored.
Samba treats each line (a line ends in a newline character) as an individual
record. However, you can continue a record onto a second line by placing a
backslash (\) at the end of the record’s first line.

506  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 506

A few significant global directives, including the ones shown in the previous example,
are described in Table 10.4. You can find more global directives in the man pages or in pre-
viously listed Samba documentation locations.

Ta b le 10 . 4     Samba configuration file global directives

Name Description

workgroup Designates the Samba group (workgroup) in which this server belongs.
It is not an FQDN. If the Samba server is part of a Windows workgroup
or domain, typically the workgroup name is set to the Windows work-
group/domain name.

server string Describes this Samba server, and it can include any string as well as
variable substitutions.

netbios name Sets the Samba server’s NetBIOS name, which may be needed in a
Linux/Windows mixed network environment but typically only if leg-
acy Windows systems are involved.

realm Designates the Kerberos realm in which an Active Directory controller
and this Samba server participate. The realm name must be in all capi-
tal letters.

interfaces Designates the Samba server’s network interfaces to be used to pro-
vide the service. If not specified, all broadcast-capable interfaces are
used. Interface directives can be interface names (including wildcards),
IP addresses, broadcast/mask pair, and so on.

hosts allow Sets host systems allowed to access these services. Hosts are des-
ignated via an IP address (CIDR addressing for subnets is allowed) or
host name, and the list is comma, space, or tab delimited.

hosts deny Sets host systems denied access to these services. Syntax is the same
as the hosts allow directive’s syntax.

disable netbios Toggles NetBIOS support on the Samba server. Set to no by default.
You can set it to yes if needed to disable NetBIOS support in order to
stop the nmbd daemon from launching (on some distributions) or hide
the Samba server from Windows systems using browsing.

smb ports Specifies which ports the Samba server listens on for SMB traffic.

wins support Toggles Windows Internet Name Service (WINS) on the Samba server. Set
to no by default. You can set it to yes if needed for NetBIOS implementation.

log file Designates the Samba log file (debug file). The directive can include
variable substitutions, which allow a separate log file to be created for
each Samba client.

Looking at Samba  507

c10.indd  09/14/2016  Page 507

Name Description

log level Sets the debugging level to filter Samba log file messages. By default,
the level is set to 0, which means that logging is turned off. To turn on
logging, the allowable range is 1 (brief logging) to 10 (ample logging),
with the level typically set to 2 or 3. Log levels can be set for individual
debug classes, such as smb:3 and auth:7 as well.

max log size Specifies the maximum log file size in kilobytes. By default, the size is
set to 0, which indicates there is no size limit.

security Designates the security level (mode) that determines how clients are
authenticated. It can be set to ads, domain, server, share, or user.

passdb backend Specifies the account information database (backend) to use. It can be
set to ldapsam, smbpasswd, or tdbsam (default).

smb encrypt Designates if clients are allowed or required to use SMB encryption. It
can be set to auto, mandatory, or disabled, and it can be set as a share
directive instead of a global directive. By default, it is set to auto and
encryption is allowed. It is recommended to set it to mandatory.

In the preceding smb.conf global section example, you may have noticed the %v in the
server string directive as well as the %m in the log file setting. These are called variable
substitutions, and they allow directives set to strings to include variables. For example, the
%v variable is the Samba software’s current version on this particular server. The %m vari-
able is the Samba client’s NetBIOS name (if available). A variable substitution list can be
found in the man pages as well as many other global directives. Type man smb.conf at the
command line to review the smb.conf man pages.

If your Samba server is in a mixed environment of Windows and Linux sys-
tems, it’s important to set the workgroup directive correctly. Workgroup is a
Microsoft term, and it is applied to local area network systems with a peer
relationship. For Microsoft systems, there is a difference between a domain
(a workgroup with security features added) and a workgroup. For Samba’s
workgroup directive name, there is no difference between a Microsoft workgroup
name and a domain name. However, it is important to set the workgroup directive
to the Windows workgroup or domain name (traditionally all uppercase letters)
and not a FQDN. Otherwise, your Windows systems will not be able to find the
Samba service in their Network Neighborhood.

In the smb.conf file, there are also sections that are not global but instead set directives
for the various offered shares and other purposes. Each section begins with a section name,
which is not case sensitive, in square brackets. The most common section names are shown
in Table 10.5.

508  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 508

Ta b le 10 .5     Samba configuration file section names

Name Description

[global] Contains globally applied directives that determine how the
Samba server will conduct networking, logging, name resolution,
and so on.

[share-name] Holds directives applied to a particular Samba share.

[homes] Contains directives that create a Samba file share as a client is
trying to access that share, instead of creating the Samba file
share beforehand. This is typically used for providing clients’ home
directory shares, without having to create a Samba share for each
client’s home directory ahead of time.

[netlogin] Provides directives necessary for the Samba server, when it is
acting as a domain controller (responds to security authentication
requests).

[printers] Contains directives that create a Samba printer share as a client is
trying to access that share, instead of creating the Samba printer
share beforehand. This is typically used for providing access to
all of a Samba server’s printer queues without having to create a
Samba share for each printer ahead of time.

[profiles] Holds directives for roaming user profiles. Offered in domain server
environments, a roaming user profile allows a user’s various settings
and data to be available to them, no matter what computer within
the environment the user logs into.

Returning to the steps for configuring a Samba server file share, the next Samba configu-
ration file modification involves adding directives in smb.conf for the file share itself. Here
a snipped CentOS system’s configuration file’s share definition settings section is displayed:

cat /etc/samba/smb.conf
[...]
#================== Share Definitions ====================
#
[ssharea]
 comment = Server Share A
 browseable = yes
 path = /srv/ssharea
 public = no
 writable = yes
[...]
#

Looking at Samba  509

c10.indd  09/14/2016  Page 509

In the example, the share name is ssharea, and there are five directives set for it. Several
directives can be used here, and Table 10.6 lists the more common ones.

Ta b le 10 .6     Samba configuration file share directives

Name Description

comment Describes the Samba share. This text description is displayed when
a client queries the Samba server to see what shares are available.

browseable Determines whether or not this share is seen in an available shares
list. By default, it is set to yes. The directive can also be spelled
browsable.

valid users Designates users and/or groups allowed to log in to this service.
Users and/or groups are entered as a comma-separated list, and
group names must be preceded by an at (@) sign. If not set, then all
users can log in to this service.

invalid users Designates users and/or groups not allowed to log in to this service.
List syntax is the same as for the valid users directive.

path Sets the file share’s absolute directory reference.

public Toggles whether or not passwords are required to access this ser-
vice. By default, public is set to no and passwords are required. The
guest ok directive is a synonym for the public directive.

guest only Toggles whether or not only guest connections are allowed for this
service. By default, guest only is set to no and other connections
besides guest connections are allowed. This directive is ignored if
the public directive is set to no. The only guest directive is a syn-
onym for the guest only directive.

group Sets the group name assigned as the default primary group for
users connecting to this service. This is typically used for project
collaboration purposes. The group name can be preceded with
a + to indicate only the listed group’s current members will be
assigned this default primary group and other users will retain their
normal default primary group. The force group directive is a syn-
onym for the group directive.

writable Determines whether or not write access is granted to this share. By
default, writable is set to no and write access is denied. The read
only directive is an antonym for the writable directive.

write list Designates users and/or groups that are granted read and write
access to this share. These users are granted write access no matter
how the writable directive is set. List syntax is the same as for the
valid users directive.

510  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 510

As you can see, there are many interesting ways to set up a Samba file share. Be aware
that several additional file share–specific directives exist. View Samba configuration file
documentation at one of the Samba documentation locations if you wish to see all of these
various directives.

In the preceding smb.conf file’s ssharea section, the valid users direc-
tive is not used. This is acceptable while setting up and testing out your
Samba file share. After the testing phase, it is recommended that you add
any users (who are allowed access to this share) to a Samba file share
group. When you have the group configured, add valid users = @group-
name to your Samba configuration file.

Once you have completed modifying the Samba configuration file for setting up a Samba
file share, it is recommended to test the smb.conf file’s syntax. This is easily done with the
testparm command, as shown snipped here:

testparm
Load smb config files from /etc/samba/smb.conf
[...]
Processing section "[ssharea]"
Processing section "[printers]"
Loaded services file OK.
Server role: ROLE_STANDALONE

Press enter to see a dump of your service definitions

Global parameters
[global]
 workgroup = FIREFLYGROUP
 server string = Samba Server Version %v
 interfaces = enp0s*
 security = USER
 log file = /var/log/samba/log.%m
 max log size = 50
 idmap config *: backend = tdb
 hosts allow = 192.168.56.0/24

[ssharea]
 comment = Server Share A
 path = /srv/ssharea
 read only = No
 [...]
#

Looking at Samba  511

c10.indd  09/14/2016  Page 511

If the testparm command returns an OK, as shown in the preceding example’s line
Loaded services file OK, your smb.conf file’s syntax is correct. Of course, this does not
guarantee that your configuration is correct, but it is step in the right direction.

The testparm command will not show everything that you have set in your
smb.conf. For example, in the preceding example, the browseable direc-
tive is not shown. Also, the testparm command may use directive name
synonyms or antonyms. For example, though the writable directive is
used in the smb.conf file, the testparm command displays its antonym,
read only.

The next step in setting up the Samba file share is to give any client users a local Linux
user account and password on the Samba server if not already provided. For example pur-
poses only, one client user is set up:

useradd Malcolm
#
passwd Malcolm
Changing password for user Malcolm.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
#

Your steps may differ here, depending on the security level (mode) you set
in the Samba configuration file. Security modes are covered in more detail
later in this chapter.

Once a local Linux user account and password are created (if needed), the following step
is used to set up a Samba user account in the appropriate database. Because in the configu-
ration file’s global directives the security directive was set to user, a corresponding user
account will need to exist in either the smbpasswd user database (on older Samba implemen-
tations) or in the tdbsam user database.

Continuing with the example Samba file share on the Samba server, the one client user is
added to the tdbsam user database using the smbpasswd command, as shown here:

smbpasswd -a Malcolm
New SMB password:
Retype new SMB password:
Added user Malcolm.
#

512  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 512

Users can change their own Samba passwords using the smbpasswd com-
mand, similar to how they can change their login passwords using the
passwd command.

Before proceeding in the configuration process, it’s a good idea to double-check the
recently added user account(s). In this step, the pdbedit command will be employed. This
command can help manage any of the backend user databases. In this example, any user
accounts are displayed using a short listing (-L):

pdbedit -L
Malcolm:1004:
#

You can get a lot more information from the pdbedit command concerning user
accounts. Just tack on the verbose option (-v).

Due to potential differences in usernames, it may be important to set up a
username map. This topic is covered later in this chapter.

Now that the client user(s) is set up, the next step is to start up the Samba service. The
method used will depend on your distribution. Here on a CentOS distribution, the Samba
service is started and checked using the systemctl command:

systemctl start smb
#
systemctl status smb
· smb.service—Samba SMB Daemon
[...]
 Active: active (running) since [...]
[...]
 Status: "smbd: ready to serve connections..."
[...]
#

After the Samba service is running, it’s recommended to verify the file shares being
offered. You can accomplish this step by employing the smbclient command and logging
into the Samba service using the client user’s account and password. This is done on the
Samba server, as shown snipped here:

smbclient -L //localhost -U Malcolm
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]
 Sharename Type Comment
 --------- ---- -------
 ssharea Disk Server Share A
[...]
#

Looking at Samba  513

c10.indd  09/14/2016  Page 513

Because the smbclient command is used on the Samba server, the server is designated
by the //localhost specification. The -L option asks for an offered share list and the -U
option states which user account is to be used to log in to the service and obtain this infor-
mation. It may be a little confusing that you must log in to the Samba service to obtain this
information. However, this is a requirement that even the super user cannot override (if an
account is not set up within Samba), as shown here:

smbclient -L //localhost
Enter root's password:
session setup failed: NT_STATUS_LOGON_FAILURE
#

A few more steps are required to complete the Samba server’s file share. First, ensure
that the Samba service will start at system boot time. The method to use depends on your
particular distribution. Here is a snipped example of doing this on a CentOS system:

systemctl enable smb
Created symlink from [...]
#

Depending on your distribution, you may need to configure SELinux
booleans to allow Samba to function properly. Though doing so is beyond
this book’s scope, you can temporarily disengage SELinux for Samba
testing purposes. Check SELinux’s status via the sestatus command and
super user privileges. If its status is enabled, then you can disable it by
editing the /etc/selinux/config file and changing SELINUX=enabled to
SELINUX=disabled. Reboot your system and recheck the SELinux status
using the sestatus command.

The last step is to modify your Samba server’s firewall in order to allow Samba to func-
tion properly with clients. Though firewall details are covered in Chapter 12, you should
be aware of the various ports that Samba may use. Which ones are used depends on your
Samba configuration. Table 10.7 gives a brief Samba port description.

Ta b le 10 .7     Samba ports

Number Protocols Description

53 TCP, UDP Internal DNS only

88 TCP, UDP Kerberos

135 TCP End point resolution

514  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 514

Number Protocols Description

137 TCP, UDP NetBIOS name service

138 TCP, UDP NetBIOS datagram service

139 TCP, UDP NetBIOS session service

389 TCP, UDP Lightweight Directory Access Protocol
(LDAP)

445 TCP SMB over TCP

464 TCP, UDP Kerberos kpasswd

636 TCP LDAP over SSL (LDAPS)

901 TCP, UDP Samba Web Administration Tool (SWAT)

1024 - 5000 TCP Dynamic RPC service ports

3268 TCP Microsoft Global catalog

3269 TCP Microsoft Global catalog over SSL

5353 TCP, UDP Multicast DNS

Simply because Samba may use a particular port does not mean that Samba will use
that port. It’s a good idea to see which ports Samba is attempting to use prior to modifying
your firewall instead of just opening up the firewall for all of the potential ports. Here is an
example on a CentOS system of determining the Samba server’s smbd daemon’s process ID
and using the ss command to list any ports on which the daemon is listening:

systemctl status smb | grep PID
 Main PID: 6869 (smbd)
#
ss -utlpn | grep 6869
tcp LISTEN 0 50 *:139 *:* users:(("smbd",pid=6869,fd=38))
tcp LISTEN 0 50 *:445 *:* users:(("smbd",pid=6869,fd=37))
tcp LISTEN 0 50 :::139 :::* users:(("smbd",pid=6869,fd=36))
tcp LISTEN 0 50 :::445 :::* users:(("smbd",pid=6869,fd=35))
#

Table 10.7    Samba ports  (continued)

Looking at Samba  515

c10.indd  09/14/2016  Page 515

The options to use with the ss command are as follows:

u (display UDP sockets)

t (display TCP sockets)

l (display only listening sockets)

p (show process using socket)

n (display the socket’s port number)

In the preceding example, ports 139 and 445 are being used by the Samba server daemon.
If you are running the NetBIOS message block daemon (nmbd) or the name service switch
daemon (winbindd), you will need to check the ports for their PIDs listening as well.

If you are following along in this chapter with setting up a Samba server
file share, you can temporarily lower your firewall. Using super user privi-
leges, enter iptables -F at the command line.

Configuring a Samba Client File Share Access
After you have a Samba server file share available, you can start to configure the client side.
The basic steps for configuring a Samba client file share on a Linux system are as follows:

1.	 Install or update the Samba client package, and install any additional needed utilities.

2.	 Add a local user account if needed.

3.	 Log into the Samba service from the Samba client system.

4.	 Create a mount point for the share directory.

5.	 Temporarily mount the share.

6.	 Test the mounted share.

7.	 Add a mount command to the Samba client’s /etc/fstab file.

8.	 Create a user credentials file on the Samba client.

9.	 Lock down the user credentials file.

10.	 Test the /etc/fstab file.

11.	 If needed, set the Samba client service (and any other needed Samba services) to start at
system boot.

More than likely, the Samba client package is already installed on your Linux Samba cli-
ent system. However, you might need to check for client package updates and install addi-
tional utilities, as shown in this snipped example on an Ubuntu system:

$ sudo apt-get install samba-client cifs-utils
[sudo] password for christine:
[...]
Note, selecting 'smbclient' instead of 'samba-client'
smbclient is already the newest version.

516  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 516

Suggested packages:
 winbind
The following NEW packages will be installed:
 cifs-utils keyutils
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 120 kB of archives.
[...]
$

Notice in the preceding example that the wrong package name (samba-
client) was used, but the Ubuntu system self-corrected it to the correct
package name (smbclient). Recall that package names may be different
on the various distributions. Not all distributions will self-correct, so it is
important to get the correct package name.

Once you have the needed packages upgraded or installed, you can proceed to the next
step of adding a local user account. This account should have the same UID on the client
system as it does on the Samba server system. Here is an example of adding a Samba client
user on an Ubuntu system:

$ sudo useradd ––uid 1004 -m -d /home/Malcolm Malcolm
$
$ sudo passwd Malcolm
[...]
$

Once the local Samba client account is created, use the smbclient command to log in
to the Samba service and view the share(s) offered by the Samba server, as shown snipped
here:

$ smbclient -L //192.168.56.102/ssharea -U Malcolm
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]

 Sharename Type Comment
 --------- ---- -------
 ssharea Disk Server Share A
[...]
$

If you get a connection refused message, it could be that the Samba server’s
firewall has not been properly configured. If SELinux is enabled on the Samba
server, it may be improperly configured for Samba client access to shares.

Looking at Samba  517

c10.indd  09/14/2016  Page 517

Notice that this time the Samba server’s IP address was used in the smbclient command.
You could alternatively use its hostname or NetBIOS name, depending on your Samba and
network configuration.

The smbclient command allows FTP-style access to a share. To use this access style,
simply remove the -L option as shown snipped here:

$ smbclient //192.168.56.102/ssharea -U Malcolm
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]
smb: \> help
? allinfo altname archive [...]
blocksize cancel case_sensitive cd [...]
chown close del dir [...]
echo exit get getfacl [...]
hardlink help history iosize [...]
link lock lowercase ls [...]
[...]
showconnect tcon tdis tid [...]
.. !
smb: \> exit

Notice that a help command is available within the smbclient utility, allowing you to
see all of the various commands available for use concerning this share.

The next step in this process is to create a mount point for the file share. In this case, a
subdirectory of the user’s home directory will be created, as shown here:

$ sudo mkdir /home/Malcom/csharea
[sudo] password for christine:
$
$ sudo chown Malcolm:Malcolm /home/Malcom/csharea
$

Now attempt to mount the Samba server share locally. The mount command is used, but
some important options must be included: username and noperm. An example, which has
been broken onto multiple lines for clarity, is shown here:

$ sudo mount -o username=Malcolm,noperm \
> //192.168.56.102/ssharea csharea
Password for Malcolm@//192.168.56.102/ssharea:
$
$ touch csharea/Inara.dat
$
$ ls -l csharea
total 0
-rw-r--r-- 1 Malcolm Malcolm 0 Apr 14 02:37 Inara.dat

518  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 518

$
$ rm -i csharea/Inara.dat
rm: remove regular empty file 'csharea/Inara.dat'? y
$

If you were mounting a Windows file share, you would use the mount.cifs
utility instead of the mount command.

Once the file share is mounted, it can be used like a regular mounted filesystem.
However, whether you can write to the file share depends on the share’s configuration.
Recall that this share is writable, because the writable directive was set to yes in the
Samba server’s smb.conf file.

You can also check your mounted file share using the mount command. In this snipped
example, notice that the file share is mounted as a cifs filesystem type:

$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
[...]
//192.168.56.102/ssharea on /home/Malcolm/csharea type cifs (rw)
$

If desired, you can have the share automatically mounted at system boot time via the
/etc/fstab file. First, make a backup copy and add a new line to the filesystem table. An
example is shown here on an Ubuntu system:

$ sudo cp /etc/fstab /etc/fstab.bck
[sudo] password for christine:
$
$ sudo nano /etc/fstab
$
$ grep ssharea /etc/fstab
//192.168.56.102/ssharea /home/Malcolm/csharea cifs
credentials=/etc/samba/Malcolm,noperm,uid=1004 0 0
$

Note that the /etc/fstab record is shown wrapped onto two lines, but it is a single
line in the file. The share name in the preceding example uses an IP address. This is OK
for testing purposes, but it’s best to use a domain name, NetBIOS name, or whatever is
appropriate for your Samba configuration. The mount point is /home/Malcolm/cshare. The
filesystem type is set to cifs. There are also several options: credentials, noperm, and uid.
The credentials option points to a Samba credentials file, which is needed for logging into
the Samba service. This file is created next.

Looking at Samba  519

c10.indd  09/14/2016  Page 519

When dealing with Microsoft shares, consider adding iocharset=utf-8 to
the mount options. This option can help with the various types of filename
mangling that occur when dealing with mixed environments.

After you have the /etc/fstab file updated, the next step is to create the user credentials
file on the Samba client. This file must have the same filename as the /etc/fstab creden-
tials entry. It contains the username and password for logging into the Samba service, as
shown here:

$ sudo nano /etc/samba/Malcolm
$
$ sudo cat /etc/samba/Malcolm
username=Malcolm
password=Serenity_2005
$

Because the credentials file contains a plaintext password, it must be locked down. First,
the file should be owned by the root user. It also should only allow file owner read access. If
either of these items is missing, it must be set as shown here:

$ ls -l /etc/samba/Malcolm
-rw-r--r-- 1 root root 36 Apr 20 14:28 /etc/samba/Malcolm
$
$ sudo chmod 0400 /etc/samba/Malcolm
$
$ ls -l /etc/samba/Malcolm
-r-------- 1 root root 36 Apr 20 14:28 /etc/samba/Malcolm
$

In the preceding example, the root user does own the credentials file, so there was no
need to employ the chown command. However, the permissions were too wide open, so the
chmod command was used to set the file to file owner read only.

Now that the /etc/fstab file has been updated, the credentials file has been created,
and it has been locked down, you can test the share mount. Here is a snipped successful test
example on an Ubuntu system via using the mount -a command:

$ sudo mount -a
$
$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
[...]
//192.168.56.102/ssharea on /home/Malcolm/csharea type cifs (rw)
$

520  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 520

You can also use a few other commands, such as df, to see if the file share is automatically
mounted, as shown here:

$ df -h
Filesystem [...] Mounted on
[...]
//192.168.56.102/ssharea [...] /home/Malcolm/csharea
$
$ su — Malcolm
Password:
$
$ touch csharea/test_drive.dat
$
$ ls csharea
test_drive.dat
$
$ exit
logout
$

The file share mounted without any problems, and the user Malcolm can write files to
the share. After you have this all in order, the last step is to ensure that the Samba client
service will start at system boot, if it’s not already set up.

If you will be allowing writable share access, consider setting up a Samba
group (for example, SambaWrite) on both the Samba server and client
Linux systems. Use the chgrp command to set this group as the server
share directory’s group, remove rw other permissions, and add (if needed)
rwx group permissions. Modify your Samba server’s configuration file
(smb.conf), add valid users = @group-name to the share’s configuration,
and restart the server. Be sure to add any share users to this group. This
will help provide a little more security to the share configuration.

Configuring a Username Map
Depending on your particular Samba environment, you may have a situation where Samba
server and client usernames are different. This scenario tends to happen most often when
Windows systems are involved. In these cases, you will need to set up a username map.

On the Samba server, add a global directive in the smb.conf file using the following syntax:

username map = /path/map-file-name

The /path/ is typically /etc/samba/, but the map-file-name varies. The map file may be
called username.map, username.txt, smbusers, and so on.

Looking at Samba  521

c10.indd  09/14/2016  Page 521

Within the map file, for each username, use the following syntax:

server_username = client_username

Here is a username map example, which maps Linux Samba server usernames to
Windows clients’ usernames:

cat /etc/samba/username.map
[...]
rblum = RichardBlum
cbresnahan = ChristineBresnahan
kryan = "Kevin E Ryan"
gschwartz = GarySchwartz
[...]

Notice that quotation marks were used around the Windows username Kevin E Ryan.
These were needed because this Windows username has spaces in it (which are allowed on
Windows systems). There are other special characters that you can employ within the map
file. See the username map directive information in the smb.conf man pages for details.

Keep in mind that each username must have the same password if needed
by the authentication process. There is no password map.

Configuring Security Levels
In the SMB protocol, a security level is either at the user level or at the share level. Samba
implements share-level security using only one method. However, for user-level security
implementation, there are four methods available. The method chosen dictates how the
Samba client user authenticates with the Samba server to access offered shares.

Using the share-level security, a Samba server focuses not on usernames but instead on
passwords. Each share has one or more passwords. The Samba server accepts the share
password for share access authentication. Once authenticated, the user has access to that
particular share.

The share-level security is deprecated. It is recommended that you not use
this particular security level due to various known security issues as well
as Microsoft Samba clients having potential problems with this level.

The user-level security, used in the earlier configuration examples, authenticates user share
access via usernames and their associated passwords. This is the preferred security level.

The different security-level implementation methods are called security modes. Thus, the
mode defines the security level used. The security mode is set in the Samba configuration
file’s [global] section, and it can be set to a mode listed in Table 10.8.

522  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 522

Ta b le 10 . 8     Samba security modes

Mode Description

ads This mode sets user-level security. The mode allows the Samba server to join
an Active Directory as a member. Authentication via Kerberos can be used.
However, the additional directives realm and password server must also typi-
cally be set in the Samba configuration file’s [global] section. This is the typi-
cal mode set for Samba implementations greater than 250 users.

domain This mode sets user-level security. Similar to user mode, except that user
authentication is handled by a domain controller using the older NT protocols.
The workgroup directive must be set to the network’s domain name.

server This mode sets user-level security. Similar to user mode, except that user
authentication is handled by a remote server, which can be another Samba
server or a Windows NT server. The additional directive password server
must also typically be set in the Samba configuration file’s [global] section.
Considered a security risk, its use is no longer recommended.

share This mode sets share-level security. Each Samba share has one or more pass-
words, and the server accepts the share password for share access authentica-
tion. Deprecated.

user This mode sets user-level security. Username and passwords are required by
the Samba server to log in to the service. Corresponding client user accounts
must exist on the server and within the tdbsam user database (smbpasswd user
database on older Samba implementations). This is the typical mode set for
Samba implementations under 250 users.

Configuring Samba as an Active Directory Member
More than likely, you will operate in a mixed environment at some point. If you want
to share files and already have an Active Directory controller established, setting up
your Linux Samba server to be an Active Directory member can be useful. This topic is
more about Samba security and access to the various Samba shares and less about share
configuration.

There are a few things to keep in mind in this section. First, this is differ-
ent than setting up Samba to be an Active Directory controller, which you
can do, but the steps are very different. It is also assumed that your Active
Directory controller is a Windows system. In addition, it’s important to
check your distribution’s documentation, current Samba documentation,
and your various Windows systems’ documentation. Because of the vari-
ety of environments involved as well as Samba changes due to security
issues, those documentation sources will be your best help.

Looking at Samba  523

c10.indd  09/14/2016  Page 523

Usually, prior to setting up your Samba server to offer file or printer shares, the server is
first integrated as an Active Directory member. The typical basic steps to accomplish this
on the Linux Samba server are as follows:

1.	 Install or update the Samba server package and install any additional needed utilities.

2.	 Configure Active Directory DNS name server entries, if needed.

3.	 Set up the Network Time Protocol (NTP).

4.	 Check for the proper Active Directory controller name to IP address resolution on the
Samba server, and correct it in /etc/hosts or DNS, if needed.

5.	 Modify the Samba server’s smb.conf file as needed.

6.	 Join the Samba server as a member of the Active Directory controller.

7.	 Set up the Samba server to retrieve domain user and group data from the winbindd daemon.

8.	 Start the winbindd daemon.

Additional details for some steps are elaborated here:

Step 2    Often, your Active Directory controller will be acting as a DNS server. (DNS was
covered in Chapter 8.) If this is true in your mixed environment, you will need to modify
the appropriate file to point DNS queries to the Active Directory controller. On older distri-
butions, this is the /etc/resolv.conf file. Most current distributions reconfigure the /etc/
resolv.conf file upon boot, so to set the DNS name server persistently, you need to modify
other files. (This topic was covered in Chapter 8.) See your distribution’s documentation to
determine the appropriate file(s) to modify.

Make sure that your Samba services are not running on your Samba server
while you are proceeding through these steps. You will start up the
services later.

Step 3    Because of various security issues, accurate server time is critical for being an
Active Directory member. Therefore, it is best to set up the Network Time Protocol (NTP)
on your Linux Samba server prior to it becoming an Active Directory member. Linux NTP
implementation was covered in the LPIC-1 certification.

Step 5    You need to consider several smb.conf directive settings in the [global] section in
this scenario. Which directives you set depend on your particular mixed environment. For
example, consider setting or modifying the netbios name, security, workgroup, and realm
(all covered earlier in this chapter) directives.

As tempting as it is, it is not recommended to copy a Linux Samba server
Active Directory member’s smb.conf file off the Internet and paste it onto
your Samba server. Too many important security compromises can occur.
You should fully understand the necessary configuration settings needed
prior to integrating your Samba server into an Active Directory environment.

524  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 524

A Windows Active Directory controller uses security identifiers (SIDs) to identify users. In
the Samba environment, identity mapping (IDMAP) determines how Windows security
identifiers are mapped to Linux UIDs and GIDs. The idmap config directive controls this
mapping. The directive settings are sometimes called winbind idmap backends. You may
also need to add this directive to the smb.conf file’s [global] section for integrating your
Linux Samba server into an Active Directory environment.

Setting the idmap config directive is rather complex. Also, various poten-
tial additional directives may be required depending on how this particular
directive is set. See the Samba documentation for details.

Step 6    The net utility was originally created to mimic the Microsoft utility of the same
name. It has many powerful options to manage your Samba environment. Using super user
privileges, the basic syntax for becoming an Active Directory member (or joining a domain) is

net mode join -U administrator-username

The administrator-username is the Active Directory (or domain) administrator’s account
name. The mode is either ads (Active Directory) or rpc (domain). Depending on the configu-
ration, you may be required to supply the administrator account’s password.

Do not use the samba-tool utility to join the Active Directory as a member.
If you do so, your Samba shares may not operate correctly.

Step 7    In order to set up the Samba server to retrieve Active Directory user and group
data from the winbindd daemon, you modify the /etc/nsswitch.conf configuration file
and add the following records:

passwd: files winbind
group: files winbind

If you want the Samba server’s /etc/passwd and /etc/group files to be searched for user
accounts and group information before attempting to retrieve its data from the winbindd
daemon, a slight modification is needed. Replace files with compat in the /etc/nsswitch
.conf records.

You can test the Samba server’s Active Directory membership after per-
forming the previous steps and starting the winbindd daemon. The wbinfo
command will help with this. Use wbinfo -u with super user privileges to
see if the Samba server can display Active Directory users and wbinfo -g
to see the groups. If you can display this data, all is well. If you cannot, see
this chapter’s troubleshooting section to assist you in determining the prob-
lem as well as Samba documentation on Active Directory membership.

Looking at Samba  525

c10.indd  09/14/2016  Page 525

Configuring a Samba Server Printer Share
Sharing printers among Linux and Windows systems is best done using the Internet Printing
Protocol (IPP), and this method has been available for many years. However, you may have
a legacy system or unusual environment that requires you instead to use Samba to share
printers.

Assuming that you already have users set up for a file share, adding a printer share is
relatively easy. First, you will need to modify the Samba server configuration file. This
Samba server’s configuration file has been modified on a CentOS system to share its print-
ers. Only the file’s [printers] settings section is displayed here:

cat smb.conf
[...]
#================== Share Definitions ====================
#
[...]
[printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = no
 guest ok = no
 writable = no
 printable = yes
#

The [printers] section directives are fairly simple. You can set directives for all of the
printers loaded on your Samba server (typically from the /etc/cups/printers.conf file).
The path directive sets a spool directory. The default setting should be fine. If you decide
to change it, be sure that the new directory has world write access and the sticky bit is set
on it.

With the printable directive set to yes, clients can submit spool files on the path direc-
tory. If the writable directive is set to no, non-printing write access is blocked.

After modifying your smb.conf file, be sure to restart the Samba service to
have the modifications take effect.

You will need at least one printer queue on your Samba server. Configuring and manag-
ing printers is covered in the LPIC-1 certification. In this example, the local Samba server
queue is paused (cupsdisable) to hold any incoming client jobs (for testing purposes), and
the offered printer share is checked using the smbclient command:

lpstat -a
SShare_PrinterA accepting requests since [...]
#

526  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 526

cupsdisable SShare_PrinterA
#
smbclient -L //localhost -U Malcolm
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]

 Sharename Type Comment
 --------- ---- -------
 ssharea Disk Server Share A
[...]
 SShare_PrinterA Printer Samba Share Printer A
[...]
#

You can see that the SShare_PrinterA printer is available via the Samba service. Once
you have your Samba server printer share checked, you can set up any number of Windows
or Linux clients to use it.

Configuring a Samba Client’s Printer Share Access
If you have completed all of the work for setting up a file share, and the Samba server is
offering a printer share, you only need to check the service. Here the smbclient command
is employed to check the offered shares on an Ubuntu Samba client:

$ smbclient -L //192.168.56.102 -U Malcolm
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]

 Sharename Type Comment
 --------- ---- -------
 ssharea Disk Server Share A
[...]
 SShare_PrinterA Printer Samba Share Printer A
[...]
$

Now that the printer share has been checked, you can again use the smbclient com-
mand to send a print job to the share. In this example on an Ubuntu Samba client system,
the smbclient command is broken up onto two lines for clarity:

$ smbclient //192.168.56.102/SShare_PrinterA \
> -U Malcolm -c "print myfile.dat"
Enter Malcolm's password:
Domain=[FIREFLYGROUP] [...]
putting file myfile.dat as myfile.dat [...]
$

Looking at Samba  527

c10.indd  09/14/2016  Page 527

The -c option allows a command string to be sent. Multiple commands can be sent as
long as they are separated by a semicolon (;). Alternatively, you can enter into the FTP-style
service provided by smbclient and enter the command(s) at the prompt.

Looking on the CentOS Samba server side, the paused printer queue is holding the job
sent from the Ubuntu Samba client:

lpstat SShare_PrinterA
SShare_PrinterA-1 malcolm 2048 [...]
#

Once you have everything set up and tested for the printer share, be sure to unpause the
Samba server’s printer queue using the cupsenable command.

Troubleshooting Samba
There are many potential pitfalls when setting up and managing your Samba server and/
or clients. Therefore, it’s a good idea to have a standard troubleshooting map in order to
address issues quickly as they arise.

The following items can help you get your Samba service back in order quickly:

Use the testparm utility.    One of the most important steps that you can take to avoid prob-
lems is to check your Samba configuration file’s syntax after every modification. The testparm
utility, demonstrated earlier, makes this task easy. Doing this quick step may save you
hours of frustration later over a simple typographical error.

Make sure the daemon is running.    When Samba problems occur, the next simple task is
to check to see if the needed server daemons are running. There are potentially three dae-
mons that need to be employed. At a minimum, the smbd daemon (smb service) must be run-
ning on the Samba server. Whether the nmbd and the winbindd daemons need to be running
depends on your mixed environment.

Perform a basic Samba share check.    On the Samba server, you can see what shares are
being offered via the smbclient -L command (with the -U option and appropriate param-
eter if needed). If you get a response from the command but do not see particular shares,
you will need to review your server’s smb.conf file settings.

Employ the correct workgroup setting.    If you are in a mixed environment, recall that
you must use the Windows workgroup/domain name; otherwise, Windows systems can-
not find the Samba service. Traditionally, it is set to all uppercase letters. Review the
workgroup directive setting within your Samba server’s smb.conf file to ensure that it is
correct.

Perform basic network diagnostics.    Sometimes the Samba clients simply cannot reach
the Samba services because of network issues. Perform a few basic network diagnostics.
Try to ping (or ping6, if you are using IPv6) a Samba client from the Samba server and
vice versa. Employ the traceroute (or traceroute6) command. On the Samba server,
install and use the nmap program to see what ports are open inside and outside the
firewall.

528  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 528

Review the log files.    The various Samba server log files are typically located in the /var/
log/samba/ directory. Peruse the various files for problem clues. If you don’t have the log
files broken up by client, you may want to do this in your smb.conf file as follows:

log file = /var/log/samba/log.%m

The %m will substitute to either a NetBIOS name or an IP address for each client, depending
on your particular configuration. Either way, it will give you finer control over the logs and
allow faster problem isolation for particular Samba clients.

Increase the logging debug level.    By default, the log level directive is set to 0, which means
that logging is turned off. You can use the directive in your Samba configuration file to turn
on and/or increase the logging level. Level 1 is the lowest and Level 10 is the highest. You can
also increase the logging level for particular debug classes, such as smb: 10, if desired.

An older but interesting method is changing the logging debug level on the fly. This employs
the kill command, a signal, and the Samba server daemon’s PID. To increase the logging
level by one level, using super user privileges, send the SIGUSR1 signal to the Samba server
daemon via its PID (smbd-PID):

kill SIGUSR1 smbd-PID

You can also lower the logging debug level (make it less verbose) by one level on the fly.
This method sends the SIGUSR2 signal to the Samba server daemon:

kill SIGUSR2 smbd-PID

Check basic Samba status.    The smbstatus command (if available on your distribution)
lists the current SMB connections to the Samba server. You can increase displayed informa-
tion via the -d (debug) option. A -d 10 is verbose, whereas a -d 1 is less so.

The net utility has many powerful options that allow you not only to manage your Samba
environment but to troubleshoot problems as well. There are three parameters that you
pass to the net command to pinpoint your environment: ads (for an Active Directory envi-
ronment), rad (for the older Windows 9x and Windows NT3 environments), or rpc (for
the older Windows NT4 and Windows 2000 environments). For example, if you are in an
Active Directory environment, you could issue the command net ads info to obtain
details about a remote Active Directory controller.

Several other utilities may help you troubleshoot a particular problem.
Look back at the various Samba tools listed in Table 10.3.

Look up NetBIOS information.    The nmblookup utility is helpful when you are in a legacy
mixed environment. As long as you are using the nmbd daemon and it is running, the utility
will use NetBIOS over TCP to look up NetBIOS names. For example, on the Samba server,
you can issue the command nmblookup -A server-IP-address to display information,

Looking at Samba  529

c10.indd  09/14/2016  Page 529

such as the Samba workgroup name to which this system belongs. You can also get the
same information along with the system’s hostname:

nmblookup -S server-hostname

Determine if the Samba client system(s) cannot receive or respond to a Samba server query
message via the -d1 "*" option. Also, attempt to find the Master Browser (a Microsoft term
that denotes the primary computer in a workgroup that keeps track of which systems are
attached to the non-domain LAN), using the -M workgroup-name option. Failures here indi-
cate a potential network configuration problem, such as an incorrect subnet mask setting.

Another useful troubleshooting nmblookup command option is the -B client-IP-address
"*" option. If a failure is returned, then the Samba client is not seeing client queries, which
may indicate a Samba misconfiguration or potentially a firewall issue.

Review user/group settings.    If your Samba problem is isolated to a particular Samba
user or group, review the various security settings for that user/group. Depending on your
configuration, these settings are potentially stored in multiple locations, such as the /etc/
passwd file on both the server and the client and the Samba user databases.

For the Samba user databases, the easiest checking method is via the pdbedit command.
The pdbedit utility can manage and display information concerning various Samba user
databases, such as ldap and smbpasswd. To see a quick list of every account, enter pdbedit
-L, using super user privileges at the command line. For information regarding a particular
account, tack on -u username to the pdbedit -L command’s end.

If you are in a mixed environment, check the Windows account settings. Also, don’t forget
your username map file if you have employed that tool. If your Samba server is an Active
Directory member, use the wbinfo -u and wbinfo -g commands to see if the winbindd dae-
mon can obtain usernames and groups data.

If you still cannot isolate the problem’s cause, you can also employ the help of others
via online forums. There are many Samba forums, as well as various distribution forums,
where you can ask for help.

Using NetBIOS

In a mixed Windows and Linux environment, where legacy Windows systems (prior to
Windows 2000) are used, it may be necessary to employ the NetBIOS protocol. Currently,
the NetBIOS protocol is implemented as NetBIOS over TCP/IP, and it provides features
such as name resolution and shares for systems without DNS. The NetBIOS protocol is
managed via the nmbd daemon.

530  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 530

Legacy Windows systems (prior to Windows 2000) connect to Samba shares using the
NetBIOS protocol and the Samba server’s port 139. After Windows 2000, Windows sys-
tems can connect to Samba shares using both the NetBIOS protocol (port 139) and TCP/IP
protocol (port 445).

Unfortunately, NetBIOS has been documented as rather vulnerable to malicious attacks.
The root cause of any Samba problems that you are encountering could be tied to such
an attack. If you do not have legacy Windows systems, do not enable NetBIOS or run the
nmbd daemon. Also, be sure to disable the nmbd daemon from starting at system boot
time.

If you must run NetBIOS, be sure that you are also running the winbindd daemon to pro-
vide correct NetBIOS system names to IP address translations. Also, keep your Samba
shares within a local network and use a firewall to block access to that network. Seriously
consider upgrading your Windows systems or implementing a different method for shar-
ing files and printers. NetBIOS vulnerabilities have been documented since at least 2005.

A Samba server offers many features that are especially helpful in mixed-system network
environments. However, if you don’t need all of the features that a Samba server offers, a
simpler approach is to use NFS.

Looking at NFS
While NFS lacks features for mixed environments, it does provide enhanced performance
for sharing files. It’s a better alternative for non-mixed networks.

Understanding NFS
Covered briefly in Chapter 4, the acronym NFS stands for Network File System. NFS is a
protocol that allows client systems to access and use NFS server-offered filesystems over a
network as local filesystems.

The NFS protocol has changed over time. There are three versions, which you will often
see referenced in documentation and configuration files. They are as follows:

NFSv2    Defined around 1989, this older NFS version uses only UDP. Because UDP is a
connectionless protocol with no guarantee of delivery, you could experience data loss as
filesystem data is transported over the network. This NFS version also uses signed 32-bit
files, which adversely limits a file’s maximum allowable size. It also has serious perfor-
mance issues and should be avoided if possible.

NFSv3    This popular NFS version, defined in 1995, can use either UPD or TCP. It also
allows asynchronous writes and other optimized operations, such as weak cache consis-
tency. While weak cache sounds bad, it is not. Weak cache consistency is the ability to

Looking at NFS  531

c10.indd  09/14/2016  Page 531

detect changes to data quickly (when data has been modified by others, such as another
NFS client). Via additional passed data attribute information, it can be determined if file
data held in its cache is stale. The caching speeds up data access, while the weak cache con-
sistency keeps the data fresh. This NFS version also uses 64-bit files.

However, NFSv3 still has problems and weaknesses. For example, there are several network
ports involved in NFSv3. If an NFS client and NFS server can only connect over a WAN
and their individual LAN networks are protected by firewalls, the firewall must allow
access for those multiple network ports. Another example is NFSv3’s use of the Network
Lock Manager (NLM) protocol (which helps prevent data corruption) via ancillary meth-
ods, which slows performance.

NFSv4    The default on many current distributions, this NFS version was originally defined
in 2000 under the Internet Engineering Task Force (IETF)’s direction. NFSv4 was rede-
fined in 2015. It provides all NFSv3’s features as well as support for Kerberos authentica-
tion (v3 authenticates via usernames) and uses TCP for transport (though it offers UDP
for backward compatibility purposes). It also consolidates NFSv3’s multiple ports into
one well-known port, 2049. Instead of using ancillary NLM methods, NFSv4 has built-in
file-locking management features, which improve performance. An NFSv4 client views the
NFSv4 server’s exports as a single filesystem (NFSv4 pseudo-filesystem). Overall, NFSv4
provides superior performance, enhanced security, better scalability, improved internation-
alization (via UTF-8), and so on.

The LPIC-2 certification objectives focus on NFSv3. Therefore, most of this
section’s information is based on NFSv3.

NFSv3 software uses the Remote Procedure Call (RPC) protocol. The RPC protocol
allows a program to be ignorant of network details but still request services from another
system within that network. For NFSv3, RPC handles mounting the NFS filesystem, lock
management, and quota.

The filesystem an NFS server offers is called either an export or a share. However, the
processing of making an NFS share available is only called exporting.

To implement NFS services, your distribution’s Linux kernel must support NFS. This is
because NFS is a combination of kernel-level functions and daemons.

Depending on your NFS configuration and version, there are potentially several dae-
mons or kernel services involved in providing NFS shares. The various NFS daemons and
Linux kernel services are described in Table 10.9.

Ta b le 10 . 9     NFS daemons and kernel services

Name Alias Description

idmapd rpc.idmapd This daemon maps user and group IDs into names and vice
versa based on settings in the /etc/idmapd.conf file. This
daemon is required on both NFS servers and clients and is
not used in NFSv3 or lower.

532  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 532

Name Alias Description

lockd rpc.lockd Broken up into a daemon and a kernel service, the daemon
starts the NLM protocol service in Linux kernels (only for
kernels that don’t start the NLM service automatically).
The daemon service name is nfslock. The kernel service
provides NFS file locking. This kernel service is required on
both NFS servers and clients, and it is not used in NFSv4.

mountd rpc.mountd A daemon that handles NFS client mount requests on the
NFS server side.

nfsd rpc.nfsd Broken up into a daemon and a kernel service, the daemon
handles the user-level NFS service portion of file access
and data streaming. In NFSv4, it is not required to work
with RPC, because it handles the needed RPC services,
such as file locking.

portmapper rpcbind This daemon maps RPC services to the various RPC ports
(also called registering). In addition, it sets up the connec-
tion for a client-requested RPC service. This daemon is
required to run on both NFS servers and clients. Access
can be controlled via TCP Wrappers. Not needed in NFSv4
but provided for backward-compatibility purposes.

rquotad rpc.rquotad Manages user quotas on NFS exports and includes the abil-
ity to view current quota settings. This daemon is required
to run on both NFS servers and clients. It is not used in
NFSv4, except for backward-compatibility purposes.

statd rpc.statd The Network Status Monitor (NSM) daemon that works
with the lockd kernel service to provide NLM protocol file
locking. This daemon is started by the nfslock service
(lockd daemon), and it is not used in NFSv4, except for
backward-compatibility purposes.

Documentation is always important. However, as you look through Table 10.9, you can
see how confusing the various daemon and kernel service names can be. Choosing which
NFS version to use can be difficult. Therefore, with NFS, it is vital to review NFS docu-
mentation prior to NFS implementation.

The rquotad daemon has a known vulnerability, which could allow a mali-
cious user to execute random commands. This NFSv3 service is typically
started within the system startup scripts. It would be wise to disable it.

Table 10 .9     NFS daemons and kernel services  (continued)

Looking at NFS  533

c10.indd  09/14/2016  Page 533

For NFS documentation, if you have NFS installed, typically the /usr/share/doc/nfs*/
directories have current documentation as well as the locally installed man pages. You can
also find Linux NFS documentation at the developer site’s wiki at http://linux-nfs.org.
If you are seeking older NFS documentation, visit the old NFS developers’ site at http://
nfs.sourceforge.net/.

Configuring NFS
Because NFS is feature-rich and multiple-version file-sharing software, configuring an NFS
server for your needs can be tricky. It’s important to determine your site’s requirements
first, prior to configuration. These requirements will assist as you determine what configu-
ration options to choose.

Installing NFS Server on Linux
Several NFS packages are available. Which package(s) you need to install depends on your
distribution, its version, the NFS version you are trying to implement, as well as whether
you are installing packages for an NFS server or a client.

Generally, for a Red Hat–based distribution, you’ll find the NFS packages listed in
Table 10.10 either preinstalled or available to install. This is a general list, so be sure to
review your distribution’s documentation concerning NFS.

Ta b le 10 .10     Red Hat distribution NFS packages

Package Name Description

nfs-utils NFS server daemon and utilities for server and client, such as the
showmount command.

nfs-utils-lib Support libraries required by nfs-utils utilities. Only needed on
older distributions.

rpcbind Provides RPC services required by NFSv3.

portmap Older RPC services package that is replaced by the rpcbind pack-
age on current distributions.

Typically for a Debian-based distribution, such as Ubuntu, you’ll find the NFS pack-
ages listed in Table 10.11 are either preinstalled or available to install. This is not an
exhaustive list, so be sure to review your distribution’s documentation concerning NFS
packages.

http://linux-nfs.org
http://nfs.sourceforge.net/
http://nfs.sourceforge.net/

534  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 534

Ta b le 10 .11     Debian distribution NFS packages

Package Name Description

nfs-kernel-server NFS server daemon.

nfs-common NFS server and client support files and utilities, such as the
showmount command.

rpcbind Provides RPC services required by NFSv3.

portmap Older package that is replaced by the rpcbind package on current
distributions.

For example purposes, an NFS server will be set up on a CentOS system and an NFS
client on an Ubuntu system. Here is a snipped example of installing the needed NFS server
package on the CentOS system:

yum install nfs-utils
[...]
---> Package nfs-utils.x86_64 [...] will be installed
[...]
Installed:
 nfs-utils.x86_64 [...]

Complete!
#
rpm -qa | grep rpcbind
rpcbind-[...].x86_64
#

Notice in the preceding example that the rpcbind package, which is needed to provide
NFSv3 required RPC services, is already installed.

For the Ubuntu NFS client, only the nfs-common package needs to be installed. Here is
the snipped installation process:

$ sudo apt-get install nfs-common
[sudo] password for christine:
[...
The following extra packages will be installed:
 libgssglue1 libnfsidmap2 libtirpc1 rpcbind
[...]
[...]
Removing any system startup links for /etc/init.d/rpcbind ...

Looking at NFS  535

c10.indd  09/14/2016  Page 535

rpcbind start/running, process 4222
[...]
Creating config file /etc/idmapd.conf with new version

Creating config file /etc/default/nfs-common with new version
Adding system user 'statd' (UID 117) ...
Adding new user 'statd' (UID 117) with group 'nogroup' ...
Not creating home directory '/var/lib/nfs'.
statd start/running, process 4455
gssd stop/pre-start, process 4489
idmapd start/running, process 4543
[...]
$

Notice in the preceding example that the rpcbind package was also installed in this pro-
cess. Even though in this situation the NFS client is prepared to use NFSv4, it still provides
rpcbind for backward compatibility.

Exploring NFS Directories and Files
Several NFS files and directories are involved in the export configuration, and being aware
of them makes the export management process easier. The primary files and directories are
listed in Table 10.12.

Ta b le 10 .12     NFS files and directories

Name Description

/etc/exports The main NFS export configuration file. Also called the NFS
server export table. Used on the NFS server only.

/etc/exports.d/ The directory may contain extra export configuration files. The files
must have the .exports file extension to be recognized by NFS.

/etc/nfsmount.conf The NFS mount options configuration file. Used on the NFS client only.

/etc/sysconfig/nfs Red Hat–based distributions’ primary NFS configuration file. Used
on the NFS server and client.

/etc/default/nfs-
kernel-server

Debian-based distributions’ primary NFS configuration file. Used
on the NFS server only.

/etc/default/nfs-
common

Debian-based distributions’ primary NFS configuration file. Used
on the NFS client only.

/proc/fs/nfs/exports Contains current exports and the individual client (not subnets)
using them.

536  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 536

Name Description

/var/lib/nfs/xtab Contains the same data as /proc/fs/nfs/exports, but it is not main-
tained by the kernel and is used only when /proc is not mounted.

/var/lib/nfs/etab Contains current exports available for client systems. Used on the
NFS server only.

/var/lib/nfs/rmtab Contains current exports and client systems that have them cur-
rently mounted. Used on the NFS server only.

In addition to the items listed in Table 10.12, the /proc/filesystems, /etc/fstab,
/etc/mtab, and /proc/mounts can also be involved with NFS. These files were covered in
Chapter 4.

Exploring the /etc/exports File
The /etc/exports file is where you configure your NFS server’s shares. Each record repre-
sents a single export, and the typical record is formatted as follows:

export_directory client-designation (directives)

The export_directory is the NFS server share (directory tree) being exported. Typical
share directory locations include /var/ and /srv/. For example, you can set the export_
directory to /var/nfsshare.

The client-designation sets the client(s) that can access this export. It can take one of
many formats, as shown in Table 10.13.

Ta b le 10 .13     The /etc/exports client(s) designation

Type Description

Single Host A single client system can be entered via IPv4 or IPv6 address (though
IPv6 must be in square brackets), a host name, or an FQDN.

Netgroups An NIS netgroup is designated by @group_name.

Multiple systems The asterisk (*) or question mark (?) wildcard can be used with a host-
name or an FQDN to designated multiple systems. However, with an
FQDN, an asterisk wildcard can only be used between the dots (.). For
example, *.c.org will include b.c.org in the system series but will not
include a.b.c.org. Wildcards should not be used with IP addresses
because of potentially unpredictable results.

Table 10 .12     NFS files and directories  (continued)

Looking at NFS  537

c10.indd  09/14/2016  Page 537

Type Description

IP networks An IP network is designated by IP_Address/netmask. For IPv4 addresses,
the netmask can be either by class-based format or CIDR. For IPv6
addresses, use an adjacent netmask length and do not put the netmask
within the square brackets.

Some directives have odd names and need additional explanation. The primary /etc/
exports file directives are listed in Table 10.14, along with a brief description.

Ta b le 10 .14     The /etc/exports file directives

Directive Description

ro Sets the filesystem export as read-only.

rw Allows reads of and writes to the filesystem export.

async Export is not first checked to see if write cache buffers have been
flushed to disk before reading data. Increases performance of
read-only (ro) exports but also data corruption risks due to unclean
server restarts after a crash.

sync Export is first checked to see if write cache buffers have been flushed
to disk (and if not, waits for the data to be committed) before reading
or writing data. Important for read/write (rw) exports.

all_squash All export client users (including root) are treated as anonymous
users.

no_root_squash Allows the client root user account to access the NFS export using
super user privileges.

root_squash Maps the client root user account to an unprivileged user account
(typically the nfsnobody account).

fsid Identifies filesystem export by UUID or device number. In NFSv4,
can be set to root or 0, which indicates that this particular filesys-
tem is the root of all exported filesystems.

anongid Assigns specified GID to anonymous group clients, and it is typically
used where it is desired for all client requests to appear to be from
one user.

anonuid Assigns specified UID to anonymous user clients, and it is typically
used where it is desired for all client requests to appear to be from
one user.

538  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 538

Directive Description

subtree_check Enables subtree checking, where permissions are checked on
higher-level directories.

no_subtree_check Disables subtree checking. May improve export reliability in some
situations.

You can see all of the directives associated with the /etc/exports file by typing man
exports at the command line.

You can quickly check to see if your default /etc/exports configuration file
is configured to use NFSv4. Just look for the fsid option settings. If one of
them is set to root or 0, you know it is configured for NFSv4 by default.

Exploring NFS Utilities
The various NFS utilities can help you in the NFS export creation, management, and trou-
bleshooting activities. The utilities to use and which ones are available on your system will
depend on the system’s distribution and the NFS version. The primary utilities that you will
use are listed in Table 10.15.

Ta b le 10 .15     NFS utilities

Utility Description

exportfs Manages and displays information concerning shares.

mount.nfs Mounts a designated NFS export on an NFS client.

mountstats Displays NFS client per-mount statistics from the /proc/self/
mountstats file.

nfsiostat Displays NFS client per-mount I/O statistics from the /proc/self/
mountstats file.

nfsstat Displays NFS client and server activity statistics from the /proc/net/
rpc/nfsd, /proc/net/rpc/nfs, and /proc/mounts files.

rpcinfo Displays RPC service information.

showmount Displays NFS server information, such as its state and NFS clients
mounting its provided exports. Can be used remotely.

umount.nfs Unmounts designated NFS export on NFS client.

Table 10 .14     The /etc/exports file directives  (continued)

Looking at NFS  539

c10.indd  09/14/2016  Page 539

The rpcinfo utility can be helpful in certain situations. It allows you to display vari-
ous RPC service information, such as what ports are involved, as shown snipped here on a
CentOS NFS server:

rpcinfo -p
 program vers proto port service
 100000 4 tcp 111 portmapper
[...]
 100000 4 udp 111 portmapper
[...]
 100005 1 tcp 20048 mountd
 100024 1 tcp 47711 status
[...]
 100003 4 tcp 2049 nfs
 100227 3 tcp 2049 nfs_acl
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
[...]
 100021 4 udp 57070 nlockmgr
[...]
 100021 4 tcp 42140 nlockmgr
#

The exportfs utility deserves some special attention too. It is responsible for reading
the /etc/exports file when the NFS service starts (and for NFSv3 and lower, mounting the
shares via mountd). In addition, exportfs is a handy command to use for testing and
managing exports.

Used with no options, the exportfs command displays all of the current exports.
Table 10.16 shows the options that you may employ on a regular basis for modified com-
mand behavior.

Ta b le 10 .16     The exportfs utility options

Option Description

-a Exports (or unexports if used with -u) all configured shares in the /etc/
exports file.

-i Ignores /etc/exports configured shares and uses command-line options
for configuring shares instead.

-o Exports designated share configured via the command line.

-r Re-exports (refreshes) all configured shares in the /etc/exports file via
rebuilding the /etc/lib/nfs/xtab file. Useful for loading /etc/exports
configuration changes.

540  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 540

Option Description

-u Unexports a designated exported share.

-v Provides verbose information while conducting operations.

See the exportfs command’s man pages for additional options. Keep in mind that any
references to /etc/exports also include shares configured in /etc/exports.d/*.exports
files, if used on your NFS server.

Disabling NFSv4
The certification objectives focus on NFSv3, so if you are using a current distribution, you
may need to turn off NFSv4 functionality in order to use NFSv3. Here are some ways to
accomplish this task.

For Red Hat–based distributions on an NFS server and any client systems, edit the /etc/
sysconfig/nfs configuration file. If listed within the file, change NFS4_Support from yes to
no. If that option is not listed in the file, add the following file line:

RPCNFSDARGS='––no-nfs-version 4'

If the RPCNFSDARGS setting pre-exists in the configuration file, tack on the ––no-nfs-
version 4 argument to the other listed options. Keep in mind that if you are using an older
Red Hat–based distribution, NFSv4 may not be implemented already.

For a Debian-based distribution’s NFS server, edit the /etc/default/nfs-kernel-
server file. Tack on the ––no-nfs-version 4 option to the RPCMOUNTDOPTS directive or
RPCNFSDCOUNT directive. Which directive is used depends on the distribution’s age.

When you mount the NFS export, you may need to include the mount option, vers=3, to
use NFSv3. This won’t disable NFSv4 but instead forces the client to use an NFSv3 connection.

Once you have finished studying, it would be wise to reenable NFSv4. It provides many
enhancements, as covered previously in this chapter.

Configuring a Temporary NFS Export
To create a temporary NFS export or test an NFS export before making it permanent, there
are several steps to take. The steps that you need to use will depend on your distribution as
well as the NFS version you are employing. The basic steps for temporarily configuring a
share on an NFS server are as follows:

1.	 Install or update NFS server software.

2.	 Start the needed NFS services.

3.	 Create an NFS server directory for the share.

4.	 Export the directory share using the exportfs command.

Table 10 .16     The exportfs utility options  (continued)

Looking at NFS  541

c10.indd  09/14/2016  Page 541

5.	 Check the offered export on the NFS server.

6.	 Modify the firewall as needed.

7.	 When the client is finished using the temporary share, unexport it.

The basic steps for using the share on an NFS client are as follows:

1.	 Install or update NFS client software.

2.	 Create an NFS client directory to mount the share.

3.	 Modify the firewall as needed.

4.	 Mount the NFS share.

5.	 Test the mounted NFS share.

6.	 Copy files as needed.

7.	 Unmount the NFS share on the client.

As an example, the following section steps you through creating a share on a CentOS
NFS server and using that share on an Ubuntu NFS client. Since the NFS server and client
installation process was already covered in this chapter, it will not be repeated here.

To start the needed services, use your NFS server distribution’s method. For this
CentOS NFS server example, the systemctl command is used to start the nfs and
rpcbind services:

systemctl start nfs rpcbind
#

Depending on your distribution, you may need to configure SELinux bool-
eans to allow the NFS server to export shares. Though doing so is beyond
this book’s scope, you can temporarily disengage SELinux for NFS testing
purposes. This was covered earlier in the Samba section.

Next, if one is not already created, create an NFS server directory. An example is shown
here along with the creation of a sample file:

mkdir /srv/nfs_share_temp
#
echo "Hello World" >> /srv/nfs_share_temp/file.dat
#
cat /srv/nfs_share_temp/file.dat
Hello World
#
ls -l /srv/nfs_share_temp
total 4
-rw-r––r–– 1 root root 12 Apr 28 17:01 file.dat
#

542  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 542

Next, the exportfs utility is employed to export the NFS share temporarily. The basic
syntax for using exportfs for this task is

exportfs client-IP-address:/share-directory

The client-IP-address is the IP address of the NFS client system that will mount this
temporary export. If you use the wrong IP address, an access denied by server message
will occur when attempting to mount the share on the NFS client.

Continuing with the example, the NFS client’s IP address is 192.168.56.101. On the
NFS server, this exportfs command is used to export the share:

exportfs 192.168.56.101:/srv/nfs_share_temp
#

Once the share is exported, it is wise to perform a few basic checks. The showmount
command and exportfs utility can help. Here are examples of using these commands on
the CentOS NFS server to check the exported share:

showmount -e
Export list for localhost.localdomain:
/srv/nfs_share_temp 192.168.56.101
#
showmount -e 127.0.0.1
Export list for 127.0.0.1:
/srv/nfs_share_temp 192.168.56.101
#
exportfs -v
/srv/nfs_share_temp
 192.168.56.101(ro,wdelay,root_squash,no_subtree_check,
sec=sys,ro,secure,root_squash,no_all_squash)
#
cat /var/lib/nfs/etab
/srv/nfs_share_temp 192.168.56.101(ro,sync,wdelay,hide,nocrossmnt,secure,
root_squash,no_all_squash,no_subtree_check,secure_locks,
acl,no_pnfs,anonuid=65534,anongid=65534,sec=sys,ro,secure,
root_squash,no_all_squash)
#

Notice that exportfs -v provides the default options set, even though no options were
specified in the exportfs command when exporting the share. Also note that you can view
export information from the /var/lib/nfs/etab file on this particular distribution.

If you want to specify options for temporary NFS exports, use the
exportfs -o (options) command.

Looking at NFS  543

c10.indd  09/14/2016  Page 543

The last step in setting up a temporary NFS share on the server-side is to modify the fire-
wall. Firewalls are covered in Chapter 12.

If you are trying out these steps at home on a non-production system, you
can temporarily lower your firewall using super user privileges and enter-
ing iptables -F at the command line.

On the NFS client, the first step is to install or update any needed NFS client software
and start any NFS client services needed. After that is completed, create a directory to
mount the share, similar to the example on an Ubuntu system here:

$ mkdir /home/christine/NFSTemp
$

Once you have the mount point created, you can check the offered share using show-
mount and the NFS server’s IP address as demonstrated:

$ showmount -e 192.168.56.102
Export list for 192.168.56.102:
/srv/nfs_share_temp 192.168.56.101
$

Now you are ready to mount the NFS exported share. This is done with the mount
.nfs (or mount -t nfs) command, super user privileges, and an additional mount option.
The Ubuntu NFS client mount command example is broken onto multiple lines for
clarity:

$ sudo mount.nfs -o vers=3 \
> 192.168.56.102:/srv/nfs_share_temp NFSTemp
[sudo] password for christine:
$

The -o vers=3 option was used to force NFSv3 use. This may not be needed on older
distributions.

You can check that the export is mounted via the mount -t nfs command.

Once the export is mounted, you can use it as if it were a locally mounted filesystem:

$ ls NFSTemp
file.dat
$
$ cat NFSTemp/file.dat

544  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 544

Hello World
$
$ touch NFSTemp/newfile.dat
touch: cannot touch 'NFSTemp/newfile.dat': Read-only file system
$
$ cp NFSTemp/file.dat file.dat
$
$ cat file.dat
Hello World
$

Because the share was created on the NFS server as a read-only share, the touch com-
mand does not work. However, the files pre-existing on the share are successfully copied to
another local client directory.

On the NFS server, you can see information concerning this remotely mounted
export by viewing the /var/lib/nfs/rmtab file. Here is an example on a CentOS NFS
server:

cat /var/lib/nfs/rmtab
192.168.56.101:/srv/nfs_share_temp:0x00000001
#

Once you are finished with the temporary export, simply unmount the share on the NFS
client. Be sure to do this step prior to removing the temporary share on the NFS server. In
the example, the Ubuntu NFS client system is first unmounted:

$ sudo umount NFSTemp
[sudo] password for christine:
$

Now that the NFS client has unmounted the export, the NFS server can remove (unex-
port) the temporary share. In the example, the CentOS NFS server system unexports the
share via the exportfs command and the -u option as shown here:

exportfs -u 192.168.56.101:/srv/nfs_share_temp
#
exportfs -v
#
showmount -e
Export list for localhost.localdomain:
#

Once you unexport a share, it’s a good idea to use the showmount -e and/or the
exportfs -v commands to verify that the export has been removed.

Looking at NFS  545

c10.indd  09/14/2016  Page 545

Configuring a Permanent NFS Export
The basic steps for configuring a permanent NFS export vary only slightly from creating a
temporary one. On the NFS server, they are as follows:

1.	 Install or update NFS server software.

2.	 Start the needed NFS services.

3.	 Create an NFS server directory for the share.

4.	 Configure the NFS share within the /etc/exports configuration file.

5.	 Export the directory share using the exportfs command.

6.	 Check the offered export on the NFS server.

7.	 Modify the firewall as needed.

8.	 Ensure that the needed NFS services start at server boot time.

The basic steps for configuring the permanent share on an NFS client are as follows:

1.	 Install or update NFS client software.

2.	 Create an NFS client directory to mount the share.

3.	 Modify the firewall as needed.

4.	 Test by temporarily mounting the NFS export.

5.	 Modify the /etc/fstab to include the NFS share.

6.	 Mount the NFS share.

7.	 Test the mounted NFS share.

8.	 Ensure that the needed NFS services start at server boot time.

As an example, the following section steps through creating a permanent share on a
CentOS NFS server and using the share on an Ubuntu NFS client. Any steps covered in
creating a temporary NFS share that are applicable to this process will not be repeated
here.

On the CentOS NFS server directory, /srv/nfs_share_perm/ was created to export.
Permissions were modified on the directory first, and afterward the /etc/exports file had
two records added to it. Each record in the /etc/exports file had to be displayed on two
lines each because of their size, as shown here:

chmod 777 /srv/nfs_perm
#
cat /etc/exports
/srv/nfs_share_perm
192.168.56.101(rw,sync,no_root_squash,no_all_squash)
/srv/nfs_share_perm
192.168.56.*(ro,async,no_root_squash,no_all_squash)
#

546  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 546

Records are not set up per share but instead are set up per client. Therefore, you can
have different options for different clients accessing the same share.

In the preceding example, the first record sets up a share for the NFS client machine at
192.168.56.101. The second record sets up a share for any NFS client system whose IPv4
address starts with 192.168.56. A wildcard (*) is used to accomplish this. Because the indi-
vidual NFS client machine (at 192.168.56.101) is listed first, the first record’s options will
be applied to it. All other systems in the 192.168.56.* group will have the second /etc/
exports record’s options applied. The only difference in the two records’ options is that the
first is read/write (rw), while the second is read-only (ro).

It is critical to have no spaces between the NFS client machine name or IP
address and the options list. A single space can result in undesired granted
access.

Once changes have been made to the /etc/exports file, its contents need to be loaded
into the NFS service. This is accomplished via the exportfs utility, as shown snipped here:

exportfs -r
#
showmount -e
Export list for localhost.localdomain:
/srv/nfs_share_perm 192.168.56.*
#
exportfs -v
/srv/nfs_share_perm
 192.168.56.101(rw,[...]
/srv/nfs_share_perm
 192.168.56.*(ro,[...]
#

Notice that the showmount -e command shows only the last record for the /srv/nfs_
share_perm share. In addition, the showmount -e command will not work for an NFSv4
server. The exportfs -v shows both (and it will work for an NFSv4 server). You can see
the advantage of using the exportfs command instead of the showmount command.

Some NFS administrators use the exportfs -ra command to load /etc/
exports modifications instead of the exportfs -r command.

On the NFS client system, once the mount point directory is created, you can mount the
export. Here the export is mounted temporarily and some tests are run before modifying
the /etc/fstab file:

$ mkdir NFSPerm
$
$ sudo mount.nfs -o vers=3 \

Looking at NFS  547

c10.indd  09/14/2016  Page 547

> 192.168.56.102:/srv/nfs_share_perm NFSPerm
[sudo] password for christine:
$
$ ls NFSPerm
$
$ touch NFSPerm/new_file.dat
$
$ ls -l NFSPerm
total 0
-rw-rw-r-- 1 christine christine 0 Apr 28 23:52 new_file.dat
$

Notice that the export is read/write, so the NFS client is accessing the correct share
record, which was provided by the first record in the NFS server’s /etc/exports file.

You can also view the mounted export using both the mount and df commands. The
results are shown snipped here:

$ mount -t nfs
192.168.56.102:/srv/nfs_share_perm on /home/christine/NFSPerm
type nfs (rw,vers=3,addr=192.168.56.102)
$
$ df -h
Filesystem Size [...]
[...]
192.168.56.102:/srv/nfs_share_perm 6.7G [...]
$

An additional helpful utility in these cases is the mountstats command. It provides a
great deal of information. Here the command is shown in action, snipped:

$ sudo mountstats /home/christine/NFSPerm
Stats for 192.168.56.102:/srv/nfs_share_perm mounted on
/home/christine/NFSPerm:
 NFS mount options:
[...]
 NFS server capabilities:
[...]
 NFS security flavor: 1 pseudoflavor: 0

NFS byte counts:
[...]
RPC statistics:
[...]
LOOKUP:
[...]

548  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 548

ACCESS:
[...]
$
$ sudo mountstats NFSPerm
Statistics for mount point NFSPerm not found

Notice that the mountstats command works only with absolute directory references.
When a relative directory reference is used, it returns a not found error.

After mounting the export temporarily and testing it, the export should be unmounted
(via umount) and the /etc/fstab file backed up and updated. Here is a record example that
you may want to include in a /etc/fstab for a permanent NFS share (the record is displayed
on two lines because of listing size limits, though the record in the file is on only one line):

$ cat /etc/fstab
[...]
NFS file share
#
192.168.56.102:/srv/nfs_share_perm /home/christine/NFSPerm nfs
intr,nfsvers=3,tcp 0 0

$
$ sudo mount -a
$

It’s a good idea to use the mount -a command to ensure that you have correct syntax
in the /etc/fstab file. You can also use the mount -t nfs and df -h commands again to
ensure that the export is properly mounted as well.

Only three mount options are used in the /etc/fstab preceding example, but there are
several more possible options. The various and common mount options you can use with
NFS shares within the /etc/fstab are shown in Table 10.17.

Ta b le 10 .17     NFS export fstab options

Option Description

intr Sets NFS client requests to be interrupted when the NFS server crashes
or cannot be reached.

nfsvers=number Defines the NFS version to use. The number can be 2, 3, or 4.

tcp Sets the NFS share to be mounted using TCP. Typically used for read/
write exports.

udp Directs the NFS share to be mounted using UDP. Typically used for
read-only exports.

Looking at NFS  549

c10.indd  09/14/2016  Page 549

Option Description

port=number Sets the NFS server port number to use. Can be set to 0 in order to force
the NFS server’s rpcbind to respond with the port number to use.

noacl Turns off ACL processing. This is often used with older distributions or
NFS versions.

nolock Turns off file locking. This is often used with older NFS versions.

noexec Turns off binary execution on mounted shares. Typically used for
mounting shares from NFS servers with incompatible binaries.

nosuid Turns off SUID/SGID on mounted shares.

You’ll notice that a few options are directly related to security. There are a few other
security measures you can implement, and they are covered in the next section.

When automatically mounting NFS exports via the /etc/fstab configu-
ration file, the system may experience performance problems. In these
cases, it is better to use AutoFS, which was covered in chapter 4.

Once an export is mounted on an NFS client, you can check the NFS client mount on
the NFS server too. On this CentOS NFS server, two commands are used, as shown here:

cat /var/lib/nfs/rmtab
192.168.56.101:/srv/nfs_share_perm:0x00000001
#
showmount -a
All mount points on localhost.localdomain:
192.168.56.101:/srv/nfs_share_perm
#

After all this work, don’t forget to enable your NFS services at boot time.
The method to use depends on your NFS server and client’s distribution.

Securing NFS
NFSv4 brings many new security features with it. Data exchanged between the NFS server
and client is encrypted, TCP is the default protocol, and Kerberos can be used for authenti-
cation as well as encryption.

550  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 550

NFSv3 and lower use two methods to provide security. One is via the share records
within the /etc/exports file. Each share record lists what system or group of systems can
access a particular share via the client(s) designation (see Table 10.14). The other method
involves the NFS client stating the remote user’s UID and GID and enforces file permissions
accordingly (called AUTH_SYS or AUTH_UNIX). Both methods can be easily overcome
by a malicious user.

Securing NFSv3
If for some reason you have to use NFSv3, you need to do several things to improve its
security. A few of these items may also be worthwhile on an NFSv4 configuration as well.

Use TCP.    Traditionally, NFS has used UDP, which is a connectionless protocol with no
guarantee of delivery. This can allow data loss because filesystem data is transported over the
network, and it is potentially insecure. UDP is easier to spoof. In other words, a malicious user
could craft mount requests to look like they were coming from an authorized NFS client.

From the client side, you can force the use of TCP via the mount options used (see Table 10.17).
From the server side, consider using AutoFS (covered in Chapter 4), instead of allowing
clients to mount exports, and specify TCP in its mount options. Also on the server side,
you can modify the NFS daemon’s (nfsd or rpc.nfsd) run option to reject any UDP con-
nections from NFS clients. Use the -U or ––no-udp option when starting the daemon to
enable this feature.

Limit wildcard use.    If feasible, limit the wildcard’s use in the /etc/exports share records
for NFS clients. Records that contain wildcards in their IP addresses, such as 192.168.56.*,
potentially allow share access for systems that should not have such access. It is better to list
the individual systems’ IP addresses and provide access per share and per IP address.

Squash remote root access.    If no_root_squash is set on a share within the /etc/exports
file, an NFS client root user can connect to the NFS server share with root privileges. It is
better to set root_squash on shares. In this case, a remote root user is assigned and treated
as either the user nfsnobody or nobody (depending on your distribution). The directive is so
named because it squashes the remote root account’s access to that of a lowly user account.

Squash everyone.    And since you are squashing remote root account access, go ahead and
consider squashing everyone. Set the all_squash directive on a share record within the
/etc/exports file. This way every remote account is set to that of a lowly nfsnobody or
nobody user account.

Manage access to ports.    You can manage access to particular NFS server network ports
using a firewall. (Firewalls are covered in Chapter 12.) The primary service ports to man-
age are used by rpcbind, mountd, and nfsd. Review the /etc/sysconfig/nfs, /etc/default/
nfs-common, or /etc/default/nfs-kernel-server file (depending on your distribution) for
additional configured ports to manage. Also, rpcinfo -p and nmap 127.0.0.1 will display
ports in use (but not just by NFS), if you need a quick audit. Note that the nmap utility is
not typically installed by default, but it is provided by the nmap package.

Looking at NFS  551

c10.indd  09/14/2016  Page 551

You may be able to use Kerberos and the RPCSEC_GSS protocol for
authentication and traffic encryption purposes in NFSv3. Kerberos pro-
vides a network-based authentication process using symmetric (single-
key) encryption and a trusted third-party Key Distribution Center (KDC).
Details for this are beyond this book’s scope. Find out more by reviewing
your distribution’s documentation on Kerberos and NFS.

These items will help to lock down your NFSv3 exports. Another method, using TCP
Wrappers, is covered next.

Employing TCP Wrappers
TCP Wrappers allow you to provide access control to particular network services. Services
must have TCP Wrapper support in order to use the access control they provide. The
libwrap library provides TCP Wrapper support, and you can check for it as shown here:

which rpcbind
/sbin/rpcbind
#
ldd /sbin/rpcbind | grep libwrap
 libwrap.so.0 => /lib64/libwrap.so.0 (0x00007f59a302e000)
#
which rpc.nfsd
/sbin/rpc.nfsd
#
ldd /sbin/rpc.nfsd | grep libwrap
#

As shown in the preceding example, the rpc.nfsd does not have TCP Wrapper support,
but rpcbind does. Therefore, you can use TCP Wrappers for access control with rpcbind.

This access control is accomplished via two files: /etc/hosts.allow and /etc/hosts
.deny. They are checked in a particular order, which is important to understand.

When a remote client requests access, the hosts.allow file is checked first. If the remote
client’s address is listed, access is allowed and no further TCP Wrapper checks are made.

If the remote client’s address is not listed in host.allow, the host.deny file is checked. If
the remote client’s address is listed in host.deny, access is denied. If it is not listed, access is
allowed.

The record format in both files is the same:

rpcbind: client-list

The client-list is a comma-separated list. Each client in the client-list can be identified
via client hostnames, IP addresses, and special patterns or wildcards that identify clients.
Therefore, following the earlier example, in the /etc/hosts.allow file, the following

552  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 552

record allowing the NFS client (at IPv4 address 192.168.56.101) and an additional NFS
client (at IPv4 address 192.168.56.106) would look like this:

rpcbind: 192.168.56.101,192.168.56.106

Once you’ve made changes to the /etc/hosts.allow and/or /etc/hosts
.deny file, you don’t need to restart the NFS server or services. It automati-
cally takes effect.

A good general rule is to make your hosts.deny file as restrictive as possible (rpcbind:ALL).
Afterward, add only the NFS clients (and other clients that need rpcbind) to the hosts.allow
file (rpcbind: address-list).

Troubleshooting NFS
Because of its various versions and the different daemons and kernel services involved,
employing NFS can result in problems that are difficult to solve. Therefore, it’s a good idea
to have a standard troubleshooting map in order to address problems quickly as they arise.
The following items can help you get to the NFS service interruption’s root cause:

Check the /etc/exports file.    One of the most important steps that you can take to
avoid problems is to check your NFS server’s /etc/exports configuration file’s syntax after
every modification. Unfortunately, there is no utility that makes this task easy, so this will
cause you some extra work. However, doing this step may save you hours of frustration
later over a simple typographical error or extra record space.

Verify that the proper NFS daemons are running.    When NFS problems occur, check if the
needed NFS server daemons are running. There are several daemons that you may need on
your NFS server, which are listed in Table 10.9. Which ones you need depend on the NFS
version you are running as well as what distribution your NFS server is using. At a mini-
mum, the nfsd or rpc.nfsd daemon must be running on the NFS server.

Review the NFS ports.    On the NFS server, use the rpcinfo -p command to view the
various NFS services’ ports. You should see at a minimum the portmapper, mountd, and
nfs services listening on the listed ports. If not, you may need to restart your NFS server
daemons.

Perform basic NFS export checks.    On the NFS server, you can see what exports are being
offered via the exportfs -v and/or the showmount -e command (with the -U option and
appropriate parameter if needed). If you do not see a particular export, review your server’s
/etc/exports share records. If you receive an RPC: Program Not Registered message,
either your /etc/exports file is empty or it has not been loaded. Try running the exportfs
-ra command using super user privileges.

Employ basic network diagnostics.    Sometimes the NFS clients simply cannot reach the
NFS server’s shares because of network issues. Perform a few basic network diagnostics.
Try to ping (or ping6, if you are using IPv6) an NFS client from the NFS server and vice

Looking at FTP Servers  553

c10.indd  09/14/2016  Page 553

versa. Employ the traceroute (or traceroute6) command. On the NFS server, install and
use the nmap program to see what ports are open inside and outside the firewall.

Review the log file.    The NFS server logs messages to the /var/log/messages file. You can
easily grep for NFS messages and filter it down if needed. A snipped example here demonstrates
looking for NFS messages and searching for unmatched host messages within the results:

grep nfs /var/log/messages* | grep unmatched
[...]
/var/log/messages-[...] rpc.mountd[1598]:
refused mount request from 192.168.56.101 for
/srv/nfs_share_temp (/srv/nfs_share_temp):unmatched host
#

Check the NFS client view.    On the NFS client, see what exports are being offered via
showmount -e and the NFS server’s IP address. If you receive a no route to host message
or something similar, the NFS server may be down or the server’s firewall may be blocking
the query. A connection refused message or something similar indicates the NFS server’s
rpcbind service may not be running. If you receive an RPC: Program not registered mes-
sage, the NFS service is not running or no shares have been exported.

Check the NFS export options.    If you cannot mount the export on the NFS client, check
export’s options via either the NFS server’s /etc/exports file or the /proc/mounts file. For
example, you cannot mount a read-only share as read/write. You can find even more option
details in the NFS server’s /proc/fs/nfs/exports file and the /var/lib/nfs/etab file.

If you have been able to mount the export, but it is not behaving as expected, view all of
the export’s options and settings by looking in the NFS client’s /proc/mounts file. You can
also view all of the clients currently using a particular export by viewing the /var/lib/
nfs/rmtab file on the NFS server.

Several NFS utilities may also help you troubleshoot a particular problem.
Look back to the various NFS utilities listed in Table 10.15.

If you still cannot isolate the problem’s cause, you can also employ the help of others via
online forums. There are many Linux NFS forums as well as various distribution forums
where you can ask for help.

NFS exports are helpful where performance and security are needed. However, if don’t
want to mount a share for your file sharing, an FTP server may be in order.

Looking at FTP Servers
Typically, FTP is used when mounting a share permanently or temporarily is not desired or
workable and transfer speed is an issue. It is ideal for situations where files are shared for
download purposes only, such as when an instructor on a local lab LAN is sharing binaries
with newbie Linux students.

554  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 554

Understanding FTP
File Transfer Protocol (FTP) has been around for a long time. It is a simple network protocol
for sharing files between systems. It is primarily used to share public documents over a
network.

When you connect to an FTP service, its authentication process may require you to
give it a valid username and password. Once you are authenticated, depending on the FTP
service’s configuration, you can essentially look around and download (or upload) files.

If you are using account and password information to log into an FTP service,
be aware that they are typically not encrypted. This means anyone using a
network sniffer application, such as Wireshark, will see your FTP server
username and password in the clear. It is better to use Secure FTP (SFTP),
which encrypts FTP via OpenSSH.

It’s more common for an FTP service to be set up for anonymous access and only allow
file downloads. With anonymous FTP access, instead of an individually assigned user-
name, a general username, such as anonymous or ftp, is used. There may be no password
required or a request for your email address as the password (though the email address is
not verified).

Understanding Passive and Active Connections
It’s important to know that FTP l uses two operating modes: passive and active. The mode
used determines how a connection is established. Passive mode has fewer problems (as cov-
ered shortly), so it is the more popular of the two.

FTP also uses two TCP ports: the data port and the command port. The command port
is used for sending commands and handling command responses. The data port is used for
transporting file data.

In active mode, both the FTP server and client are active in establishing the connections.
Also, the FTP server uses port 20 as its data port and port 21 as its command port. The
basic active mode connection steps are as follows:

1.	 The FTP client picks and opens a random unprivileged port C (where C is >1024) to
serve as its command port in order to send and receive commands.

2.	 The FTP client picks and opens another random unprivileged port D (where D is C+1)
to serve as its data port and begins to listen for FTP server data.

3.	 The FTP client uses its command port (port C) to inform the FTP server via the
server’s command port (port 21) that it is listening for data on its data port (port D).

4.	 The FTP server uses its command port (port 21) to acknowledge the request, which is
sent to the FTP client’s command port (port C).

5.	 The FTP server uses its data port (port 20) to connect to the FTP client’s data port
(port D).

Looking at FTP Servers  555

c10.indd  09/14/2016  Page 555

Thus, in active mode, the FTP client establishes the command connection, but the FTP
server establishes the data connection. The server’s active role can cause problems with cer-
tain network configurations because of firewalls. The FTP client’s firewall may see the FTP
server data port connection attempt (step 5) as potentially malicious (an external system
trying to connect with an internal system) and block the attempt. For example, if you have
a local FTP client trying to connect to a FTP server across the Internet using active mode,
your LAN firewalls most likely will block this.

Because of this issue, the FTP passive mode was created. In passive mode, the FTP
server is passive, and only the FTP client is active in establishing the connections. Also, the
FTP server uses port 20 as its data port but a random unprivileged port as its command
port. The basic passive mode connection steps are as follows:

1.	 The FTP client picks and opens two random unprivileged ports: port C to serve as its
command port and port D to serve as its data port.

2.	 The FTP client uses its command port (port C) to inform the FTP server via the server’s
command port (port 21) that it is establishing a passive connection.

3.	 The FTP server picks and opens a random unprivileged port SD (where SD is > 1024)
as its data port to send/receive the FTP client’s data.

4.	 The FTP server uses its command port (port 21) to inform the FTP client via the
client’s command port (port C) that it is listening for data on its data port (port SD).

5.	 The FTP client uses its data port (port D) to connect to the FTP server’s data port (port
SD).

There are pros and cons to both passive and active FTP modes. Generally, passive mode
is used by FTP servers that are servicing many WAN FTP client systems. However, if you
employ this mode on an FTP server, it is important to configure your server’s firewall prop-
erly and consider making it an FTP-only server to help prevent malicious attacks.

Looking at FTP Servers and Clients
FTP services are available through various packages. Linux FTP servers mentioned in the
certification objectives are listed here:

Very Secure FTP    Very Secure FTP (vsftpd) is open-source Unix and Linux FTP server
software whose primary focuses are on security, performance, and stability. It supports
non-anonymous and anonymous FTP server access as well as PAM authentication. This
popular FTP server software has been the default FTP daemon in many distributions
for several years, though it typically must be manually installed. The project web page is
security.appspot.com/vsftpd.html.

Pure-FTPd    Pure-FTPd (pure-ftpd) is an open-source cross-platform FTP server software
whose primary focuses are on security, efficiency, and ease of use. Its security features
include built-in chroot emulation, virtual accounts, and optional support for SSL/TLS
encryption. The software is installed from source or a special repository if offered by your
distribution. The project web page is www.pureftpd.org.

http://www.pureftpd.org

556  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 556

ProFTPD    ProFTPD is open source and somewhat cross platform. (It can run on Windows
via Cygwin.) This FTP server software is full of features, including several security attributes.
For example, you can block scripted FTP clients, which are typically maliciously trying
to find and exploit poorly configured anonymous FTP sites. Though feature rich, it is not
overly difficult to configure. It has a single primary configuration file, /etc/proftpd/
proftpd.conf, and has an Apache-like configuration. By default, there is a command-line
interface, but several third-party GUI interfaces are available. The project web page is
www.proftpd.org.

There are also many FTP client applications. The one you choose will depend on how
you are using FTP and your security needs.

Web Browsers    You can use just about any web browser, such as Mozilla Firefox or
Google Chrome, to connect to an FTP server. In the address bar, type in ftp:// followed
by the FTP server’s FQDN or IP address. An anonymous connection is made if you do not
include a username and password. By clicking the presented links, you can either download
files or traverse the listed directories.

GUI Applications    Several free FTP client GUI applications are available, such as the
popular open-source cross-platform FileZilla software. Once it’s installed, you enter
the FTP server’s FQDN and your username and password information. Afterward, the
connection is initiated via menu options or key sequences. A rich GUI interface offers
the ability to drag and drop files to download/upload. The FileZilla project web page is
filezilla-project.org.

Command-Line Utilities    There are also command-line FTP client utilities available to
install and use (depending on your distribution). The ftp utility is a standard basic FTP
client, whereas the lftp utility is a refined FTP client that provides more features, such as
the ability to transfer files in parallel. Most current distributions include these two utilities
in their repositories.

The FTP server and FTP client packages you choose depend heavily on your particular
file transfer needs. Keep in mind that if you are using FTP primarily for copying files back
and forth over the network, it may make more sense to use something like the ssh or scp
utilities (covered in Chapter 12).

Configuring vsftpd
Typically, the Very Secure FTP (vsftpd) software is not installed by default. Fortunately,
the package name is the same across most distributions: vsftpd. Here is a snipped example
of installing it on an Ubuntu system:

$ sudo apt-get install vsftpd
[sudo] password for christine:
[...]
The following NEW packages will be installed:
 vsftpd

http://www.proftpd.org
ftp://followed

Looking at FTP Servers  557

c10.indd  09/14/2016  Page 557

[...]
vsftpd start/running, process 3084
[...]
$
$ dpkg -s vsftpd
Package: vsftpd
Status: install ok installed
[...]
$

If you have vsftpd installed, there is a man page for it. In addition, the /usr/share/
doc/vsftpd-version/ directory or the /usr/share/doc/vsftpd/ directory (depending on
your distribution) has current documentation.

You can have vsftpd start at system boot time or be controlled by a super
server, such as xinetd.

The primary configuration file, vsftpd.conf, is located in either the /etc/ directory
or the /etc/vsftpd/ directory (depending on your distribution). It is fairly well internally
documented, but there is also a vsftpd.conf man page if needed.

Some distributions’ vsftpd works right “out of the box” with no further
configuration, except for a few firewall modifications, required. It is gener-
ally a good idea to review your FTP settings instead of simply deploying it.
If you don’t, you may open up your FTP server to malicious attacks.

There are many directives in the vsftpd primary configuration file. A few of the more
basic ones are listed in Table 10.18.

Ta b le 10 .18     vsftpd FTP server configuration directives

Directive Description

anon_mkdir_write_enable Determines whether the anonymous user can create
directories. If set to YES, for this to work properly, the
write_enable directive must also be set to YES, and write
permission on the parent directory must be enabled for
the anonymous user account. This boolean is set to NO by
default.

anon_other_write_enable Sets whether the anonymous user will be permitted to
perform file operations such as file deletion and renaming.
This boolean is set to NO by default.

558  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 558

Directive Description

anon_root Determines the directory the anonymous user changes into
after an FTP server login. If this directive is not set, the direc-
tory used is the anonymous account’s (see ftp_username)
home directory defined in the /etc/passwd file. This string
value has no default value.

anon_world_readable_only Sets whether the anonymous user can see and download
files that are world readable. This way, some files owned
by the anonymous account (see ftp_username) can be
protected from anonymous FTP server users. This boolean
is set to YES by default.

anon_upload_enable Determines whether an anonymous user can upload files
to the FTP server. If set to YES, for this to work properly, the
write_enable directive must also be set to YES, and write
permission on the upload location’s parent directory must
be enabled for the anonymous user account. This boolean is
set to NO by default.

anonymous_enable Sets whether the anonymous user account is used for FTP
server access. If only anonymous user access is desired,
this directive should be set to YES and the local_enable
directive should be set to NO. This boolean is set to YES by
default.

chown_uploads Determines whether all anonymous uploaded files have
their ownership changed to a specified username (see
chown_username). This boolean is set to NO by default.

chown_username Sets the username for ownership of all anonymous uploaded
files. If set, for this to work properly, the chown_uploads
directive must be set to YES. This string has no default value.

chroot_local_user Determines whether to place local users accessing the FTP
service into a chroot jail using their home directory as the
new root directory. This boolean is set to NO by default.
(Chroot jails were covered in Chapter 8.)

chroot_list_enable Sets whether a list of local users is placed in a chroot jail
using their home directory as the new root directory. If set
to YES and chroot_local_user is set to YES, this activates
a list (see chroot_list_file) of users not to be placed in a
chroot jail. If set to YES and chroot_local_user is set to NO,
this activates a list of users to be placed into a chroot jail. If
set to YES, for this to work properly, the chroot_list_file
directive must be set. This boolean is set to NO by default.

Table 10 .18     vsftpd FTP server configuration directives  (continued)

Looking at FTP Servers  559

c10.indd  09/14/2016  Page 559

Directive Description

chroot_list_file Designates the file containing the list of users to be or not
to be placed in a chroot jail using their home directory as
the new root directory. If set, for this to work properly, the
chroot_list_enable directive must be set to YES. This
directive’s default value is distribution dependent.

ftp_username Sets the anonymous account username to be used for anon-
ymous logins. This directive’s default value is ftp.

listen Determines whether the vsftpd runs in a stand-alone mode
and is started via an initialization service (YES) or it is man-
aged via the xinetd daemon (NO). Either way, it listens only
for IPv4 communication. This boolean is set to NO by default.

listen_ipv6 Determines whether the vsftpd runs in a stand-alone mode
and is started via an initialization service (YES) or is managed
via the xinetd daemon (NO). Either way, it listens only for
IPv6 communication. This boolean is set to NO by default.

local_enable Sets whether or not local logins to the FTP service are permitted.
If set to YES, user accounts listed in /etc/passwd (also called
non-anonymous) may be used to log in to the FTP service. This
boolean is set to NO by default.

log_ftp_protocol Determines whether all FTP queries and answers are logged.
This boolean is set to NO by default.

userlist_enable Sets whether a username list file is loaded and checked
against when a user attempts a login. If set to YES, any user
in the username list file is denied access before a password
attempt. Also if set to YES, for this to work properly, the
userlist_file directive must be set to a username list file.
This boolean is set to NO by default.

userlist_file Designates the file containing the username list to be denied
access upon a login attempt. This directive’s default value is
distribution dependent.

write_enable Sets whether any FTP user can issue commands to modify
the filesystem, such as uploading files or deleting files. This
boolean is set to NO by default.

Many vsftpd.conf file directives are interdependent. Also, whether you use a particular
directive, or a set of them, depends on what you are trying to accomplish. If you want to
view all of the various vftpd.conf directives, you can do so via its man page.

560  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 560

Depending on your distribution, you may need to configure SELinux
booleans on an FTP server to allow access. Though doing so is beyond
this book’s scope, you can temporarily disengage SELinux for FTP server-
testing purposes. This was covered earlier in the Samba section.

Accessing with Username and Password
Setting up a vsftpd FTP server that accepts usernames and passwords for accessing files is
fairly simple. As an example, an FTP server will be set up on an Ubuntu system, and the
FTP client will log in from a CentOS system.

First, within the vsftpd.conf file, check the directives. The local_enable directive
should be set to YES, as shown snipped here:

$ grep enable /etc/vsftpd.conf | grep -v '#'
anonymous_enable=NO
local_enable=YES
[...]
$

If you need to make any changes to the vsftpd.conf, make a backup copy first. (This is
always a good idea.) When you have completed your changes, restart the service as follows:

$ sudo service vsftpd restart
vsftpd stop/waiting
vsftpd start/running, process 5392
$

Next, an FTP user account is added. Here a user Kaylee has an account and password
added to the FTP server Ubuntu system:

$ sudo useradd -d /home/Kaylee -m Kaylee
$
$ sudo passwd Kaylee
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
$

Since this user is an FTP user and should not be granted full login access to the system,
the account’s default shell is changed to /usr/sbin/nologin (on some distributions this
shell is /sbin/nologin):

$ sudo usermod -s /usr/sbin/nologin Kaylee
$

Looking at FTP Servers  561

c10.indd  09/14/2016  Page 561

This Ubuntu FTP server has PAM authentication implemented. The pam_username
directive is the clue. If it is set, most likely your system is using PAM, as shown here:

$ grep pam_service_name /etc/vsftpd.conf
pam_service_name=vsftpd
$

PAM is covered in Chapter 11. However, you can look in the /etc/pam.d/ directory for
the vsftpd file (the filename will be the pam_service_name setting) for the following line or
something similar:

auth required pam_shells.so

The preceding PAM record indicates that the /etc/shells file must contain the FTP
user’s default shell. Since, on this server, the FTP users are assigned /usr/sbin/nologin,
the shell needs to be included in the file, and it is, as shown here:

$ cat /etc/shells
/etc/shells: valid login shells
/bin/sh
/bin/dash
/bin/bash
/bin/rbash
/usr/sbin/nologin
$

Once the FTP user login configuration is set up, it’s a good idea to test it on the FTP
server prior to trying it from a remote system, as shown here:

$ ls -l /home/Kaylee
total 12
-rw-r––r–– 1 Kaylee Kaylee 0 May 4 18:47 mynumbers.txt
$
$ ftp 192.168.56.102
Connected to 192.168.56.102.
220 (vsFTPd 3.0.2)
Name (192.168.56.102:christine): Kaylee
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> pwd
257 "/home/Kaylee"

562  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 562

ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r––r–– 1 1008 1008 0 May 04 18:47 mynumbers.txt
226 Directory send OK.
ftp>
ftp> exit
221 Goodbye.
$

In the preceding example, the ftp command (not installed by default on all distributions)
is used to test the FTP user access. It works perfectly. Notice that within the ftp utility,
many of the similar Bash shell commands work.

Once a successful test is conducted on the FTP server itself, it’s a good idea to test the
FTP username/password access from a remote FTP client system. This ensures that access
is working as expected.

If you are following along in this chapter with setting up FTP access, you
can temporarily lower your firewall if needed. Using super user privi-
leges, enter iptables -F at the command line. Firewalls are covered in
Chapter 12.

For this example, the test is being conducted on a CentOS FTP client, and the lftp util-
ity is used for the test. First, install the lftp utility using super user privileges as shown
here:

yum install lftp
[...]
Complete!
#

Now the FTP server is accessed. With the lftp utility, you can pass the username with
the -u option and also include the FTP server’s IP address or hostname, as shown here:

$ ls mynumbers.txt
ls: cannot access mynumbers.txt: No such file or directory
$
$ lftp -u Kaylee 192.168.56.102
Password:
lftp Kaylee@192.168.56.102:~> pwd
ftp://Kaylee@192.168.56.102
lftp Kaylee@192.168.56.102:~> ls
-rw-r––r–– 1 1008 1008 0 May 04 18:47 mynumbers.txt

ftp://Kaylee@192.168.56.102

Looking at FTP Servers  563

c10.indd  09/14/2016  Page 563

lftp Kaylee@192.168.56.102:~>
lftp Kaylee@192.168.56.102:~> get mynumbers.txt -o mynumbers.txt
lftp Kaylee@192.168.56.102:~>
lftp Kaylee@192.168.56.102:~> exit
$
$ ls -l mynumbers.txt
-rw-rw-r–– 1 chris chris 0 May 4 14:47 mynumbers.txt
$

This works perfectly. Notice that the get command was used to download the
mynumbers.txt file to the local machine.

Controlling Access via TCP Wrappers
You can also control access to the vsftpd FTP service via TCP Wrappers. You can see
that the ability to use TCP Wrappers is included in vsftpd, as shown snipped here on this
Ubuntu system:

$ which vsftpd
/usr/sbin/vsftpd
$
$ ldd /usr/sbin/vsftpd | grep libwrap
 libwrap.so.0 => /lib/x86_64-linux-gnu[...]
$

TCP Wrappers were covered earlier in this chapter. They work just the same for vsftpd
as they do for NFS. However, you do have to substitute vsftpd for rpcbind in TCP
Wrapper file records.

Accessing with Anonymous for Downloads
A popular method of accessing FTP servers for file downloads is via an anonymous
account. This is a handy setup for situations where you need to distribute public files to a
great many users. Continuing with the previous example, an FTP server will be set up on
an Ubuntu system to accept only anonymous connections.

The vsftpd.conf file is modified, so local users accounts are disabled (local_enable=NO).
Also, anonymous_enable is modified and set to YES, and the service is restarted, as shown
snipped here:

$ grep enable /etc/vsftpd.conf | grep -v '#'
anonymous_enable=YES
local_enable=NO
[...]
$
$ sudo service vsftpd restart

564  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 564

vsftpd stop/waiting
vsftpd start/running, process 6434
$

If the ftp_username directive is not set within the vsftpd.conf file, it will default to the
ftp username (see Table 10.18). On this Ubuntu FTP server, the directive is not set, and the
/etc/password file is searched for the ftp user account record:

$ grep ftp_username /etc/vsftpd.conf
$
$ grep ftp /etc/passwd
ftp:x:118:126:ftp daemon,,,:/srv/ftp:/bin/false
$

Typically, by default, the FTP servers offer files from either the /var/ftp/ or /srv/ftp/
directories, depending on your distribution. In the preceding example, the ftp user record
shows the home directory is /srv/ftp/, which indicates that this is the default directory
where files are offered.

A few test files are created in the FTP directory, as shown in the following example. This
will assist the various anonymous FTP access tests to be conducted.

$ ls /srv/ftp
$
$ sudo touch /srv/ftp/Hello.dat
$
$ sudo touch /srv/ftp/World.dat
$
$ ls /srv/ftp
Hello.dat World.dat
$

Once the test files are created, a test can be conducted on the FTP server prior to trying
it from a remote system. It works successfully, as shown here:

$ ftp 192.168.56.102
Connected to 192.168.56.102.
220 (vsFTPd 3.0.2)
Name (192.168.56.102:christine): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

Looking at FTP Servers  565

c10.indd  09/14/2016  Page 565

ftp> pwd
257 "/"
ftp>
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r––r–– 1 0 0 0 May 04 20:11 Hello.dat
-rw-r––r–– 1 0 0 0 May 04 20:11 World.dat
226 Directory send OK.
ftp>
ftp> exit
221 Goodbye.
$

Notice in the preceding example that anonymous was entered for the username. The
password entered can be anything, but traditionally it is the user’s email address.

Now a test can be conducted on a remote system. Again, a remote CentOS system is
used as the FTP client, as shown here:

$ lftp -u anonymous 192.168.56.102
Password:
lftp anonymous@192.168.56.102:~> pwd
ftp://anonymous@192.168.56.102
lftp anonymous@192.168.56.102:~> ls
-rw-r––r–– 1 0 0 0 May 04 20:11 Hello.dat
-rw-r––r–– 1 0 0 0 May 04 20:11 World.dat
lftp anonymous@192.168.56.102:/>
lftp anonymous@192.168.56.102:/> get Hello.dat -o Hello.txt
lftp anonymous@192.168.56.102:/>
lftp anonymous@192.168.56.102:/> get World.dat -o World.txt
lftp anonymous@192.168.56.102:/>
lftp anonymous@192.168.56.102:/> put Hello.txt -o Hello.txt
put: Access failed: 550 Permission denied. (Hello.txt)
lftp anonymous@192.168.56.102:/>
lftp anonymous@192.168.56.102:/> exit
$

Notice in the preceding example that the two files on the FTP server were easily downloaded.
However, when the anonymous user attempted to upload a file, permission was denied. How to
configure an FTP server for anonymous uploads is covered shortly.

This FTP server can be accessed using anonymous access from a Windows system as well,
using a web browser, such as Mozilla Firefox, or a GUI application, such as FileZilla. In
Figure 10.1, the FTP server’s files are accessed from a Windows system using Mozilla Firefox.

ftp://anonymous@192.168.56.102
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/

566  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 566

F i gu r e 10 .1     Accessing an FTP server with Firefox

Accessing with Anonymous for Uploads
If you would like to allow anonymous FTP users to upload files, you will need to make a
few FTP configuration file changes and create a new directory. Using the earlier Ubuntu
FTP server example, you need to uncomment three directives in order for anonymous
uploads to be allowed, as shown snipped here:

$ grep write_enable /etc/vsftpd.conf
#write_enable=YES
[...]
$
$ grep anon_ /etc/vsftpd.conf
#anon_upload_enable=YES
#anon_mkdir_write_enable=YES
$

After removing the hash mark (#) from the directive records, the vsftpd service is
restarted to have them take effect:

$ sudo nano /etc/vsftpd.conf
[sudo] password for christine:
$
$ grep write_enable /etc/vsftpd.conf
write_enable=YES
[...]
$
$ grep anon_ /etc/vsftpd.conf

Looking at FTP Servers  567

c10.indd  09/14/2016  Page 567

anon_upload_enable=YES
anon_mkdir_write_enable=YES
$
$ sudo service vsftpd restart
vsftpd stop/waiting
vsftpd start/running, process 6981
$

For enabling anonymous uploads, a special directory should be created for uploaded
files. Since the example Ubuntu system’s FTP directory is /srv/ftp/, a subdirectory will be
created for file uploads, as shown here:

$ sudo mkdir /srv/ftp/upload
$
$ sudo chown ftp:ftp /srv/ftp/upload
$
$ sudo chmod 775 /srv/ftp/upload
$
$ ls -ld /srv/ftp/upload
drwxrwxr-x 2 ftp ftp 4096 May 4 21:48 /srv/ftp/upload
$

After creating an upload subdirectory, the file owner and group should be set to the
ftp_username directive’s username. In the example, the username is ftp. Also, chmod is
used to modify the /srv/ftp/upload/ directory permissions as needed.

Once the directives are modified and the upload subdirectory is created with appropri-
ate permissions and ownership, files can be uploaded via anonymous. Using the example
CentOS FTP client and the lftp command, a simple file is successfully uploaded to the FTP
server:

$ ls *.txt
Hello.txt mynumbers.txt World.txt
$
$ lftp -u anonymous 192.168.56.102
Password:
lftp anonymous@192.168.56.102:~> ls
-rw-r––r–– 1 0 0 0 May 04 20:11 Hello.dat
-rw-r––r–– 1 0 0 0 May 04 20:11 World.dat
drwxrwxr-x 2 118 126 4096 May 04 21:48 upload
lftp anonymous@192.168.56.102:/>
lftp anonymous@192.168.56.102:/> put Hello.txt -o Hello.txt
put: Access failed: 553 Could not create file. (Hello.txt)
lftp anonymous@192.168.56.102:/>

mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/

568  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 568

lftp anonymous@192.168.56.102:/> cd upload
cd ok, cwd=/upload
lftp anonymous@192.168.56.102:/upload> ls
lftp anonymous@192.168.56.102:/upload>
lftp anonymous@192.168.56.102:/upload> put Hello.txt -o Hello.txt
lftp anonymous@192.168.56.102:/upload>
lftp anonymous@192.168.56.102:/upload> ls
-rw------- 1 118 126 0 May 04 21:50 Hello.txt
lftp anonymous@192.168.56.102:/upload>
lftp anonymous@192.168.56.102:/upload> exit
$

Notice in the preceding example that the first attempt to upload the file failed. This is
because anonymous logs into the /srv/ftp/ directory and uploads are not permitted there.
Once the cd upload command is issued and the anonymous user’s present working direc-
tory is /srv/ftp/upload/, a file is easily uploaded using the put command. A check on the
Ubuntu FTP server side confirms the upload was successful:

$ ls /srv/ftp/upload
Hello.txt
$
$ ls -l /srv/ftp/upload
total 0
-rw------- 1 ftp ftp 0 May 4 21:50 Hello.txt
$

Notice that the uploaded file is owned by the ftp user and belongs to the ftp group as
well. If you need uploaded files to be owned by a different user, modify the chown_uploads
and chown_username directives in the FTP configuration file.

Once you have your FTP configuration completed, don’t forget to enable
the vsftpd service to start at boot.

Configuring Pure-FTPd
Pure-FTPd is rather easy to configure, and it comes with many features ready to go “out
of the box.” The most difficult part can be installing the software. You can download the
source code from this site, www.pureftpd.org/project/pure-ftpd/download, and install
from source code (covered in Chapter 2.)

Some distributions, however, provide Pure-FTPd via a special repository. On CentOS,
the pure-ftpd package is available in an Extra Packages for Enterprise Linux (EPEL)

mailto:anonymous@192.168.56.102:/
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
mailto:anonymous@192.168.56.102:/upload
http://www.pureftpd.org/project/pure-ftpd/download

Looking at FTP Servers  569

c10.indd  09/14/2016  Page 569

repository. You should check to see if this repository has been enabled on your system by
using super user privileges and issuing the following command:

yum --enablerepo=epel info pure-ftpd
Loaded plugins: fastestmirror, langpacks

Error getting repository data for epel, repository not found
#

If you get detailed package information on the pure-ftpd package, then the epel reposi-
tory is enabled. However, if you get an error similar to the preceding example error, there
are a few more steps that you need to take before you can perform an installation.

To enable the epel repository for a CentOS or other Red Hat–based distribution, go to
the dl.fedoraproject.org/pub/epel/7/x86_64/e/ website and record the current version
of the epel-release*.rpm package. In the following snipped example, the wget command
is used to download the current package, but you can use other methods:

wget http://dl.fedoraproject.org[...]epel-release[...].rpm
[...]
Resolving dl.fedoraproject.org (dl.fedoraproject.org)...
[...]
#
ls *.rpm
epel-release-7–6.noarch.rpm
#

Once the epel repository package is downloaded, it is installed using super user privi-
leges and the rpm command, as shown in this snipped listing here:

rpm -ivh epel-release-7–6.noarch.rpm
[...]
Updating / installing...
 1:epel-release-7–6
 ################################# [100%]
#

After all that work, you can now install the pure-ftpd package using yum and super user
privileges. A snipped example on a CentOS system is shown here:

yum --enablerepo=epel install pure-ftpd
[...]
Installing:
 pure-ftpd x86_64 [...]
Installing for dependencies:

http://dl.fedoraproject.org[...]

570  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 570

 postgresql-libs x86_64 [...]
[...]
Complete!
#

On Ubuntu, the pure-ftpd package is in the standard repositories. Just
type sudo apt-get install pure-ftpd to install Pure-FTPd.

The pure-ftpd daemon has a man page that will allow you to do some research.
However, the Pure-FTPd project has extensive documentation at www.pureftpd.org.

Looking at Command-Line Options
The Pure-FTPd daemon, pure-fptd, can be run from the command line and has many use-
ful options. To see all the available options, type pure-ftpd ––help at the command line.

A few of these options deserve some special attention. Therefore, Table 10.19 lists them.

Ta b le 10 .19     pure-ftpd command-line options

Short Option Long Option Description

-4 ––ipv4only Listen only for IPv4 traffic connections.

-6 ––ipv6only Listen only for IPv6 traffic connections.

-A ––chrooteveryone Perform chroot for all clients except the
root user.

-a gid ––trustedgid gid Do not chroot clients in GID gid.

-B ––daemonize Start the service in the background.

-C num ––maxclientsperip num Accept only up to num concurrent clients
per IP address.

-c num ––maxclientsnumber num Accept only up to num concurrent clients.
Defaults to 50.

-d ––verboselog Turn on command logging. Use the option
twice to turn on response logging as well.

-e ––anonymousonly Allow only anonymous users.

-E ––noanonymous Do not allow anonymous users, but do
allow individual username/password
authentication.

http://www.pureftpd.org

Looking at FTP Servers  571

c10.indd  09/14/2016  Page 571

Short Option Long Option Description

-h ––help Obtain help information.

-I time ––maxidletime time Set maximum idle time minutes before
forced client logout. Default is 15 minutes.

-i ––anonymouscantupload Disallow anonymous uploads.

-k num ––maxdiskusagepct num Disallow additional uploads when partition
is greater than num percent full.

-M ––anonymouscancreatedirs Allow anonymous users to create
directories.

-r ––autorename Force uploaded files with same name as a
current file to be renamed.

-U umask ––umask umask Set the default umask for uploaded files.

-u uid ––minuid uid Disallow users with a UID below uid to
log into the FTP server. Typically used for
low UIDs (administrative accounts).

-V ipaddr ––trustedip ipaddr Only allow non-anonymous access from
this ipaddr IP address.

-Z ––customerproof Block common FTP client mistakes.

Pure-FTPd can also be controlled via its configuration files, though few changes are
typically needed. The following sections step you through various FTP server access methods.

Accessing with Username or Anonymous
The primary Pure-FTPd configuration files and locations are different, depending on your
distribution. You may find configuration files in the /etc/pure-ftpd/ or /etc/default/
directory or within a /etc/pure-ftpd/ subdirectory.

Following the CentOS example, the primary configuration file is /etc/pure-ftpd/
pure-ftpd.conf. However, to access the FTP server and upload files using anonymous, no
changes to the default configuration file are necessary. Here the service is started and tested
on the CentOS FTP server:

service pure-ftpd start
Redirecting to /bin/systemctl start pure-ftpd.service
#
touch /var/ftp/test.dat

572  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 572

#
ls /var/ftp
test.dat
#
lftp 192.168.56.101
lftp 192.168.56.101:~> ls
drwxr-xr-x 2 0 0 21 May 5 17:35 .
drwxr-xr-x 2 0 0 21 May 5 17:35 ..
-rw-r––r–– 1 0 0 0 May 5 17:35 test.dat
lftp 192.168.56.101:/> get test.dat -o copy_test.dat
lftp 192.168.56.101:/> exit
#
ls copy*.dat
copy_test.dat
#

On CentOS, the default directory for the ftp user is /var/ftp/. Therefore, a file in the
proceeding example was created within that directory. The lftp command was used to test
anonymous access and download the file. It works successfully and requires no pure-ftpd
configuration file changes.

To check username/password access, a file was created in the /home/chris/ directory.
Again, there were no problems accessing in this manner and downloading a file.

touch /home/chris/reg_user_test.dat
#
ls /home/chris/reg_user_test.dat
/home/chris/reg_user_test.dat
#
lftp -u chris 192.168.56.101
Password:
lftp chris@192.168.56.101:~> ls reg_user_test.dat
-rw-r––r–– 1 0 0 0 May 5 17:37 reg_user_test.dat
lftp chris@192.168.56.101:/>
lftp chris@192.168.56.101:/> get reg_user_test.dat -o my_test.dat
lftp chris@192.168.56.101:/> exit
#
ls my_test.dat
my_test.dat
#

If you want to use Pure-FTPd for anonymous uploads and downloads, you will
have to make some configuration file changes as well as create a special directory.

mailto:chris@192.168.56.101:/
mailto:chris@192.168.56.101:/
mailto:chris@192.168.56.101:/

Looking at FTP Servers  573

c10.indd  09/14/2016  Page 573

Here is the code for creation of an upload directory, including adding a test file to the
directory:

mkdir /var/ftp/upload
#
chown ftp:ftp /var/ftp/upload
#
chmod 755 /var/ftp/upload
#
touch /var/ftp/upload/myfile.txt
#

Setting up an upload directory is no different than how it was accomplished for use with
the vsftpd FTP server. Once the upload directory is configured, a change to the configura-
tion file is needed, as shown here:

grep AnonymousCantUpload /etc/pure-ftpd/pure-ftpd.conf
AnonymousCantUpload yes
#
nano /etc/pure-ftpd/pure-ftpd.conf
#
grep AnonymousCantUpload /etc/pure-ftpd/pure-ftpd.conf
AnonymousCantUpload no
#
systemctl restart pure-ftpd
#

The AnonymousCantUpload directive must be changed from a yes to a no setting. Once
the modification is completed, the pure-ftpd service is restarted, effectively reloading the
modified configuration file.

The anonymous upload tests were conducted on an Ubuntu system acting as the FTP
client. The ftp command was used, which has slightly different internal commands, as
shown snipped here:

$ touch Hello.txt
$
$ ftp 192.168.56.101
Connected to 192.168.56.101.
220---------- Welcome to Pure-FTPd [privsep] [TLS]----------
[...]
Name (192.168.56.101:christine): anonymous
230 Anonymous user logged in
Remote system type is UNIX.

574  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 574

Using binary mode to transfer files.
ftp>
ftp> ls
200 PORT command successful
150 Connecting to port 46424
drwxr-xr-x 3 0 0 34 May 5 18:00 .
drwxr-xr-x 3 0 0 34 May 5 18:00 ..
-rw----r-- 1 0 0 0 May 5 17:35 test.dat
drwxr-xr-x 2 14 50 23 May 5 18:18 upload
226-Options: -a -l
226 4 matches total
ftp>
ftp> get test.dat test.dat
local: test.dat remote: test.dat
200 PORT command successful
150 Connecting to port 36338
226 File successfully transferred
ftp>
ftp> cd upload
250 OK. Current directory is /upload
ftp>
ftp> ls
200 PORT command successful
150 Connecting to port 56887
drwxr-xr-x 2 14 50 23 May 5 18:18 .
drwxr-xr-x 3 0 0 34 May 5 18:00 ..
-rw-r––r–– 1 14 50 0 May 5 18:13 myfile.txt
226-Options: -a -l
226 3 matches total
ftp>
ftp> put Hello.txt Hello.txt
local: Hello.txt remote: Hello.txt
200 PORT command successful
150 Connecting to port 36660
226 File successfully transferred
ftp>
ftp> ls
200 PORT command successful
150 Connecting to port 52853
drwxr-xr-x 2 14 50 39 May 5 18:20 .
drwxr-xr-x 3 0 0 34 May 5 18:00 ..

Exam Essentials  575

c10.indd  09/14/2016  Page 575

-rw-r––r–– 1 14 50 0 May 5 18:20 Hello.txt
-rw-r––r–– 1 14 50 0 May 5 18:13 myfile.txt
226-Options: -a -l
226 4 matches total
ftp> exit
221-Goodbye. You uploaded 0 and downloaded 0 kbytes.
221 Logout.
$

The anonymous user from the Ubuntu FTP client was able to download the /var/ftp/
test.dat file. Also, the user was able to upload a file, Hello.txt, to the /var/ftp/upload/
directory.

Once you have your FTP configuration completed, don’t forget to enable
the pure-ftpd service to start at boot.

Summary
Sharing files between homogeneous or mixed-system network environments can be done
using Samba, NFS, or FTP servers. Which one you use depends on many factors, such as
network environment, security needs, and desired file transfer rates. Typically, a mixed
environment where Linux and Windows systems exist demands a Samba server. In non-
mixed environments, where it is desired to mount filesystems remotely, an NFS server can
be useful. In an environment that may also be mixed where mounting remote shares is not
desired, an FTP server works well. You may even have situations where all these various
file-sharing servers are employed. Hopefully, this chapter has helped you understand file
servers and provide you with insights into which ones may meet your particular file server
requirements.

Exam Essentials
Describe Samba configuration file directives.    The primary Samba configuration file is
smb.conf, and it may reside in various locations depending on your distribution. Typical
locations are the /etc/samba/ directory or for older distributions, the /etc/, /etc/smb/, or
/etc/samba.d/ directory.

The Samba configuration file directives control how the Samba server operates. The
workgroup directive is an important one in a mixed Windows and Linux network envi-
ronment, because it designates the Samba group (workgroup) and is typically set to the

576  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 576

Windows workgroup/domain name. In legacy mixed-network environments, the netbios
name directive is necessary and sets the Samba server’s NetBIOS name. The security direc-
tive designates the security level (mode) to either a user-level or share-level mode, and it
determines how clients are authenticated. For troubleshooting purposes, the log level
directive is important, because it sets the debugging level to filter Samba log file messages.
By default, the level is set to 0, which means that logging is turned off. Samba log files are
traditionally stored in the /var/log/samba/ directory.

Summarize the various Samba daemons.    While not every Samba daemon is used in every
Samba environment, it is important to know the various daemons as well as whether they
are used in mixed Linux and Windows network environments and with legacy systems. The
Samba daemon, smbd, is always used on the Samba server. It manages offered SMB shares,
provides share locking, handles user authentication, and so on. The nmbd daemon handles
NetBIOS name service requests, and it is used in mixed legacy environments. The winbindd
daemon binds together and manages connections between a Linux system and a Windows
domain controller. It is used in mixed current and mixed legacy environments.

Explain the various NFS mount options.    When creating a /etc/fstab record for perma-
nently mounting an NFS filesystem, it is important to include the correct options. Setting
the tcp option forces the NFS share to be mounted with TCP and is important for avoid-
ing data loss on read/write exports. The udp option forces the NFS share to be mounted
with UDP, which can improve performance for read-only exports. The nfsvers option sets
whether NFS version 2, 3, or 4 is used for mounting and managing the export. NFS version 2
should absolutely not be used any longer, and it is wise to no longer use NFS version 3 either
because of potential security issues. To allow an NFS client request to be interrupted and
avoid hanging when an NFS server crashes or cannot be reached, the intr mount option
is used. The noexec mount option turns off binary execution on mounted exports, which
is typically used when mounting an export where the systems (NFS server and NFS client)
may have incompatible binaries stored on the share.

Summarize various vsftpd.conf directives.    The vsftpd.conf file is the primary Very
Secure FTP configuration file. Within it are various directives, which may need to be
modified depending on the FTP server’s requirements. The anonymous_enable directive
is the primary directive for enabling (if set to YES) or disabling (if set to NO) anonymous
user access. The local_enable directive determines whether local usernames (from the
FTP server’s /etc/passwd file) and passwords (from the FTP server’s /etc/shadow file) are
needed to access the server. The various chroot* directives determine whether FTP clients
have chroot applied to them and, if so, how it is applied. The listen (for IPv4 only) and
listen_ipv6 (for IPv6 only) directives determine whether vsftpd runs in a stand-alone
mode and is started via an initialization service (YES) or it is managed via the xinetd
daemon (NO). The ftp_username directive sets the anonymous account username to be
used for anonymous logins. If not set, the default action is to use the ftp username.

Review Questions  577

c10.indd  09/14/2016  Page 577

Review Questions
You can find the answers in the Appendix.

1.	 In which of the following directories would you typically find Samba log files? (Choose the
best answer.)

A.	 /etc/smb/

B.	 /etc/samba/

C.	 /var/log/samba/

D.	 /var/lib/samba/

E.	 /etc/samba.d/

2.	 Which of the following Linux daemons may be used in providing Samba services? (Choose
all that apply.)

A.	 smbd

B.	 cupsd

C.	 winbind

D.	 nmbd

E.	 cifsd

3.	 To set up a Samba share, you need to modify the main Samba configuration file. Which of
the following is this file? (Choose the best answer.)

A.	 smb.conf

B.	 samba.conf

C.	 mount.cifs

D.	 /etc/samba.d

E.	 smbcontrol

4.	 Once you have modified the main Samba configuration file, what should you do next?
(Choose the best answer.)

A.	 Reload the configuration file into the Samba server daemon on the Samba server.

B.	 Reboot the Samba server.

C.	 Test the Samba configuration syntax with smbstatus.

D.	 Test the Samba configuration syntax with testparm.

E.	 Create a directory or set up a printer queue to share.

5.	 For setting up Samba in a mixed environment of Windows and Linux systems, it is essen-
tial to set the __________ directive to the Windows workgroup or domain name and not an
FQDN. (Choose the best answer.)

A.	 domain name

B.	 adgroup

578  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 578

C.	 windows group

D.	 workgroup name

E.	 workgroup

6.	 For the Samba passdb backend directive, which of the following are legal settings?
(Choose all that apply.)

A.	 tdbsam

B.	 ads

C.	 smbpasswd

D.	 ldapsam

E.	 domain

7.	 Which section in the smb.conf file might you find a file share defined? (Choose the best
answer.)

A.	 [global]

B.	 [netlogins]

C.	 [myshare]

D.	 [printers]

E.	 [profiles]

8.	 Which of the following Samba directives can be used to set whether passwords are required
to access this file share service? (Choose the best answer.)

A.	 public

B.	 browseable

C.	 guest only

D.	 writable

E.	 read only

9.	 Assuming appropriate access is granted, the __________ command allows FTP-style access
to a Samba share. (Choose the best answer.)

A.	 pdbedit

B.	 smbclient

C.	 smbpasswd

D.	 rpcclient

E.	 ftp

10.	 Which of the following items might assist you in troubleshooting a problem with a Samba
client accessing a Samba share? (Choose all that apply.)

A.	 Turn on logging by setting the log level directive in the smb.conf file to a number
higher than 0 but lower than 10.

B.	 See what shares are being offered via the smbclient -L command (with the -U option
and appropriate parameter if needed) on the Samba server.

Review Questions  579

c10.indd  09/14/2016  Page 579

C.	 Perform a few basic network diagnostics between the Samba server and client systems.

D.	 Test the Samba configuration syntax with testparm.

E.	 Determine if the needed Server daemons are running on the Samba server.

11.	 The NFS service that manages NFS client mount requests on the NFS server is which of the
following? (Choose the best answer.)

A.	 portmapper

B.	 rpc.lockd

C.	 rpcbind

D.	 statd

E.	 mountd

12.	 NFS export configuration files are typically located where? (Choose all that apply.)

A.	 /etc/

B.	 /etc/exports/

C.	 /etc/exports.d/

D.	 /proc/fs/nfs/

E.	 /var/lib/nfs/

13.	 Which of the following are typical NFS share directory locations? (Choose all that apply.)

A.	 /

B.	 /etc/

C.	 /proc/

D.	 /srv/

E.	 /var/

14.	 Which of the following /etc/exports directives would be important for trying to create a
read-only share’s configuration record? (Choose all that apply.)

A.	 ro

B.	 rw

C.	 async

D.	 sync

E.	 subtree_check

15.	 Which of the following NFS utilities would show NFS share information specifically?
(Choose all that apply.)

A.	 exportfs

B.	 mount.nfs

C.	 rpcinfo

D.	 showmount

E.	 smbstatus

580  Chapter 10  ■  Sharing Files

c10.indd  09/14/2016  Page 580

16.	 When using the exportfs command to display NFS share information on an NFS server,
which of the following operands is the most helpful? (Choose the best answer.)

A.	 -a

B.	 -o

C.	 -r

D.	 -u

E.	 -v

17.	 Which of the following is software that you may employ to implement an FTP server?
(Choose all that apply.)

A.	 ftp

B.	 pure-ftpd

C.	 vsftpd

D.	 FileZilla

E.	 lftp

18.	 Which of the following statements are true about FTP passive mode? (Choose all that
apply.)

A.	 The FTP server and FTP client are active in establishing the connections.

B.	 Only the FTP server is active in establishing the connections.

C.	 Only the FTP client is active in establishing the connections.

D.	 A data connection and a command connection are established.

E.	 The FTP server uses port 20 and port 21 in the established connections.

19.	 Which usernames are typically used on the FTP server for handling anonymous
connections? (Choose all that apply.)

A.	 anonymous

B.	 vsftpd

C.	 Individual usernames

D.	 anon

E.	 ftp

20.	 Which of the following directives are used in various FTP server daemons to allow anony-
mous uploads? (Choose all that apply.)

A.	 anonymous_upload=YES

B.	 write_enable=YES

C.	 AnonymousCantUpload no

D.	 anon_upload_enable=YES

E.	 anon_mkdir_write_enable=YES

c11.indd  09/14/2016  Page 581

Chapter

11
Managing Network
Clients

The following exam objectives are
covered in this chapter:

✓✓ 210.1 DHCP configuration

✓✓ 210.2 PAM authentication

✓✓ 210.3 LDAP client usage

✓✓ 210.4 Configuring an OpenLDAP server

c11.indd  09/14/2016  Page 582

Managing multiple clients and applications in a network envi-
ronment can be a headache for even the most experienced of
Linux administrators. Fortunately, the Linux server environ-

ment supports several software packages that can help make your life much easier.
This chapter looks at some of the Linux server packages available to help you manage

multiple clients on a network. First, it looks at how to manage the IP network addresses
assigned to clients. Each client on the network must have a unique IP address, and try-
ing to manage them can be a nightmare. Linux provides DHCP software that helps with
that task. After that, the chapter explores how to implement the Pluggable Authentication
Module (PAM) system on a Linux server. The PAM system allows multiple applications on
a server to share the same authentication database so that your clients need to remember
only one userid/password combination for all of the applications they use on the server.
Finally, the chapter examines how to take authentication one step further on the network
by utilizing the OpenLDAP implementation of the Lightweight Directory Access Protocol.
With an OpenLDAP server and client software, different applications on different servers
on the network can share the same authentication database.

Assigning Network Addresses
One of the most difficult jobs on a network is managing IP addresses. Each device that
communicates on the network must have a unique IP address, appropriate for the subnet-
work to which it is connected. If any two devices have the same IP address, problems will
arise.

You have three methods for assigning IP addresses to devices on IP networks:

■■ Manually assigning addresses (called static IP addresses)

■■ Automatically assigning addresses (called dynamic IP addresses)

■■ Using a mixture of static and dynamic addresses

With static IP addresses you must manually assign and track IP addresses on the net-
work. You must configure each individual network device with a unique IP address, subnet
mask, and default router so that it can communicate on the network and ensure that no
other device on the network has the same address.

This works fine for small networks, but it quickly becomes a nightmare for larger
networks. Trying to ensure that each device on the network uses the correct IP address
is nearly impossible, especially when network users have the ability to configure the IP
address on their own client workstations.

Assigning Network Addresses  583

c11.indd  09/14/2016  Page 583

Dynamic IP addresses use a central repository of addresses that are assigned auto-
matically as network devices boot and request them. The Dynamic Host Configuration
Protocol (DHCP) provides a standard method for clients to request an IP address from a
central server and for the server to assign a unique address to each network client. This
section walks you through the DHCP standard and how to implement a common Linux
DHCP server package on your Linux server to offer IP addresses to clients on your local
network.

The DHCP Standard
A DHCP server listens to the local network for requests from clients requiring a net-
work IP address. As each network client boots, it sends out a broadcast message on the
local network requesting an IP address. The DHCP server detects that request and then
responds, assigning a unique IP address to the network device. This process is shown in
Figure 11.1.

F i gu r e 11.1     The DHCP process

DHCP Discovery

DHCP Offer

DHCP
Server

DHCP
Client

DHCP Request

DHCP Acknowledge

The client first broadcasts a DHCP discovery packet. In response to the discovery packet,
every DHCP server on the network responds to the client with a DHCP offer packet. The
client can accept only one offer, but it sends a DHCP request packet to all servers so that
each knows which server the client selected to process the DHCP discovery. The selected
DHCP server sends a DHCP acknowledgement packet back to the client, completing the
DHCP process. When the client has finished using the network address, it can optionally
send a DHCP release packet back to the server.

The DHCP standard also provides a way to send other types of configuration data to the
network client, called DHCP options. Each DHCP option uses a standard option number
to identify the type of data, along with the data value that the client uses to enhance its
network configuration. Common option data types passed in DHCP options are the subnet
mask, default router, and one or more DNS servers required for the client to interact with
other devices both on the local network and on the Internet. Table 11.1 lists a few of the
more common option numbers that are defined in the DHCP standard.

584  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 584

Ta b le 11.1     Standard DHCP options

Code Name

1 Subnet mask

2 Time offset

3 Default router

4 Time server

5 Name server

6 Domain name server

7 Log server

12 Hostname

50 Requested IP address

51 IP address lease time

66 TFTP server

67 Boot filename

The subnet mask, default router, and domain name server provide all of the information
that the client should need to know to interact with other hosts. The other options provide
additional information unique to the particular local network.

The following sections walk you through how to implement a DHCP server on your
Linux server to serve your local network clients.

Linux DHCP Software
These days, you can configure many different types of devices on a network to be a DHCP
server. Most routers provide this service, as well as most server-oriented operating systems,
such as Windows Server, and of course, Linux servers.

The most popular Linux DHCP server package is maintained by the Internet Systems
Consortium (ISC) and is called DHCPd. Just about all Linux server distributions include
this in their software repositories, including Debian- and Red Hat–based distributions.

Once you have a DHCP server running on your network, you’ll need to tell your
Linux clients to use it to obtain their network addresses. This requires a DHCP

Assigning Network Addresses  585

c11.indd  09/14/2016  Page 585

client software package. There are three popular DHCP client Linux packages that you
can use:

■■ dhcpcd

■■ pump

■■ dhclient

Most Debian- and Red Hat–based distributions use the dhclient package and even
install it by default when a network card is detected during the installation process. In most
Linux desktop environments, you don’t need to do any network configuration at all; the
installation program installs and activates the DHCP client software automatically. All you
need to do is to plug in a network cable or connect to a wireless network.

Installing a Linux DHCP Server
If you need to implement a DHCP server on your local network, install the ISC DHCPd
package on your Linux server. While the DHCPd program is popular enough that it is
included by default in most Linux distribution repositories, unfortunately it’s often called
by different names in different Linux distributions. Currently, Debian-based Linux distribu-
tions call the DHCPd package isc-dhcp-server (however, older Debian-based distributions
called it dhcp3-server). To install the DHCPd program, just use the standard apt-get
utility:

$ sudo apt-get install isc-dhcp-server

For Red Hat–based Linux distributions, the package name is just dhcp:

yum install dhcp

The installation creates the necessary core configuration files, along with installing the
dhcpd executable file to run the DHCP server in the background on your system. You’ll just
need to customize the configuration files for your own network environment. The next sec-
tion covers that.

Configuring a DHCP Server
After you install the DHCPd server program, you’ll need to define your DHCP environment
in the configuration file. For both Debian-based and Red Hat–based Linux distributions, the
standard DHCPd configuration file is stored in the /etc/dhcp folder and is named dhcpd.conf.
Unfortunately, you must configure quite a few options to customize the DHCP server for your
network. The following sections walk through the basics that you’ll need to know to get
things working.

Global Options
At the start of the configuration file, you’ll find global options that apply to all of the
clients in the network. These are usually options that define network-wide resources,

586  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 586

such as domain name servers, mail servers, and time servers. These option lines look
like this:

option domain-name-servers 10.0.0.10 10.0.0.11;
option smtp-server 10.0.0.100;
option pop-server 10.0.0.100;
option nntp-server 10.0.0.101;
option time-servers 10.0.0.150;

You must define each type of server in a separate option configuration line. Fortunately,
DHCPd configuration option names are somewhat self-explanatory as to what they define.
For example, the domain-name-servers option sends a list of one or more DNS servers that
the clients use to resolve hostnames. In this example, we used IP addresses to define the
servers, but you can also specify the servers using standard hostnames.

Setting Subnet Ranges
After defining the global options, you’ll need to define the individual subnet requirements
for your network environment. Most large networks use subnetting to create multiple smaller
networks inside the larger network. This helps control the broadcasts on the network, as
well as makes it easier to restrict workstations to specific areas of the network.

Each subnet requires its own subnet mask and default router configuration, as well as a
range of IP addresses to which clients on that network should be assigned. To group these
values together for a subnet, you define a subnet declaration section of the dhcpd.conf
configuration file:

subnet 10.1.0.0 netmask 255.255.0.0 {
 option router 10.1.0.1;
 option broadcast-address 10.1.255.255;
 range 10.1.0.10 10.1.0.200;
}

This configuration creates a single subnet address range, 10.1.0.0. The router option
entry defines the default router address that each client on the subnet must use, while the
broadcast-address option entry defines the local broadcast address for the subnet.

The range entry defines the pool of IP addresses that will be assigned to clients in the
subnetwork. In this example, network client addresses start at 10.1.0.10 and go through
10.1.0.200. This setup reserves a small number of IP addresses in the subnet to be used as
static IP addresses, not controlled by the DHCP server.

You can include multiple subnet sections within the configuration file to define multiple
subnets on a network. If multiple subnets share the same options, you can group them
together in a shared-net declaration, giving the network a name:

shared-net sales {
 option domain-name-servers 10.0.0.10;
 option time-servers 10.0.0.15;

Assigning Network Addresses  587

c11.indd  09/14/2016  Page 587

 subnet 10.1.0.0 netmask 255.255.0.0 {
 option router 10.1.0.1;
 option broadcast-address 10.1.255.255;
 range 10.1.0.10 10.1.0.200;
 }
 subnet 10.2.0.0 netmask 255.255.0.0 {
 option router 10.2.0.1;
 option broadcast-address 10.2.255.255;
 range 10.2.0.10 10.2.0.200;
 }
}

The options defined within the shared-net section apply only to the subnets defined in
that section.

It can get somewhat tricky trying to track individual IP addresses as the
DHCP server assigns them. Fortunately, the DHCPd package can help out
some. As the server assigns IP addresses, they’re logged in the /var/lib/
dhcp/dhcpd.leases file. You can peek in that file to see what IP addresses
are leased out and for how long. You can also use the standard arp
command-line command to list IP addresses and their associated MAC
addresses found on the network.

Static Hosts
Some devices on the network always need to use the same IP address, such as servers and
printers. There are two ways of assigning static IP addresses to these devices:

■■ Manually assign the IP address, subnet mask, default router, and domain name server
values.

■■ Create a static host entry in the DHCP server for the device.

Trying to combine static and dynamic IP addresses on the same subnetwork can get
somewhat confusing, since the address information is stored in multiple locations. To solve
this problem, the DHCPd package allows you to define static IP addresses for specific
devices within the configuration file.

When a device that requires a static IP address requests an IP address using DHCP, the
DHCPd server always assigns the device the same IP address. The benefit of this method is
that now you have a single place where both static and dynamic addresses are documented,
helping prevent duplicate static IP address issues.

The DHCP server configuration allows you to assign a specific IP address to a network
device based on the device’s network MAC address. You do that with the host section:

host shadrach {
 hardware ethernet 00:01:02:FE:DC:BA

588  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 588

 fixed-address 10.1.0.5;
 option router 10.1.0.1
 option broadcast-address 10.1.255.255
 netmask 255.255.0.0
 option host-name "shadrach";
}

The hardware entry defines the type of address (Ethernet), along with the MAC address
of the device. If you have many static host entries for a single subnet, you can use the group
statement to create a group of static IP address assignments that share the same default
router, broadcast address, and subnet mask:

group {
 option router 10.1.0.1;
 option broadcast-address 10.1.255.255;
 netmask 255.255.0.0;
 host shadrach {
 hardware ethernet 00:01:02:FE:DC:BA
 fixed-address 10.1.0.5;
 option host-name "shadrach";
 }
 host meshach {
 hardware ethernet 00:01:02:AB:CD:EF
 fixed-address 10.1.0.6;
 option host-name "meshach";
 }
}

You aren’t required to group the fixed-address definitions together, but it does come
in handy when working with lots of static addresses. You can also define static addresses
in the individual subnet sections to which they belong, which can help you keep track of
which IP addresses are being used in each subnet.

BOOTP Hosts
Back in the early days of network computers when hard drives were expensive, diskless
workstations became popular. A diskless workstation didn’t use an internal hard drive,
but instead it used a connection to a shared disk space on a server to run applications and
to store files. However, without its own hard drive, a diskless workstation had no place to
store its own operating system files.

Enter the Bootstrap Protocol (BOOTP). With BOOTP, a diskless workstation sends out
a broadcast message on the network looking for a server to send it the operating system file
it can use to boot the workstation. The BOOTP server maintains different operating system
files for different diskless workstations on the network.

Assigning Network Addresses  589

c11.indd  09/14/2016  Page 589

These days, although diskless workstation aren’t all that common, some network devices,
such as switches and routers, still use BOOTP to load an operating system file from a remote
server. This helps reduce the amount of hardware in the network device, often so that it just
needs a small amount of ROM to perform its operations. This also helps make upgrading
network devices a snap. All you need to do is to change one file on the BOOTP server and
reboot all of your network devices.

The DHCPd package supports BOOTP devices. It can respond to BOOTP requests and
then either service them directly or pass the device to another server. To enable BOOTP
support on your DHCP server, you just need to add two lines to the configuration:

allow booting;
allow bootp;

Then for each individual BOOTP host you’ll need to add two more lines to the host defi-
nition, one line that specifies the name of the boot file to download and another that speci-
fies the name of the server from which to download the file:

host shadrach {
 hardware ethernet 00:01:02:FE:DC:BA
 fixed-address 10.1.0.5;
 option host-name "shadrach";
 filename "/mybootfile.img";
 server-name "mainhost";
 next-server "backuphost";
 }

You can also add the next-server entry to specify a secondary boot server where the
client can download the boot file if the primary boot server fails. If the DHCP server is also
serving the boot file, you can omit the server-name entry.

BOOTP clients use the Trivial File Transfer Protocol (TFTP) to transfer the
actual boot file data. If you want to implement BOOTP and DHCP from the
same server, you’ll need to install TFTP server software on your DHCP
server.

DHCP Relaying
One problem with DHCP is that it uses broadcasts from the clients to find a DHCP server.
If your network uses subnets, broadcasts are usually blocked at the central router, so a net-
work client on one subnet won’t be able to send requests to a DHCP server on a different
subnet. That environment would require having separate DHCP servers for the network,
one on each subnet.

To get around this situation, you can use DHCP relaying. With DHCP relaying, you
incorporate a separate DHCP relay server on each subnet that relays any received DHCP

590  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 590

Discover packets it detects on its local network to a remote central DHCP server for
processing.

For this to work, each subnet in the network will need a separate DHCP relay server.
Figure 11.2 demonstrates this setup.

F i gu r e 11. 2     DHCP relay set up

Network

DHCP
server

DHCP offer
DHCP offer

DHCP offer

DHCP
relay

DHCP
Client2

DHCP
relay

DHCP
Client1 DHCP offer

Fortunately, most routers have DHCP relaying services built in, so this setup is not as
bad as it looks. You just configure each router interface to relay DHCP Discover packets to
the central DHCP server.

If your router doesn’t support DHCP relay, the ISC DHCPd package does
include a separate program, called dhcrelay, that you can run on any
Linux client or server to act as a DHCP relay.

DHCP Log Files
The DHCPd application logs all DHCP events to the standard log file for your Linux
system. For distributions that use the syslog facility, that’s usually the /var/log/messages
file. For systems that use the systemd journal application for logging, you’ll need to use the
journalctl application.

Configuring Clients
To use DHCP on a Linux client to obtain a dynamic IP address, you’ll need to have one
of the three Linux DHCP client packages mentioned earlier (dhcpcd, pump, or dhclient).
Normally, when you install a Linux client system, the default DHCP client package for
your Linux distribution is installed by default. For Debian-based and Red Hat–based distri-
butions, this is dhclient.

If your Linux client uses a graphical desktop, there’s usually a utility for enabling
the DHCP setup for the network card, as shown in Figure 11.3 for an Ubuntu Linux
client.

Authentication Service  591

c11.indd  09/14/2016  Page 591

F i gu r e 11. 3     The DHCP settings for an Ubuntu client

After you enable DHCP for the network interface, it will automatically request an IP
address from the DHCP server each time you boot the system.

Authentication Service
These days, just about every application that’s hosted on a server needs some type of
authentication system to protect the application data. Each user of the application must
provide some type of unique authentication information (such as a fingerprint, certificate,
or userid/password combination) before being allowed to access the application. If your
Linux server hosts several different applications, it can get somewhat cumbersome if each
one has its own database of user accounts for authentication.

To help solve this problem, Linux provides a single interface for authentication that
multiple applications on the server can use. The Pluggable Authentication Module (PAM)
system provides a simple interface for multiple applications to interact with different
authentication databases. This section walks you through what you’ll need to know to
implement PAM on your Linux system and how to utilize it for different applications.

PAM Basics
In the “old days,” Linux systems used a single method for controlling access to the sys-
tem. The /etc/passwd text file was used to track user accounts and passwords. The /etc/
passwd file originally contained both the user accounts and their passwords, but as Linux
administrators became more security conscious, the /etc/shadow file was added to that

592  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 592

process to hold the passwords separate from the user account information and to help pro-
tect passwords from public view.

As systems became networked, additional authentication methods became available.
Options such as Kerberos, designed at the Massachusetts Institute of Technology (MIT),
and the Network Information Service (NIS), designed by Sun Microsystems (now part of
Oracle Corporation), provide a centralized database on the network for authentication that
could be accessed by any network server.

As additional authentication methods became available, it became harder for both Linux
systems and applications to work with them. Each individual application needed to have
code to work with each of the different authentication methods. It didn’t take long for
developers to realize that this was going to be a problem.

The PAM system solves this problem by creating a go-between for authentication func-
tions. PAM provides a common application program interface (API) that allows applica-
tions (as well as the Linux operating system) to use a single method for authenticating
users, no matter what underlying authentication system was in use on the server. The PAM
system uses modules to convert the authentication request from the application into the
proper format required for the underlying authentication method used. It then converts the
response received from the authentication method into a standard format that applications
can understand. Figure 11.4 demonstrates this process.

F i gu r e 11. 4     The PAM system in action

App1

App2

App3

Pluggable
Authentication
Module
(PAM)

LDAP Database

Linux /etc/passwd file

pam_ldap.so
pam_unix.so

The key to PAM is the underlying authentication modules. Each module supports a
single authentication method, but you can install multiple modules into a PAM installation
to support multiple authentication methods. Table 11.2 shows some of the different PAM
authentication modules available to use.

Authentication Service  593

c11.indd  09/14/2016  Page 593

Ta b le 11. 2     PAM authentication modules

Module Description

pam_unix.so Uses the standard /etc/passwd and /etc/shadow files

pam_krb5.so Uses the Kerberos 5 authentication system

pam_ldap.so Uses a Lightweight Directory Access Protocol (LDAP) server

pam_nis.so Uses an NIS server

pam_sss.so Uses a System Security Services daemon (SSSD)

pam_userdb.so Uses a standard .db database file for authentication

Besides the authentication modules, PAM provides additional library modules that have
added features to help with the authentication process. These modules provide the rules
that you can incorporate for user account management, such as password complexity rules
or login attempt limits. Table 11.3 shows some of these modules.

Ta b le 11. 3     PAM library modules

Module Description

pam_access.so Used to provide anonymous logins for public FTP servers

pam_chroot.so Used to create a locked down area for logins

pam_console.so Provides a console login environment

pam_cracklib.so Provides password strength checks

pam_deny.so Prohibits login attempts (often used as a default)

pam_env.so Sets or unsets environment variables

pam_lastlog.so Provides the last login time for the user account

pam_limits.so Enforces resource limits (such as number of open files) on accounts

pam_listfile.so Allows or denies actions based on a list file

594  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 594

Just about all Linux distributions install and use PAM by default, even if they just use
the standard /etc/passwd file for authentication. How individual applications use PAM is
controlled by a PAM configuration file. The next section discusses how that works.

Configuring PAM
Each application that uses PAM must have a configuration setup defining which authentica-
tion module to use and how to use it. Unfortunately, there are a couple of ways that Linux
distributions handle the PAM configuration system.

One method is to place all application configurations in a single /etc/pam.conf configu-
ration file. Each line in the configuration file has the same format:

service type control module arguments

The service entry defines the application, such as the login application for console
login prompts or the passwd application for changing your password.

The type entry defines what feature(s) in PAM the service needs to use. You can define
four groups of PAM feature types:

■■ account—Account verification services

■■ auth—Authentication services

■■ password—Password management services

■■ session—External services, such as logging attempts to a file or mounting a directory

An application can define multiple feature types for an authentication, but you must use
a separate configuration line to define each feature type.

The control entry defines what should happen if the authentication fails. You can define
four PAM control actions:

■■ requisite—Terminate the application if authentication fails.

■■ required—Return a failure status if authentication fails, but continue checking other
rules.

■■ sufficient—If the rule succeeds, the authentication process stops with a success
status.

■■ optional—The rule is not necessary, unless it is the only rule defined for the module.

The module entry defines the PAM module library file (including the full path) to use for
the authentication. Finally, the arguments entry defines any additional command-line argu-
ments required for the module.

An example of an entry in the /etc/pam.conf file for the login program looks like this:

login auth required pam_unix.so

The login application is what authenticates users at the login command-line prompt.
This rule authenticates the user login attempt using the pam_unix module, which uses the
standard /etc/passwd and /etc/shadow password files. Since the control is set to required,

Authentication Service  595

c11.indd  09/14/2016  Page 595

if the authentication fails, the login program fails and the user doesn’t get to the shell com-
mand prompt.

Each application can have several different lines in the configuration file, defining dif-
ferent rules for different situations. Because of that, things can get somewhat confusing.
Fortunately, there’s a better solution to configuring the PAM environment.

Using PAM Application Files
The other PAM configuration method uses a separate PAM configuration file for each
application that uses PAM. In this setup, the configuration files are stored in the /etc/
pam.d folder. Each application file uses the service name for the filename and omits that
entry from the configuration line. Listing 11.1 shows a listing of the /etc/pam.d folder in
an Ubuntu system.

Listing 11.1:  The /etc/pam.d folder in Ubuntu

$ ls -al
total 136
drwxr-xr-x 2 root root 4096 Mar 17 00:06 .
drwxr-xr-x 140 root root 12288 May 16 21:50 ..
-rw-r--r-- 1 root root 179 Jan 17 2014 accountsservice
-rw-r--r-- 1 root root 384 Feb 16 2014 chfn
-rw-r--r-- 1 root root 92 Feb 16 2014 chpasswd
-rw-r--r-- 1 root root 581 Feb 16 2014 chsh
-rw-r--r-- 1 root root 1208 Nov 2 2015 common-account
-rw-r--r-- 1 root root 1249 Nov 2 2015 common-auth
-rw-r--r-- 1 root root 1480 Nov 2 2015 common-password
-rw-r--r-- 1 root root 1470 Nov 2 2015 common-session
-rw-r--r-- 1 root root 1435 Nov 2 2015 common-session-noninteractive
-rw-r--r-- 1 root root 527 Feb 9 2013 cron
-rw-r--r-- 1 root root 69 Feb 14 2014 cups-daemon
-rw-r--r-- 1 root root 81 Mar 7 2014 dovecot
-rw-r--r-- 1 root root 56 Apr 9 2014 gnome-screensaver
-rw-r--r-- 1 root root 144 Oct 30 2013 imap
-rw-r--r-- 1 root root 752 Apr 13 2014 lightdm
-rw-r--r-- 1 root root 510 Apr 8 2014 lightdm-autologin
-rw-r--r-- 1 root root 636 Apr 13 2014 lightdm-greeter
-rw-r--r-- 1 root root 4788 Feb 16 2014 login
-rw-r--r-- 1 root root 92 Feb 16 2014 newusers
-rw-r--r-- 1 root root 520 Jan 31 2014 other
-rw-r--r-- 1 root root 92 Feb 16 2014 passwd
-rw-r--r-- 1 root root 255 Feb 11 2014 polkit-1

596  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 596

-rw-r--r-- 1 root root 145 Oct 30 2013 pop3
-rw-r--r-- 1 root root 168 Jan 22 2013 ppp
-rw-r--r-- 1 root root 84 Apr 1 2014 samba
-rw-r--r-- 1 root root 2139 May 2 2014 sshd
-rw-r--r-- 1 root root 2305 Feb 16 2014 su
-rw-r--r-- 1 root root 239 Feb 10 2014 sudo
-rw-r--r-- 1 root root 56 May 21 2015 unity
$

On this particular system, quite a few different applications are configured to use PAM
for authentication. The system creates some files that can be shared between applications,
such as the ones that start with common. Application configurations just include the com-
mon files that they need into their own configuration.

While the basic idea of the PAM configuration files is somewhat straightforward, in real-
ity, PAM configuration files for an individual application can get somewhat complicated.
Listing 11.2 shows the configuration file for the login application on a CentOS system.

Listing 11.2:  PAM configuration file for the login application in CentOS

#%PAM-1.0
auth [user_unknown=ignore success=ok ignore=ignore default=bad] pam_securetty.so
auth substack system-auth
auth include postlogin
account required pam_nologin.so
account include system-auth
password include system-auth
pam_selinux.so close should be the first session rule
session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
pam_selinux.so open should only be followed by sessions to be executed in
 the user context
session required pam_selinux.so open
session required pam_namespace.so
session optional pam_keyinit.so force revoke
session include system-auth
session include postlogin
session optional pam_ck_connector.so

That’s a lot of rules for a simple login! The PAM system checks each rule in the order in
which it appears in the configuration file. If any of the required steps fail, the login process
is terminated and the user login attempt is denied.

Network Directories  597

c11.indd  09/14/2016  Page 597

Be very careful when working with PAM files. If you delete the wrong appli-
cation file or modify the wrong rule within a file, you can lock yourself out
of your own system. This is one case where it’s a good idea to have a res-
cue LiveDVD handy before messing with any configurations.

Network Directories
Network authentication systems allow multiple servers to share the same authentication
database. Much work has been done on network authentication systems, providing a single
sign-on for network clients to access any application or device on a local network. Many
commercial companies have made great strides in providing proprietary network authen-
tication directories. The Microsoft Active Directory system is by far the most popular net-
work authentication system used today.

The open source world isn’t too far behind, though, creating its own network directory
system. The Lightweight Directory Access Protocol (LDAP) was created at the University
of Michigan to provide simple network authentication services to multiple applications and
devices on a local network. The most popular implementation of LDAP in the Linux world
is the OpenLDAP package. Most Linux distributions include both client and server pack-
ages for implementing LDAP in a Linux network environment.

This section walks through how to install and implement the OpenLDAP open source
client and server software packages on your local Linux network. But first, let’s take a look
at what makes up LDAP.

LDAP Basics
Network directory services allow administrators to create a database to store information
regarding network objects. These objects can be network devices (such as servers, printers,
and network switches), users, and even applications. Any device on the network can access
the database and retrieve information regarding the other objects defined in the database.

This has become a handy way to store usernames and passwords in a common location
where any server in the network can authenticate a user and grant (or deny) access based on
properties found in the database. Besides authentication, the LDAP database can also store
permissions for network objects, such as which users are allowed to connect to a server
or printer or run a network application. This creates a centralized database that controls
everything on the network.

An LDAP database is based on the hierarchical database design, similar to how the
DNS protocol defines domain names. A root name defines the core of the database (such
as the .com in a DNS name), and additional entries build off that. The name of an object
in the database relies on its interrelationship with other objects higher up in the database
structure.

598  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 598

In the hierarchical database, objects are connected in a tree-like fashion to one another.
Each LDAP tree must have a root object, with other objects connected in sequence. Objects
connect to other objects by reference, similar to the DNS naming system. Figure 11.5 shows
a sample LDAP database structure.

F i gu r e 11.5     A sample LDAP directory tree

dc=com

dc=sample

cn=Chriscn=Matthew cn=Rileycn=Sasha

Hierarchical databases are best known for fast read times but slow write times. This
method assumes that once an object is written into the database, it will be accessed many
times but not updated very often. This works for most network situations where a userid is
created once, and servers read the record each time the user attempts to log into the server.

The LDAP database consists of one or more schemas. A schema defines the objects con-
tained in the database and how they are interrelated. Each database object is defined by an
object class and assigned a unique object ID. The object class defines a template that con-
tains a set of attributes that the object contains. The attributes define information about
the object, such as a userid for a user object or a server name for a server object. Each attri-
bute has a name and an associated data value. The attributes are where the real data is
stored, so that’s what you’ll need to retrieve in your data queries.

An LDAP tree references objects using the standard X.500 naming convention. For
example, the object

o="Sample, Inc.", c="US"

refers to the object defining the Sample, Inc. corporation located in the United States.
The o and c in the X.500 name refer to attribute names associated with the object
(an organization and a country).

To simplify names, many (if not most) companies have incorporated their registered
domain name into their LDAP tree. This method is often implemented using the parts of
the domain name for each domain context (dc) attribute:

dc="sample", dc="com"

Network Directories  599

c11.indd  09/14/2016  Page 599

Once the base objects are defined for the corporation, you can create additional objects
underneath the corporation tree. You must define each individual object using a unique
name in the database. In LDAP, this unique name is called the distinguished name, or dn.
Each dn references each of the parts of the tree that describe the path to the unique location
of the specific object, for example:

cn="rich", dc="engineering", dc="mycompany", dc="com"

The LDAP tree can branch out by having objects that are created to serve no other pur-
pose but to contain other objects (such as the engineering domain context shown in this
example). This helps make the database more manageable than having all of the objects at
one level. Figure 11.6 demonstrates a more complicated LDAP tree structure that utilizes
objects as containers for other objects.

F i gu r e 11.6     A more complicated LDAP tree structure

dc=com

dc=sample

dc=sales dc=accting

cn=Anne cn=Aleciadc=east dc=west

cn=Jim cn=Laura

With the LDAP schema containing multiple objects, and each object containing mul-
tiple attributes, it can get pretty confusing trying to decipher just where your data is

600  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 600

located. One standard that’s become popular for defining an LDAP object is the LDAP
Data Interchange Format (LDIF). The LDIF standard uses a text-based method for
describing an LDAP object entry and its attributes. The format of an LDIF record looks
like this:

dn: <distinguished name>
<attrtype>: <attrvalue>
<attrtype>: <attrvalue>
...

The dn line defines the distinguished name of the object. Each line after the dn defines
individual attributes for the object, one attribute and value pair per line. The beauty of
LDIF files is that you can easily export an entire LDAP database into an LDIF file for docu-
mentation or backup purposes. There are also utilities to import an LDIF file into an LDAP
database.

The LDAP database itself can be stored on one or more servers on the network. You can
use three different methods to store the LDAP database:

■■ The entire database on a single server (stand-alone)

■■ The entire database on multiple servers (replication)

■■ Parts of the database on multiple servers (distributed)

Each method has its own unique way of storing information and operating on the
network.

An LDAP server that is operating in stand-alone mode stores all of the objects contained
in the defined LDAP database locally. Any requests for information from the LDAP data-
base must be directed to the single LDAP server. The stand-alone server is responsible for
responding to queries for data in the local LDAP database. Any requests for data outside
the defined LDAP database are not processed.

In replicated mode there is more than one LDAP server, each containing the entire
LDAP database. Since each server contains the entire database, any request for network
information can be handled by any of the LDAP servers. This method works well for orga-
nizations that may have WAN links between sites. Network clients can be configured to
query the LDAP server that is local to their WAN segment without having to obtain infor-
mation from a remote LDAP server.

The last method used is distributed mode. This can be the most complicated method
to implement. In distributed mode, each server is responsible for only part of the LDAP
database. No one server contains the entire LDAP database. For a client to resolve a
query, it must connect to the LDAP server responsible for the section of the database that
contains the information being queried. Figure 11.7 shows a simple distributed LDAP
network.

Network Directories  601

c11.indd  09/14/2016  Page 601

F i gu r e 11.7     Simple distributed LDAP server network

dc=com

dc=sample

dc=accting

cn=Anne cn=Alecia

dc=sales

LDAP
Server 1

LDAP
Server 2

dc=east dc=west

cn=Jim cn=Laura

LDAP
Server 3

Clients wanting to retrieve information in the dc=sales, dc=sample, dc=com tree
must connect to the Server 2 LDAP server. This method works well for organizations
that divide their LDAP database into geographical pieces, where each location can contain
objects related to the local area.

Unfortunately, distributed mode does not provide for redundancy. If any of the LDAP
servers should crash, information contained in that section of the LDAP database tree will
become unavailable. Some LDAP implementations now allow for replicated distributed
LDAP servers to combine the best of both replicated and distributed modes.

The OpenLDAP Server
The most popular LDAP implementation for the Linux platform has been the OpenLDAP
package. This package allows a Linux server to host stand-alone, replicated, or distri
buted LDAP databases. It also includes client software to allow the Linux server to access
an LDAP database on the network. The OpenLDAP software website is located at
http://www.openldap.org.

http://www.openldap.org

602  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 602

This section describes how to install the OpenLDAP software package on a Linux
server. Once this has been done, you can configure OpenLDAP to support the directory
tree structure required for your organization.

Installing OpenLDAP
Most Linux distributions include the OpenLDAP software as two separate packages in the
software repository. One package bundles the files necessary to run an OpenLDAP server,
while another package bundles just the files needed for an OpenLDAP client.

For Debian-based distributions, the packages are slapd for the server (you’ll see why in
the next section) and ldap-utils for the client programs:

$ sudo apt-get install slapd ldap-utils

For Red Hat–based distributions, the packages are conveniently named openldap-servers
and openldap-clients:

yum install openldap-servers openldap-clients

The OpenLDAP packages install several server and client programs, as well as the default
configuration files. However, you’ll need to do some customization before you can start
your LDAP database.

OpenLDAP Server Programs
The OpenLDAP server package consists of several executable programs that are used to
maintain the LDAP database and to respond to network queries to the database. Two main
programs are used to implement the LDAP server:

■■ slapd

■■ slurpd

The slapd program is the heart of the OpenLDAP server. It runs as a background process
to listen for LDAP requests from the network. Once an LDAP request is received, slapd
processes the request based on the configured LDAP database and returns any results to the
client.

The format of the slapd command line is

slapd [-f config_file] [-h URL] [-d debug] [-n service] [-s syslog]
[ic:ccc] [-l syslog-user] [-r dir] [-u user] [-g group]

As you can see, lots of command line options can be included with the slapd program,
although all of them are optional. Invoking the slapd command without any options starts
the LDAP server with default values for each of the options. Table 11.4 describes the differ-
ent command-line options that can be used.

Network Directories  603

c11.indd  09/14/2016  Page 603

Ta b le 11. 4     slapd command-line options

Option Description

-f config Specify an alternative configuration file.

-h URL Specify the URL that the LDAP server will bind to for LDAP
requests. By default, it uses the local host IP address.

-d debug Turn on debugging at the specified debug level.

-n service Specify an alternate service name for logging purposes.

-s syslog Specify the level to log statements into the logging facility.

-l syslog-user Select the user-specified local name for the syslog facility. By
default, this is LOCAL4.

-r dir Specify a chroot directory for slapd to operate in.

-u user Specify an alternate user name to run slapd with.

-g group Specify an alternate group name to run slapd with.

While the command-line parameters control how the OpenLDAP server behaves in gen-
eral, there is also a configuration file that controls the finer details of how the server operates.

The slurpd program is used when operating OpenLDAP in a replicated server environ-
ment. Its job is to connect with slapd programs running on remote LDAP slave servers and
propagate any LDAP database changes. The format of the slurpd command line is

slurpd [-d debug] [-f config] [-r replog] [-t dir] [-o] [-k srvtab]

Much like the slapd program, all of the options for the slurpd program are optional.
If no options are included in the command line, slurpd uses default values for each of the
options. Table 11.5 describes the options available.

Ta b le 11.5     slurpd command-line options

Option Description

-d debug Turns on debugging at the specified debug level

-f config Specifies an alternate slapd.conf configuration file

-r replog Specifies an alternate replication log file

-t dir Specifies an alternate location to copy the replication log file while processing it

604  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 604

Option Description

-o Runs once and exits

-k srvtab Specifies an alternate location of the Kerberos srvtab file, which
contains keys for the replica LDAP servers

The slurpd program reads the replication log file, which identifies LDAP database
changes and connects to remote LDAP servers to submit the changes to the remote rep-
lica databases. After contacting all replicas, slurpd goes to sleep for a set period. When
it wakes back up, it rereads the replication log file. If it is empty, it goes back to sleep. If it
contains new database updates, slurpd again connects to the remote replica databases and
sends the new database updates.

Designing a Directory Schema
After installing OpenLDAP, you should spend a few minutes (or hours) designing the LDAP
database tree that will be used for your organization. As mentioned, you can take any of
several approaches in designing the database.

Most organizations that implement LDAP databases use their registered domain names
as the top-level containers for the database. After that, you can create additional containers
to hold employee objects. By creating additional containers, it will be easier for the LDAP
administrator to manage the database, especially if there are many employees in your orga-
nization. Figure 11.8 demonstrates a simple LDAP database layout that can be used.

F i gu r e 11. 8     Sample LDAP database layout

dc=net

dc=ispnet1

dc=engineering dc=marketing

cn=cwoenker cn=nwilliams

dc=sales dc=tech

cn=kblumcn-bblum

Table 11 .5     slurpd command-line options  (continued)

Network Directories  605

c11.indd  09/14/2016  Page 605

By using this layout, employee distinguished names would look like the following:

cn=bblum, dc=engineering, dc=ispnet1, dc=net
cn=nwilliams, dc=sales, dc=ispnet1 dc=net
cn=cwoenker, dc=marketing, dc=ispnet1, dc=net
cn=rmullen, dc=accounting, dc=ispnet1, dc=net
cn=kblum, dc=tech, dc=ispnet1, dc=net

You don’t necessarily have to design your own database schema from scratch; the
OpenLDAP software includes several standard schema templates that you can use. The
schemas are included in the OpenLDAP package as LDIF files, so you can easily import
them into your LDAP database structure.

The most popular generic schema is the inetOrgPerson schema, which implements
a simple white pages schema, because it emulates the old-fashioned White Pages tele-
phone directory, updated for the computer world. The white pages schema allows you to
store simple information about people into the database, such as names, addresses, email
addresses, and phone numbers.

Once you have designed a suitable LDAP database schema for your organization, you
must define it in OpenLDAP. Regrettably, this is where things can get really complicated.

Implementing a Directory Schema
Unfortunately, there are two different methods for implementing the LDAP directory
schema on your OpenLDAP server:

■■ The slapd.conf method

■■ The slapd-config method

The slapd.conf method uses a single text configuration file (/etc/slapd.conf) to hold
the definitions for the root of the LDAP directory schema.

However, starting with version 2.3.3, OpenLDAP provides an alternative method for
storing the configuration. The slapd-config method uses standard LDIF files to define
configuration options. This method is gaining in popularity among Linux distributions,
and it has become the default configuration method for both Debian- and Red Hat–based
distributions.

The slapd-config method uses multiple LDIF files in the /etc/slapd.d folder to store
configuration and database schema information. However, you don’t modify any of these
files directly, because OpenLDAP provides utilities to do that for you.

If your Linux distribution uses the slapd.conf method, you’ll need to modify three lines
in the /etc/slapd.conf configuration file to define the root of your LDAP database and an
administrator account for your database:

suffix "dc=ispnet1, dc=net"
rootdn "cn=Administrator, dc=ispnet1, dc=net"
rootpw testpasswd

606  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 606

The suffix entry defines the root of the LDAP tree structure for the organization. As
mentioned, most often it’s the domain name assigned to the organization (ispnet1.net for
this example).

The rootdn entry defines a user account object that has full administrator privileges to
the LDAP database. Often this user account object is at the root level of the organizational
structure, but that doesn’t have to be the case.

The rootpw entry defines the password for the root user account. Older versions of
OpenLDAP defined this as a text value in the configuration file. Newer versions store this
as an encrypted value. You can use the slappasswd utility that comes with OpenLDAP to
generate the encrypted password value and then plug that into the slapd.conf file. When
using the encrypted value, the format for the rootpw entry becomes

rootpw {SHA}<encrypted password>

The {SHA} prefix indicates that the value is encrypted.

The rootdn user account is automatically granted full read/write permis-
sions to the entire database. There may be situations where you’d like to
grant partial permissions to a subset of the database. OpenLDAP allows
you to implement access control by defining access rules in the configura-
tion file. The access rules define what LDAP user accounts have what per-
missions to what areas of the database structure. This can come in handy
if you need to split administration of the organization database among
multiple admins.

OpenLDAP provides four additional server utilities:

■■ slapadd—Adds new objects directly to the LDAP database by reading the object defi-
nitions in LDIF files

■■ slapcat—Exports the LDAP database into an LDIF file

■■ slapindex—Re-indexes the LDAP database based on a specific attribute

■■ slappasswd—Generates an encrypted password from a text value

These utilities allow you to set up the directory structure on your OpenLDAP server
before opening it up for clients. The slapadd utility reads an LDIF file and adds the objects
defined in the file into the LDAP schema. For example, to add a new user object, you’d cre-
ate the LDIF file:

dn: cn=rblum, dc=engineering, dc=ispnet1, dc=net
cn: Rich Blum
givenName: Rich
sn: Blum
telephoneNumber: 312–555–1234

Network Directories  607

c11.indd  09/14/2016  Page 607

mail: rich@myhost.com
objectClass: inetOrgPerson
objectClass: top

You can define multiple objects in one LDIF file; just separate each object with a blank
line. Once you have all of the objects defined, you can add them to the LDAP database with
the command

slapadd -l ldif.txt

The slapadd utility automatically inserts the objects, as defined by their distinguished
names, and automatically re-indexes the LDAP database.

The slapadd utility is an easy way to mass-insert multiple objects into an
existing LDAP database. However, the slapd server program must not be
running when you use this utility, because it needs to lock the LDAP data-
base while performing the inserts.

If your Linux distribution uses the slapd-config method, you define the base LDAP tree
using standard LDIF files and the slapadd utility. With the slapd-config method, the core
configuration file is called cn=config and is stored in the /etc/slapd.d folder. As you build
additional nodes in the LDAP tree, OpenLDAP creates additional configuration files under
the /etc/slapd.d folder.

With the slapd-config method, you never modify the actual configuration files; instead,
you use the standard OpenLDAP utilities to add or modify nodes on the tree using LDIF
files to define the operations.

Implementing LDAP Clients
The OpenLDAP client package includes several programs for interacting with an LDAP
database, either on the local system or hosted elsewhere on the network:

■■ ldapadd—Adds objects defined in an LDIF file to the LDAP database

■■ ldapdelete—Removes objects from the LDAP database

■■ ldapmodify—Modifies attributes of existing objects in the LDAP database

■■ ldappasswd—Generates an encrypted value from a text value

■■ ldapsearch—Queries the LDAP database

The ldapadd and ldapdelete utilities are actually just links to the ldapmodify util-
ity. When the ldapmodify utility detects that it’s run as either ldapadd or ldapdelete, it
assumes those specific options. Table 11.6 shows the other options that are available for the
ldapmodify utility.

mailto:rich@myhost.com

608  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 608

Ta b le 11.6     The ldapmodify utility options

Option Description

-a Add new objects.

-c Continue processing entries in the LDIF file even if there are errors.

-D dn Use the specified dn to log into the LDAP directory.

-d debug Specify the debug level for debugging.

-E ext Use the specified search extensions and values.

-e ext=param Use the specified general extensions and values.

-f file Read the LDIF entries from the specified file.

-H uri Use the specified URI to connect to the LDAP server.

-h host Use the specified host to connect to the LDAP server.

-I Enable interactive mode.

-N Do not use reverse DNS to look up hostnames.

-n Show what objects would be modified, but don’t actually modify them.

-O security Set the security properties of the connection.

-o opt=param Set the specified options and values.

-P x Use the specified LDAP protocol version (either 2 or 3).

-p port Use the specified port to connect to the LDAP server.

-Q Enable quiet mode.

-R realm Use the specified realm when authorizing.

-S file Entries that produced an error are written to the specified file.

-U authid Use the specified authorization ID.

-v Use verbose mode, writing output to the standard output.

Network Directories  609

c11.indd  09/14/2016  Page 609

Option Description

-V Display version information.

-W Prompt for a password.

-w passwd Use the specified password.

-X authxid Use the specified dn or username when authorizing.

-x Use simple authentication.

-Y mech Use the specified mechanism when authorizing.

-y passfile Read the password from the specified file.

-Z Initiate a secure operation using Transport Layer Security (TLS).

The ldapadd utility differs from the slapadd utility in that instead of working directly
with the LDAP database files, the ldapadd utility connects to the OpenLDAP server as a
client and submits a request to add the new objects. Because it acts as a client, you don’t
need to take down the LDAP database for it to work. However, because of that, using
ldapadd to insert lots of objects will be slower than using slapadd.

The core client utility is the ldapsearch command. That’s what you use to query the
LDAP database for information. As you would expect, LDAP queries can get somewhat
complicated. The ldapsearch utility allows you to customize many things, such as the
location in the LDAP database to search and the items to search for. Table 11.7 shows the
command-line parameters used to help customize the search.

Ta b le 11.7     The ldapsearch command-line parameters

Parameter Description

-a Specify how distinguished name aliases are handled.

-A Retrieve attributes but not the values.

-b base Use the specified distinguished name to start the search.

-C Automatically follow referral links.

610  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 610

Parameter Description

-d debug Set the debug level to the specified level.

-D bind Use the specified distinguished name to log into the database.

-f file Read the search criteria from the specified file, one search
per line.

-h host Use the specified host for the LDAP server.

-H uri Use the specified URI to connect to the LDAP server.

-I Enable interactive mode.

-k Use Kerberos authentication.

-K Bind using Kerberos but don’t connect.

-l time Specify a time limit for the search.

-L Display results in LDIF format.

-n Display what would be done, but don’t perform the search.

-O prop Specify the security properties.

-p port Use the specified port to connect to the LDAP server.

-P Specify the LDAP protocol version to use.

-Q Enable quiet mode.

-s Specify the scope of the search to the base dn, one dn, or sub dn.

-S addr Sort the output based on the specified attribute.

-t Write retrieved values to a temporary file.

-u Include the user-friendly version of the distinguished name.

-U authid Specify an authentication ID to log into the LDAP database.

-v Use verbose mode.

Table 11 .7     The ldapsearch command-line parameters  (continued)

Network Directories  611

c11.indd  09/14/2016  Page 611

Parameter Description

-w pass Use the specified password for simple authentication.

-W Prompt for a password for simple authentication.

-x Use simple authentication.

-X authid Specify an authorization ID for the login.

-Y mech Specify the mechanism for authentication.

-z size Specify a size to limit the amount of data returned.

-Z Use Transport Layer Security (TLS) for the connection.

The ldapsearch command is very versatile, but with versatility often comes complexity.
Listing 11.3 demonstrates how to perform a simple search.

Listing 11.3:  Searching for LDAP objects

$ ldapsearch -b 'dc=ispnet1, dc=net' '(objectclass=*)'
version: 2

#
filter: (objectclass=*)
requesting: ALL
#

ispnet1, dc=net
dn: dc=ispnet1, dc=net
objectClass: organization
o: "ISP test network"

Administrator, dc=ispnet1, dc=net
dn: cn=Administrator, dc=ispnet1, dc=net
objectClass: organizationalRole
cn: Administrator

search result
search: 2
result: 0 Success

612  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 612

numResponses: 3
numEntries: 2
$

In the example shown in Listing 11.3, the -b option defines the base distinguished name
for the start of the search. Instead of starting at the root of the database schema, you can
start at any node. The second parameter defines the search criteria. This example returns
all objects that match all object classes.

E x e rc i s e 11.1

Setting Up and Testing a DHCP Server

This exercise demonstrates how to set up a simple DHCP server on your Linux system. To
do that, follow these steps:

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of
the following commands.

2.	 Open a command prompt, and then type sudo apt-get install isc-dhcp-
server to install the DHCPd package on your Debian-based system or yum install
dhcp to install it on your Red Hat–based system. You won’t see any objects added to
the menu when this program is installed.

3.	 Edit the /etc/dhcp/dhcp.conf configuration file. Add the following option lines:

option domain-name-servers 10.1.0.1;
subnet 10.1.0.0 netmask 255.255.0.0 {
 option router 10.1.0.1;
 option broadcast-address 10.1.255.255;
 range 10.1.0.10 10.1.0.200;
}

4.	 Save the /etc/dhcp/dhcp.conf configuration file.

5.	 Shut down the Linux system; then disconnect it from your normal network.

6.	 Connect the Linux system into a stand-alone hub or switch that isn’t connected to
any other networks. Restart the Linux system.

7.	 Go into the network settings window, and assign the workstation a static IP address
of 10.1.0.5, a subnet mask of 255.255.0.0, and a default gateway of 10.1.0.1.

8.	 Connect another client workstation to the same network hub or switch. Make sure
that the new client’s network card is configured to use DHCP. It should obtain an IP
address from the Linux DHCP server. You can check the IP address assigned by using
the ifconfig command at the command prompt.

Exam Essentials  613

c11.indd  09/14/2016  Page 613

9.	 Use the ping utility to test connectivity between the two Linux systems to ensure
network connectivity.

10.	 Uninstall the DHCPd package from your Linux system so that it won’t try to serve IP
addresses when you plug it back into your normal network.

11.	 Log out from the Linux system and plug it back into the normal network.

Summary
Operating a Linux server in a multiclient network environment can be a challenge, but for-
tunately there are some Linux programs that can help out. One of those is the ISC DHCPd
program. It provides a DHCP server program that can serve IP addresses to clients on your
network. It can also use DHCP options to pass along addresses for other key servers on
the network to clients, such as DNS and time servers. Linux clients can use several differ-
ent DHCP client programs to request an IP address from a DHCP server on the network.
The dhclient program is the most commonly used DHCP client application in Linux
distributions.

Authentication is another big issue in multiclient or multiserver environments. The
Linux PAM system provides an easy way to implement different authentication methods
for different applications. The PAM system uses either a configuration file or a set of con-
figuration files stored in a configuration folder to define how each application on the Linux
system authenticates users.

For implementing a network directory on your network, you can use the OpenLDAP
application. The OpenLDAP software provides both an LDAP server and LDAP client utili-
ties that can interact with the LDAP server. The LDAP server maintains network objects in
a hierarchical directory structure that can be easily queried.

Exam Essentials
Describe how DHCP is configured and used on a Linux server.    Most Linux distribu-
tions use the DHCPd application to provide DHCP server services. The DHCPd applica-
tion uses the dhcpd program to listen for DHCP requests from clients and offers dynamic
IP addresses. The DHCPd application stores the configuration settings in the /etc/dhcp/
dhcpd.conf file. You must define the range of dynamically assigned IP addresses within the
configuration file to assign to clients as they request addresses.

Describe how to obtain a dynamic IP address on a Linux desktop.    Three different appli-
cations can be used as a DHCP client in Linux: dhcpcd, pump, and dhclient. Most Debian-
and Red Hat–based distributions use the dhclient application and install it automatically

614  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 614

if a network card is detected during installation. Normally, the dhclient application is
activated automatically, and it will request an IP address from the network. You can use the
graphical Network Manager program to make any changes to the setup.

Explain how multiple applications can share the same authentication method.    The Pluggable
Authentication Module (PAM) system provides a single API for applications to use to
authenticate users. Any application that supports PAM can share the same authentication
database, such as the /etc/passwd users file, along with the /etc/shadow passwords file.
The pam.conf configuration file, stored in the /etc folder, defines which applications can
use which authentication methods. Because PAM application configurations can get some-
what lengthy, it allows you to split up each application configuration into separate files,
each located in the /etc/pam.d folder.

Summarize how the System Security Services Daemon (SSSD) works.    The SSSD allows
authentication using network-based directory servers, such as Microsoft Active Directory
and Linux OpenLDAP directories. This provides a method for users to log into multiple
Linux and Windows devices on a network using the same userid/password information. It
plugs into PAM.

Explain the two ways to configure OpenLDAP.    The OpenLDAP program currently sup-
ports two methods for configuring an LDAP environment. The slapd.conf method uses a
single text configuration file, located at /etc/ldap.conf. It defines the root of the LDAP
directory tree, as well as an administrator account used for full access to the tree. The
slapd-config method uses LDIF files to define the base LDAP directory tree and the admin-
istrator account. The base directory is stored in the cn=config file in the /etc/slapd.d
folder. You must use the slapadd utility to process the file and start the LDAP tree.

Describe the OpenLDAP client utilities.    The OpenLDAP client package contains several
command-line utilities for interacting with an LDAP server. The ldapsearch utility pro-
vides a way to query the LDAP server quickly for information on objects in the directory.
The ldapadd and ldapdelete utilities allow you to add and remove objects from the LDAP
tree. The ldappasswd utility allows you to easily change the password assigned to the
LDAP account you logged in with.

Review Questions  615

c11.indd  09/14/2016  Page 615

Review Questions
You can find the answers in the Appendix.

1.	 What does the DHCPd application use for its configuration file?

A.	 /etc/dhcpd.d/

B.	 /etc/dhcp/dhcpd.conf

C.	 isc-dhcp-server

D.	 /etc/services

2.	 What DHCPd option setting do you use to define the default router for network clients?

A.	 smtp-server

B.	 broadcast-address

C.	 router

D.	 range

3.	 What DHCPd configuration option setting do you use to define the pool of IP addresses to
assign to network clients?

A.	 smtp-server

B.	 broadcast-address

C.	 router

D.	 range

4.	 What file do you use to track IP addresses currently assigned by DHCPd?

A.	 /var/lib/dhcp/dhcpd.leases

B.	 /etc/dhcp/dhcpd.conf

C.	 /etc/dhcp/dhcpd.leases

D.	 /var/lib/dhcp/dhcpd.conf

5.	 What DHCPd configuration setting defines the MAC address of a device so that you can
assign it a static IP address?

A.	 range

B.	 fixed-address

C.	 host-name

D.	 hardware

6.	 What DHCP configuration feature bundles settings assigned to a specific client?

A.	 host

B.	 group

C.	 range

D.	 fixed-address

616  Chapter 11  ■  Managing Network Clients

c11.indd  09/14/2016  Page 616

7.	 What DHCP option number defines the subnet mask assigned to a client?

A.	 1

B.	 3

C.	 5

D.	 6

8.	 Which PAM module supports using the standard /etc/passwd and /etc/shadow files for
authentication?

A.	 pam_ldap.so

B.	 pam_userdb.so

C.	 pam_unix.so

D.	 pam_sss.so

9.	 Which PAM module supports using a network directory to authenticate users?

A.	 pam_unix.so

B.	 pam_ldap.so

C.	 pam_userdb.so

D.	 pam_access.so

10.	 Which PAM module provides restrictions on user passwords.

A.	 pam_limits.so

B.	 pam_unix.so

C.	 pam_cracklib.so

D.	 pam_userdb.so

11.	 When using a single configuration file for PAM, where is it located?

A.	 /etc/pam.d

B.	 /etc/pam.conf

C.	 /etc/pam.d/pam.conf

D.	 /etc/pamd.conf

12.	 What folder does PAM use to store multiple application configuration files?

A.	 /etc/pam.d

B.	 /etc/pam.conf

C.	 /etc/pam.d/pam.conf

D.	 /etc/pamd.conf

13.	 Which PAM control entry terminates the application if the authentication fails?

A.	 sufficient

B.	 required

C.	 requisite

D.	 optional

Review Questions  617

c11.indd  09/14/2016  Page 617

14.	 Which PAM feature type logs authentication attempts to a log file?

A.	 account

B.	 session

C.	 password

D.	 auth

15.	 What part of the LDAP database defines a template for a set of attributes that can be
assigned to an object?

A.	 The object ID

B.	 The schema

C.	 The LDAP tree

D.	 The object class

16.	 What part of the LDAP database defines the information stored for an object?

A.	 Attributes

B.	 Object class

C.	 Object ID

D.	 Schema

17.	 What is the unique name assigned to each object in the LDAP database called?

A.	 Object ID

B.	 Attribute

C.	 Object class

D.	 Distinguished name

18.	 What OpenLDAP program runs as the main LDAP server, listening for LDAP client requests?

A.	 slurpd

B.	 slapd

C.	 slapadd

D.	 slapindex

19.	 What LDAP server program allows you to add new objects to the LDAP database?

A.	 ldapadd

B.	 slapindex

C.	 slapadd

D.	 ldapmodify

20.	 What LDAP client application allows you to add new objects to the LDAP database?

A.	 slapadd

B.	 ldapadd

C.	 ldapmodify

D.	 slapindex

c12.indd  09/14/2016  Page 619

Chapter

12
Setting Up System
Security

The following exam objectives are
covered in this chapter:

✓✓ 212.1 Configuring a router

✓✓ 212.3 Secure shell (SSH)

✓✓ 212.4 Security tasks

✓✓ 212.5 OpenVPN

c12.indd  09/14/2016  Page 620

Security is an important component of the Linux system
administrator’s job. It’s imperative that you have proper
security procedures in place to protect the data on your server.

This chapter looks at some different security techniques designed to help protect your
Linux system and the data it contains. First, we’ll look at how to protect your Linux
system from network attacks. While networks provide a world of resources for Linux
servers, they also provide an avenue for attackers to reach your system. We’ll explore how
to block attackers by using the power of Linux to inspect the network traffic and watch
for problems. Following that, we’ll look at how you can use secure communications to
connect remotely to your Linux system safely. A few different applications are available
for protecting your data while it’s on the network, and we’ll look at the two most popular
ones. Finally, we’ll discuss how to keep current with security topics in the Linux world.
Every day new exploits appear, and it’s crucial for the Linux administrator to keep up with
what’s going on.

Server Network Security
Local networks allow you to interconnect Linux servers and clients to make accessing
data simple and cost effective. While this is a great benefit to the system users, it comes
at a great risk. Connecting your Linux system to any type of network opens the door to
attackers. Taking that one step further, connecting the local network to the Internet opens
even more doors. Now attackers from around the world can attempt to break into your
Linux systems.

If you have your Linux system on any type of network, you must take extra precautions
to protect it. This section walks you through some of the tools that you have available to
help out with protecting your system.

Port Scanning
Linux network applications must continually monitor the network interface, watching for
clients requesting access to the application. Connecting remotely to a network application
requires a combination of a network protocol and a software port number to define a
communications channel uniquely on the server.

Server Network Security  621

c12.indd  09/14/2016  Page 621

For the network protocol, the two most commonly used protocols are TCP, used for
connections that must be reliable, and UDP, usually used for connections that move lots of
data quickly but, can afford to lose a packet or two now and then.

Each protocol also uses port numbers so that each application knows when a client is
trying to connect to it. Standard port numbers are assigned to applications, such as TCP
port 25 for email servers or TCP port 23 for Telnet sessions. When the Linux server sees
a client connect to TCP port 25, it knows to pass that traffic to the email server program.
The /etc/services file documents the different standard application ports and protocols
supported by the Linux system.

The more ports that are open on a Linux system, the more opportunities there are for
attackers to attack the system (called attack vectors). The key to network security is to
reduce the number of available attack vectors on your Linux system. Removing unused
network applications helps reduce the number of open ports on the server, thus reducing
the number of attack vectors. For example, if your Linux server has the Apache web server
installed but not in use, this provides an unnecessary connection path to the server. If you
don’t happen to keep up with the Apache server software patches, an attacker can use a
known vulnerability to access your system.

To reduce the attack vectors, you need a way to determine what ports are listening for
incoming network traffic on your system. This section walks you through the different
ways that you can monitor what ports are open on your Linux system.

Telnet
In the old days of Linux, the Telnet application was the only way to connect remotely to
a Linux system on the network. However, because it uses plain text to pass data between
the client and the server, it quickly became a security risk and is no longer used for that
purpose.

However, the Telnet application provides a quick-and-easy way to test TCP network
ports on a Linux system, seeing what application is listening on the port. To do that, you
just include the port number as the second parameter in the telnet command line:

$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 ubuntu02 ESMTP Postfix (Ubuntu)

This example shows using the telnet command to connect to TCP port 25 (the standard
port for SMTP email servers) on the server. Notice that there’s a plaintext response from
the email server application, which indicates that, indeed, something is listening on that
port. The response from the network application provides a header identifying exactly what
application (Postfix) is using that network port and even what operating system (Ubuntu)
the server is running. That’s exactly the type of information attackers are looking for.

622  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 622

netstat
While the telnet command is a quick way to check out a single port, trying to do that for
all of the available ports (from 1 to 65,535) would be somewhat time consuming. If you
need to check the status of multiple ports on your local system, use the netstat command.

The netstat command is very versatile, but with versatility comes complexity. Numerous
command-line options are available in netstat that allow you to customize just what infor-
mation it returns. For example, to display only ports that are listening for incoming TCP
packets, you’d use the following:

$ netstat --tcp --listening
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 ubuntu02:domain *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp 0 0 localhost:smtp *:* LISTEN
tcp 0 0 *:http *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN
tcp6 0 0 [::]:3128 [::]:* LISTEN
tcp6 0 0 ip6-localhost:smtp [::]:* LISTEN
tcp6 0 0 [::]:http [::]:* LISTEN
$

The name after the local address is the port name as defined in the /etc/services file. If
the port number isn’t defined in the /etc/services file, it appears as the number.

Another great feature of the netstat command is that it can also display current open
network connections to your Linux system:

$ netstat --tcp
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.2.15:48964 hanger.canonical.c:http TIME_WAIT
tcp 0 0 10.0.2.15:59411 strix.canonical.co:http TIME_WAIT
tcp 0 0 10.0.2.15:48963 hanger.canonical.c:http TIME_WAIT
tcp6 1 0 ip6-localhost:57291 ip6-localhost:ipp CLOSE_WAIT
$

This example shows an Ubuntu system connecting to the Canonical software repository,
checking for software updates. With the netstat tool, you can snoop on any network
connection to your system.

nc
Netcat (nc) is an application that provides both client and server network services. It is
often used to create a simple data transfer between two systems (thus the cat part of the

Server Network Security  623

c12.indd  09/14/2016  Page 623

name, like the cat command-line command). Just start netcat on one system as a server
and on the other system as a client connecting to the server.

Moreover, netcat is also a valuable network troubleshooting tool. The –z option provides
port-scanning capabilities, allowing you to scan multiple ports looking for an open port. By
default, the –z option returns an exit status of 0 if at least one of the ports is listening for
network traffic. To be able to see which port is active, add the –v option:

$ nc -vz localhost 20–30
nc: connect to localhost port 20 (tcp) failed: Connection refused
nc: connect to localhost port 21 (tcp) failed: Connection refused
nc: connect to localhost port 22 (tcp) failed: Connection refused
nc: connect to localhost port 23 (tcp) failed: Connection refused
nc: connect to localhost port 24 (tcp) failed: Connection refused
Connection to localhost 25 port [tcp/smtp] succeeded!
nc: connect to localhost port 26 (tcp) failed: Connection refused
nc: connect to localhost port 27 (tcp) failed: Connection refused
nc: connect to localhost port 28 (tcp) failed: Connection refused
nc: connect to localhost port 29 (tcp) failed: Connection refused
nc: connect to localhost port 30 (tcp) failed: Connection refused
$

The benefit of netcat is that you can specify any host to connect with, making it easy to
check for open ports on any host on your network.

Two versions of the netcat command are used in Linux, so be careful. The
OpenBSD version supports the -z option, while the version that installs as
part of the nmap package doesn’t. It appears that Red Hat–based versions
use the nmap version, so you’ll need to install the OpenBSD version manually
to use the port-scanning feature.

nmap
The nmap command was specifically developed as a network port-scanning application. It
can scan multiple remote network servers, documenting all of the ports and protocols that
they support.

Not only does the nmap command perform standard TCP and UDP connections, but
it also tries spoofing other known network attacks, such as half-open connections, proxy
attacks, ping sweeps, SYN packet sweeps, and null scans.

To start a scan of TCP ports on a server, use the –sT option. Add the –p option to
specify the port range:

$ nmap -sT -p 1–65535 localhost

Starting Nmap 6.40 (http://nmap.org) at 2016–07–19 19:22 EDT

http://nmap.org

624  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 624

Nmap scan report for localhost (127.0.0.1)
Host is up (0.00021s latency).
Not shown: 65530 closed ports
PORT STATE SERVICE
25/tcp open smtp
80/tcp open http
631/tcp open ipp
3128/tcp open squid-http
42117/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.66 seconds
$

This command scans all of the TCP ports from 1 to 65,535 on the localhost system. The
output of the nmap command is a report showing just which ports in that range are open,
listening for client connections, and what service name is assigned to those ports in the
/etc/services file. You can do the same for the UDP ports:

$ nmap -sU -p 630–640 localhost
You requested a scan type which requires root privileges.
QUITTING!
$
$ sudo nmap -sU -p 630–640 localhost

Starting Nmap 6.40 (http://nmap.org) at 2016–07–20 09:30 EDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000060s latency).
PORT STATE SERVICE
630/udp closed rda
631/udp open|filtered ipp
632/udp closed bmpp
633/udp closed unknown
634/udp closed ginad
635/udp closed mount
636/udp closed ldaps
637/udp closed lanserver
638/udp closed unknown
639/udp closed msdp
640/udp closed pcnfs

Nmap done: 1 IP address (1 host up) scanned in 3.45 seconds
$

http://nmap.org

Server Network Security  625

c12.indd  09/14/2016  Page 625

Note that you must have root administrative privileges on the system to run the nmap
command against some network ports, such as the UDP ports requested in this example.

Another interesting feature of the nmap command is that not only can it detect open network
ports, but it also has some intelligence built in to help identify the operating system of the
remote system. By detecting the open applications and how they respond to requests, nmap
creates a fingerprint of the remote system and can often determine what operating system it
is and what applications it’s running. You can do that using the –A option:

$ sudo nmap -A localhost

Starting Nmap 6.40 (http://nmap.org) at 2016–07–20 09:33 EDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00011s latency).
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
25/tcp open smtp Postfix smtpd
|_smtp-commands: ubuntu02, PIPELINING, SIZE 10240000, VRFY, ETRN, STARTTLS,
ENHANCEDSTATUSCODES, 8BITMIME, DSN,
| ssl-cert: Subject: commonName=ubuntu.gateway.pace.com
| Not valid before: 2015–02–14T21:46:46+00:00
|_Not valid after: 2025–02–11T21:46:46+00:00
|_ssl-date: 2079–04–25T11:29:40+00:00; +62y278d21h55m40s from local time.
80/tcp open http nginx 1.4.6 (Ubuntu)
|_http-methods: No Allow or Public header in OPTIONS response (status code 405)
|_http-title: Welcome to nginx!
631/tcp open ipp CUPS 1.7
| http-methods: Potentially risky methods: PUT
|_See http://nmap.org/nsedoc/scripts/http-methods.html
| http-robots.txt: 1 disallowed entry
|_/
|_http-title: Home—CUPS 1.7.2
3128/tcp open http-proxy Squid http proxy 3.3.8
|_http-methods: No Allow or Public header in OPTIONS response (status code 400)
| http-open-proxy: Potentially OPEN proxy.
|_Methods supported: GET HEAD
|_http-title: ERROR: The requested URL could not be retrieved
No exact OS matches for host (If you know what OS is running on it, see http://
nmap.org/submit/).
TCP/IP fingerprint:
OS:SCAN(V=6.40%E=4%D=7/20%OT=25%CT=1%CU=35620%PV=N%DS=0%DC=L%G=Y%TM=578F7DC
OS:9%P=x86_64-pc-linux-gnu)SEQ(SP=FF%GCD=1%ISR=10A%TI=Z%CI=I%TS=8)OPS(O1=MF
OS:FD7ST11NW7%O2=MFFD7ST11NW7%O3=MFFD7NNT11NW7%O4=MFFD7ST11NW7%O5=MFFD7ST11

http://nmap.org
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/submit/
http://nmap.org/submit/

626  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 626

OS:NW7%O6=MFFD7ST11)WIN(W1=AAAA%W2=AAAA%W3=AAAA%W4=AAAA%W5=AAAA%W6=AAAA)ECN
OS:(R=Y%DF=Y%T=40%W=AAAA%O=MFFD7NNSNW7%CC=Y%Q=)T1(R=Y%DF=Y%T=40%S=O%A=S+%F=
OS:AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)T5(
OS:R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=40%W=0%S=A%A=Z%
OS:F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(R=Y%DF=N
OS:%T=40%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N%T=40%C
OS:D=S)

Network Distance: 0 hops
Service Info: Host: ubuntu02; OS: Linux; CPE: cpe:/o:linux:linux_kernel

OS and Service detection performed. Please report any incorrect results at
http://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 54.01 seconds
$

The nmap command correctly identifies the system as a Linux operating system, and it
even points out some potential security issues with the listening applications! This is a great
tool to have in your network troubleshooting toolkit.

The nmap command performs a somewhat intrusive scan of the remote
system, and it can trigger any intrusion detection system (IDS) installed
on the server into thinking that the system is under attack (more on that in
the “Intrusion Detection Systems” section later in this chapter). Because
of that, if you’re working in an environment with lots of different servers
run by different administration groups, it’s always a good idea to warn
administrators before running nmap against their servers.

OpenVAS
The Open Vulnerability Assessment System (OpenVAS) is an open source project that
combines several services and tools into a single application that can detect vulnerabilities
on your Linux system. One of the great features of OpenVAS is that it’s not a static system:
it receives updates of network vulnerability tests (NVT) on a daily basis, providing up-to-date
testing of known attack vectors against systems. The NVTs simulate known attack vectors
on your system. You can check out the current list of vulnerabilities that OpenVAS moni-
tors on their website, www.openvas.org.

For Debian-based systems, the OpenVAS software is included in the default software
repository as package openvas-server. Unfortunately, Red Hat–based systems don’t
include OpenVAS by default.

You can install OpenVAS on a Red Hat–based distribution by using a repository
sponsored by Atomicorp. You’ll need to add that repository to your trusted repositories
first, and then you can install the openvas package using yum:

$ wget -q -O - http://www.atomicorp.com/installers/atomic |sh
$ sudo yum install openvas

http://nmap.org/submit/
http://www.openvas.org
http://www.atomicorp.com/installers/atomic

Server Network Security  627

c12.indd  09/14/2016  Page 627

After you install OpenVAS, you’ll need to run the openvas-setup script. That script
performs several operations for you:

■■ Updates the vulnerability definitions

■■ Creates an administrator account

■■ Generates default configuration files in the /etc/openvas folder

■■ Installs the OpenVAS server application in the system startup files

After the setup script completes, you can connect to the OpenVAS web interface using
the URL http://localhost:9392. Log in as the admin user account using the password
that you created during the setup process. Figure 12.1 shows the opening OpenVAS web
page.

F i gu r e 12 .1     The OpenVAS main web page

The OpenVAS tool is supported by Greenbone Networks, which created the web
interface. Don’t be confused by the branding that appears on the main page; it’s still the
OpenVAS interface. From here you can manage all of the features of OpenVAS, such as
what hosts to scan and how often to scan them. Once OpenVAS performs a vulnerability
scan on a host, you can view the result reports from the web interface.

http://localhost:9392

628  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 628

Intrusion Detection Systems
While monitoring possible attack vectors is useful, it doesn’t prevent attackers from trying
to break into your system using the existing valid applications that your server must support.
It helps to have software that monitors the network and applications running on the system,
looking for suspicious behavior. These applications are called intrusion detection systems
(IDSs). An IDS application can’t stop attackers, but it can warn you as soon as it detects
something happening.

This section discusses two of the more popular IDS applications in Linux, fail2ban and
Snort.

fail2ban
The fail2ban program monitors system logs, looking for repeated failures from the same
host. If it detects a problem, fail2ban can block the IP address of the offending host from
accessing your system.

The fail2ban program monitors both system and application logs looking for problems.
It monitors common system log files such as the /var/log/pwdfail and /var/log/auth.log
log files, looking for multiple failed login attempts. When it detects a user account that has
too many failed login attempts, it blocks access from the host from which the user account
was attempting to log in.

A great feature of fail2ban is that it can also monitor individual application log files,
such as the /var/log/apache/error.log log file for the Apache web server. Just as with the
system log files, if fail2ban detects too many connection attempts or errors coming from
the same remote host, it will block access from that host.

The fail2ban configuration is stored in the /etc/fail2ban/jail.conf file. It defines
the applications to monitor, where their log files are located, and what actions to take if it
detects a problem.

The downside to using fail2ban is that it can produce false positives that
detect a problem when there really isn’t one. This can cause it to block a
valid client from accessing the system. Fortunately, fail2ban is robust
enough so that you can configure it to release the block after a set time to
allow the client to reconnect correctly.

Snort
The Snort application is a special type of IDS called a network intrusion detection system
(NIDS). It doesn’t monitor activity on the server, but instead it monitors the network traffic
coming into the server. It then performs real-time analysis of the traffic, looking for
attacks.

The key to Snort is where you place the Snort server on your network. If you just plug
your Snort server into a standard network switch like any other server, you’ll be somewhat
disappointed with the results you get. Snort can work only on the packets that it sees, and
the network switch will limit those packets to only packets destined for the Snort server.

Server Network Security  629

c12.indd  09/14/2016  Page 629

To get the full benefit of Snort, connect the Snort server to the network in a location that sees
all of the network traffic coming into and out from your local network, as shown in Figure 12.2.

F i gu r e 12 . 2     Placing the Snort server on your network

Internet

Router

Snort

Local network

WorkstationWorkstation Workstation Workstation

When the Snort server is placed in a location that sees all of the network traffic, it can
monitor your entire local network for intrusion attempts.

Many network switches support the span feature, which allows you to set
a port to mirror another port on the switch. Using this feature, you can tap
into the port that connects your local network to the router, monitoring all
inbound and outbound network traffic without having to physically tap into
the network connection.

Snort supports three different modes:

Sniffer: Snort just dumps network packets to the terminal display.

Packet logger: Snort logs all packets to a log file.

NIDS: Snort doesn’t store detailed packet data but only reports on detected intrusion
attempts.

Snort is a very popular package, and it is included in the software repositories of most
Linux distributions. Installing Snort is usually easy using either apt-get or yum.

630  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 630

After you install Snort, you’ll need to set the configuration to determine what to monitor
and define rules that determine how to handle the network events Snort looks for. The main
configuration file is named snort.conf, and it is stored in the /etc/snort folder. It defines
several variables that customize how Snort works, as well as rules to define how Snort han-
dles network events.

The HOME_NET variable defines the network addresses to monitor. The default value
of any allows Snort to monitor all local network addresses. Likewise, the EXTERNAL_NET
variable defines which external hosts to monitor.

Snort rules have a specific format:

action protocol address direction address options

The action entry determines what Snort should do when the rule is met by a network
packet. Common action values are alert, which sends a message, and log, which enters
the event into a log file, normally stored in the /var/log/snort folder.

The address entries specify the source and destination addresses and are entered as either
an IP address and port (address:port) or by using the value any to cover all addresses or
ports. You can specify a range of IP addresses by including a subnet mask in CIDR address
format, such as 192.168.1.0/24.

The direction entry defines which address is the source address and which address
is the destination address. You use symbols for that, -> or <-for unidirectional traffic
monitoring or <> for bidirectional traffic monitoring. An example of a Snort rule is

alert icmp any any -> 192.168.1.0/24 any (msg: "ICMP traffic detected")

This rule monitors the 192.168.1.0 subnet for any incoming ICMP packets originating
from any outside network. If an ICMP packet is detected, Snort sends an alert message.

Managing Snort rules can be somewhat complicated. To help with that
process there’s a separate package called PulledPork. It allows you to
download predefined rules from a common library and install them.

If you have a server dedicated to running Snort, you’ll need to add the snort program to the
system startup scripts so that it starts automatically. If you just want to run Snort occasionally
on your system, you can also run the snort command directly from the command line:

snort
Running in packet dump mode

 —== Initializing Snort ==—
Initializing Output Plugins!
pcap DAQ configured to passive.
Acquiring network traffic from "enp0s3".
Decoding Ethernet

 —== Initialization Complete ==—

Server Network Security  631

c12.indd  09/14/2016  Page 631

 ,,_ -*> Snort! <*-
 o")∼ Version 2.9.6.1 GRE (Build 56)
 '''' By Martin Roesch & The Snort Team: http://www.snort.org/snort/snort-team
 Copyright (C) 2014 Cisco and/or its affiliates. All rights reserved.
 Copyright (C) 1998–2013 Sourcefire, Inc., et al.
 Using libpcap version 1.5.3
 Using PCRE version: 8.32 2012–11–30
 Using ZLIB version: 1.2.7

Commencing packet processing (pid=26642)
07/20–11:33:45.832940 10.0.2.15:38839 -> 107.170.224.8:123
UDP TTL:64 TOS:0x0 ID:20268 IpLen:20 DgmLen:76 DF
Len: 48
=+

07/20–11:33:45.918301 107.170.224.8:123 -> 10.0.2.15:38839
UDP TTL:64 TOS:0x0 ID:35379 IpLen:20 DgmLen:76
Len: 48
=+

Notice in the snort command output that part of the Snort copyright is owned
by the Cisco Corporation. The Snort application itself is open source software,
but Cisco owns the copyright to the Snort pig logo. You’re still free to use
Snort for all of your NIDS needs.

External Network Security
Having your Linux server connected to just a local network for in-house clients to access
isn’t usually all that much of a security risk. At least you have control over what people and
systems connect to it. However, once you connect your local network to other external
networks, things change. Now you must be aware of unknown people and systems trying
to access your system from unknown remote locations.

When you have to connect your local network to the Internet, some tools are available to
help you protect against attackers. This section walks through some of these tools.

Private Network Addresses and NAT
One way to protect your local network from outside intruders is to utilize private network
addresses. A private network address is an IP or IPv6 address that can only be accessed
from devices connected to the local network. Private network addresses can’t be routed to
outside networks, so outside attackers can’t gain access to your systems.

http://www.snort.org/snort/snort-team

632  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 632

The IPv4 address specification as created by the Internet Assigned Numbers Authority (IANA)
reserved three separate address ranges for private network addresses:

■■ 10.0.0.0 through 10.255.255.255

■■ 172.16.0.0 through 172.31.255.255

■■ 192.168.0.0 through 192.168.255.255

If you use any of these network ranges for your local network, hosts on external networks
can’t directly route network traffic to your local hosts.

The IPv6 standard goes one step further in defining private network addresses. The
IPv6 standard defines link local addresses. When IPv6 is enabled on a Linux system, a link
local address is automatically assigned when the system boots up. That way, IPv6 hosts can
communicate with one another without requiring any manual configuration of network
addresses.

IPv6 defines a standard range of network addresses for the link local addresses. The
IPv6 link local address starts with the value fe80 and usually contains the MAC address
of the system as part of the host address to ensure that each system has a unique link local
address on the network.

While using private network addresses helps prevent attackers from getting inside your
local network, the downside is that no remote systems can send packets back to clients on
your network, including servers with which you want to communicate. This prevents your
local network clients from connecting to any outside resource. To get around that problem,
you utilize Network Address Translation (NAT).

NAT is a method of translating the private network address of all of the clients on your
local network into a public network address for use on the Internet. All of your network cli-
ents appear as a single host address to the rest of the Internet. Because of that, the NAT server
must have some intelligence built in so that it knows which incoming packets are destined for
which local client. Figure 12.3 shows an example of how NAT would look for a local network.

F i gu r e 12 . 3     Using NAT for a local network

Internet

Remote
server

NAT

101.102.103.104

192.168.1.10

192.168.1.5

192.168.1.6

192.168.1.7

Workstation

Workstation

Workstation

Server Network Security  633

c12.indd  09/14/2016  Page 633

Hosts on the internal network use the NAT server as the default router. Any packets
destined for external networks are sent to the NAT server.

External servers needing to communicate back to internal servers use the NAT server’s
external public network address as the destination. The NAT server maintains a dynamic
table that maps all of the active network connections from local clients to remote systems
on the Internet, so it knows which private IP address to forward the incoming packet to.
Now all of your local network clients can interact with remote hosts, but remote hosts can’t
initiate connections into your local clients, thus providing a great balance of security and
functionality.

Sometimes when using NAT, you do need to allow external hosts to connect
to an application running on a server on the local network. Most NAT devices
allow you to use port redirection, which accepts external network traffic as
a proxy for the internal host and then forwards that traffic directly to the
internal server. Be careful when using this feature, though, because opening
your internal hosts to clients on the Internet can be a dangerous thing.

Firewalls
Another technique for blocking unwanted network traffic to your local network is the use
of a firewall. A firewall sits between the network router and the local network and uses
rules that you define to determine which network traffic to allow into the network and
which traffic to block. This is illustrated in Figure 12.4.

F i gu r e 12 . 4     Using a firewall on a local network

Internet

Remote
server

Router

Firewall

Workstation

Workstation

Workstation

These days, many Linux administrators take this idea one step further. Besides having
a network firewall, they also create a firewall directly on each Linux server. This allows
them to have control over exactly what network traffic the server allows and what traffic it
blocks. The next section explains just how to do that on your Linux server.

634  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 634

Using iptables
Linux uses a series of internal kernel processes called chains to process network packets
that enter the system. The chains determine the path each packet takes as it enters the
Linux system and works its way to the appropriate application or as an application sends
packets back out to the network to remote clients. Figure 12.5 shows the different chains
involved with processing network packets on a Linux system.

F i gu r e 12 .5     The Linux packet processing chain

PREROUTING

POSTROUTINGFORWARD

INPUT OUTPUT

System processing

As shown in Figure 12.5, five separate chains process packets:

PREROUTING handles packets before the routing decision process.

INPUT handles packets destined for the local system.

FORWARD handles packets being forwarded to a remote system.

POSTROUTING handles packets being sent to remote systems, after the forward filter.

OUTPUT handles packets output from the local system.

Each chain contains tables that define rules for handling the packets. There are three
types of tables:

FILTER applies rules to allow or block packets from exiting the chain.

MANGLE applies rules to change features of the packets before they exit the chain.

NAT applies rules to change the addresses of the packets before they exit the chain.

As you can probably guess, implementing NAT requires using the NAT table to alter
the address of packets in the OUTPUT chain. Implementing a firewall is a little trickier,
because you can apply filter tables to the INPUT, OUTPUT, and FORWARD chains in the
process. This gives you multiple locations in the process to block packets.

All of the system packet-handling features are performed internally in the Linux kernel
program. Unfortunately, you can’t just set a configuration file to define the rules used to
filter packets on the system. Instead, you need to interact directly with the kernel.

The tool that you use to alter the internal kernel chains and filters is the iptables command.
It interacts with the internal kernel chains and tables, allowing you to alter how the Linux
kernel processes packets.

Server Network Security  635

c12.indd  09/14/2016  Page 635

Because of the complexity of the chains and tables, using the iptables command can get
somewhat complex. Table 12.1 shows the command-line options that are available.

Ta b le 12 .1     The iptables basic command-line options

Option Description

-A chain rule Add a new rule to the specified chain.

-D chain rule Delete a rule from the specified chain.

-F [chain] Remove all rules for the specified chain or all chains if none is
specified.

-I chain index rule Insert a new rule into the specified chain at the specified index
location.

-L [chain] List the rules in the specified chain or all chains if not specified.

-P chain target Define the default policy for the specified chain.

-R chain index rule Replace the rule at the specified index location.

-S [chain] List the rules in detail of the specified chain or all chains if not
specified.

-t table Specify the table the rule applies to.

Here’s an example of displaying all the current rules applied to all chains on the system:

$ sudo iptables -L
[sudo] password for rich:
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
$

Notice that to access the kernel information from iptables, you must have root
privileges on your system. The listing shows that no rules defined are for each chain.

636  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 636

However, each chain has a policy value. The policy entry defines how packets are handled
by default for the chain when no rules apply to the packet. There are several different policy
values; the most commonly used ones are these:

ACCEPT: Pass the packet along to the next chain.

DROP: Don’t pass the packet to the next chain.

LOG: Log the packet and pass it to the next chain.

REJECT: Don’t pass the packet, and send a reject notice to the sender.

If you want to block all packets leaving your Linux system, you would just change the
default OUTPUT chain to a DROP policy:

$ sudo iptables -t filter -P OUTPUT DROP
$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination
$

Now if you try to send packets out the network, the application will get an error message:

$ ping 192.168.1.254
PING 192.168.1.254 (192.168.1.254) 56(84) bytes of data.
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
^C
—- 192.168.1.254 ping statistics—-
3 packets transmitted, 0 received, 100% packet loss, time 2006ms

$

The ping command returns a failure message because it can’t send packets on to the
network. To return things back to normal, just change the default policy back to ACCEPT:

$ sudo iptables -t filter -P OUTPUT ACCEPT
$ ping 192.168.1.254
PING 192.168.1.254 (192.168.1.254) 56(84) bytes of data.
64 bytes from 192.168.1.254: icmp_seq=1 ttl=63 time=1.95 ms
64 bytes from 192.168.1.254: icmp_seq=2 ttl=63 time=7.56 ms

Server Network Security  637

c12.indd  09/14/2016  Page 637

^C
—- 192.168.1.254 ping statistics—-
2 packets transmitted, 2 received, 0% packet loss, time 1004ms
rtt min/avg/max/mdev = 1.951/4.759/7.567/2.808 ms
$

To change chain rules, you need to use some additional command-line options in the
iptables command, as shown in Table 12.2.

Ta b le 12 . 2     Rule options for the iptables command

Option Description

-d address The destination address

-g chain Jump to a new chain

-i name The input interface

-j target The action to take

-o name The output interface

-p protocol Matches a specific protocol, such as tcp, upd, or icmp

-s address The source address

The –j option defines the action, which mirrors the policy values of ACCEPT, DROP, LOG,
and REJECT. Here’s an example of a simple rule:

$ sudo iptables -A INPUT -s 10.0.1.25 -j REJECT
$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
REJECT all — 10.0.1.25 anywhere reject-with
icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
$

638  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 638

The command added a rule to the INPUT chain rejecting all packets coming from the
remote host 10.0.1.25. Listing the contents of the chain now shows that indeed a new rule
exists on the system.

Often you need to block only a single port instead of an entire destination
address. To do that, use the –p option to specify the protocol and then the
--sport or --dport option to specify either a source port or destination port.

The downside to modifying the kernel chain rules is that the new rules aren’t persistent.
When you reboot your Linux system, the new rules that you added will be gone and the
chains will be back to their default configuration. You can save any existing rules that you
define using the iptables-save command:

$ sudo iptables-save > myrules.txt
$ cat myrules.txt
Generated by iptables-save v1.4.21 on Wed Jul 20 20:28:44 2016
*filter
:INPUT ACCEPT [3:316]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [3:260]
-A INPUT -s 10.0.1.25/32 -j REJECT—reject-with icmp-port-unreachable
COMMIT
Completed on Wed Jul 20 20:28:44 2016
$

Then you can restore the rules using the iptables-restore command:

$ sudo iptables -F INPUT
$ sudo iptables -L INPUT
Chain INPUT (policy ACCEPT)
target prot opt source destination
$ sudo iptables-restore < myrules.txt
$ sudo iptables -L INPUT
Chain INPUT (policy ACCEPT)
target prot opt source destination
REJECT all — 10.0.1.25 anywhere reject-with icmp-
port-unreachable
$

After clearing out the rules for the INPUT chain using the –F option, we restored
the rules using the iptables-restore command. Notice that you must use the redirect
operator to redirect the saved rules file to the command.

You can also create a shell script file that contains the individual iptables
commands to create the rules and then run that script automatically as part
of the startup process.

Connecting Securely to a Server  639

c12.indd  09/14/2016  Page 639

The iptables command applies only to the IPv4 packet-handling features
in the Linux kernel. As you can probably guess, there are IPv6 packet-
handling features as well in the kernel. To manipulate the chains in that
process, you use the ip6tables command.

Routing in Linux
One thing that we haven’t talked about is the packet-forwarding feature in Linux. The
FORWARD chain allows Linux to forward packets to a remote host, but that feature must
be enabled in the kernel. To enable that feature, just set the ip_forward entry for IPv4 or
the forwarding entry for IPv6. You can do that with the sysctl command:

$ sudo sysctl –w net.ipv4.ip_forward=1
$ sudo sysctl -w net.ipv6.conf.all.forwarding=1

You can check the current kernel values by using the cat command in the /proc
filesystem entries:

$ cat /proc/sys/net/ipv4/ip_forward
1
$ cat /proc/sys/net/ipv6/conf/all/forwarding
1
$

Once those kernel values are set, your Linux system will be able to forward traffic from
one network interface to another network interface. If there are multiple network interfaces
on the Linux system, it must know which interface to use to send traffic to remote hosts. To
do that, Linux maintains a routing table.

The routing table notes which network interface should be used to send packets to specific
remote hosts. The table is populated by both past experience from sending packets and
from information obtained from other network routers. Linux implements the Router
Information Protocol (RIP), which provides a way for network routers to advertise the
networks that they support. As the Linux system receives RIP packets, it updates the router
table. Linux uses the routed program to listen for RIP packets and update the router table.
As new routes are discovered by the routed program, they are automatically added to the
route table. You can view the new routes using the route command.

Connecting Securely to a Server
In the old days of Linux, connecting to a remote Linux server was as easy as just using the
telnet command and listing the IP address or hostname of the remote server. Unfortunately,
those days are over.

With the increased awareness of security issues, it’s no longer recommended to use the
text-based telnet application to connect to remote servers. Instead, a more secure method
must be used.

640  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 640

This section discusses the two most popular methods used to connect to remote Linux
servers using a secure connection: OpenSSH and OpenVPN.

OpenSSH
The most popular package used in Linux to provide quick, secure connections to Linux
servers is OpenSSH. The OpenSSH package uses the Secure Shell (SSH) protocol to
establish an encrypted connection between two network devices.

This section walks you through the parts of the OpenSSH package and demonstrates
how to use OpenSSH to connect to a remote Linux server.

The OpenSSH Files
Just about all Linux distributions include the OpenSSH application in the default software
repository. You can use apt-get or yum to install it. The OpenSSH package consists of a
few different files that are installed:

■■ The sshd server program

■■ The ssh client program

■■ The sshd_conf server configuration file

■■ The ssh_conf client configuration file

■■ Several certificate files required for encryption

The configuration and certificate files are all stored in the /etc/ssh folder. Usually, the
installation process also generates a host certificate to identify the host uniquely in SSH
connections.

Notice that the OpenSSH package provides both the server, sshd, and the
client, ssh, applications. Because of the similarity of the two programs, it’s
easy to get things confused. The same also applies to their prospective
configuration files, sshd_conf and ssh_conf. Be careful when working
with the applications and configuration files.

OpenSSH Configuration
Usually both the OpenSSH server and client programs work fine as is after installation.
However, there may be some situations where you’d like to customize just how they
behave.

The /etc/ssh/sshd_conf configuration file defines server options in the format

option value

The option entry is the name of an option to set, and value is the value assigned to that
option. Table 12.3 lists the more common options that you may need to change on your
OpenSSH server.

Connecting Securely to a Server  641

c12.indd  09/14/2016  Page 641

Ta b le 12 . 3     Common OpenSSH server configuration options

Option Description

Protocol Specify the encryption protocol level. Level 2 is
preferred and more secure.

PasswordAuthentication Allow authentication using text passwords.

PubkeyAuthentication Allow authentication using certificates.

AllowUsers Allow the specified list of users to log in using SSH.

DenyUsers Block the specified list of users from logging in using
SSH.

PermitRootLogin Allow the root user account to log in using SSH.

X11Forwarding Allow remote X servers to run X client applications
using tunneling.

AllowTcpForwarding The server will accept tunneled protocols.

Most of these options take a simple yes or no value to enable or disable the feature. The
AllowUsers and DenyUsers options use a space-separated list of user account names on the
system to determine which users to allow or block access to the server.

The default sshd_conf configuration file contains lots of other options, which are documented
in comments within the file. Take some time to go through each option to determine if it is some-
thing that would be beneficial in your network environment. After you make any configuration
changes, you need to restart the OpenSSH server for them to take effect.

Using OpenSSH
With the OpenSSH server running, you can connect to it using the ssh client program.
To log into the remote server using the same user account that you use on the client, just
specify the remote server hostname or IP address:

rich@ubuntu02 ∼$ ssh 192.168.1.77

This command will attempt to log into the remote host 192.168.1.77 with the userid
rich. If the user account is set for password authentication, you will get prompted for your
password on the remote system. If the user account is set up for certificate authentication,
you’ll be presented immediately with a command prompt on the remote system.

The first time you connect to a remote host, you’ll be prompted to accept its certificate
into your client key store. This provides a way to validate remote hosts to ensure that your
session is not getting hijacked by an attacker’s system.

642  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 642

If you need to log in as a different user account, just specify it on the command line
using the ampersand sign, like an email address:

barbara@ubuntu02 ∼$ ssh rich@192.168.1.77

The OpenSSH package also includes a handy utility for quickly copying files between
systems. The scp command uses SSH to encrypt the transfer of the files between the
two systems. To transfer a file from your local system to a remote system use

$ scp myfile.txt rich@192.168.1.77:/home/rich/Documents/myfile.txt

To transfer a file from the remote system to your local system use

$ scp rich@192.168.1.77:/home/rich/Documents/myfile.txt myfile.txt

A handy feature of scp is the ability to copy files between two remote servers:

$ scp rich@192.168.1.77:myfile.txt rich@192.168.1.78:myfile.txt

Another common use of OpenSSH is to provide a tunnel for graphical X11 sessions. The
X11 protocol allows you to run applications on a server but send the graphical windows
across the network back to your workstation (in X11 lingo, the system sending the window
is actually the client, and the system receiving the window is the server, which is somewhat
backwards from what you’d expect). Unfortunately, the X11 protocol sends the graphical
window and its data unencrypted.

To secure a remote X11 session, you can tunnel it through an SSH connection. To do
that, the client side of the X11 connection must run the OpenSSH server, and the server
side of the X11 connection must connect as an OpenSSH client.

For the server side, ensure that the X11Forwarding configuration option in the sshd_
conf file is set to yes, and for the client side, ensure that the ForwardX11 option in the
ssh_conf file is set to yes.

Once that is complete, use the ssh program to connect from your workstation to the
remote server and then launch your X11 application. The graphical window will automati-
cally transfer via the SSH connection back to your workstation, which will display the
window.

Using Client Certificates
SSH supports public/private key pair authentication. To log into an SSH session using a
certificate instead of a password, you just need to create a public/private key pair on your
client and then export the public key to the server.

To generate a public/private key pair, you use the ssh-keygen command, included in the
OpenSSH package:

$ ssh-keygen -q -t rsa -f ∼/.ssh/id_rsa -C '' -N ''

This command generates the private and public keys using the RSA encryption. The
private key will be named id_rsa, while the public key will be named id_rsa.pub.

mailto:rich@192.168.1.77
mailto:rich@192.168.1.77:/home/rich/Documents/myfile.txt
mailto:rich@192.168.1.77:/home/rich/Documents/myfile.txt
mailto:rich@192.168.1.77:myfile.txt
mailto:rich@192.168.1.78:myfile.txt

Connecting Securely to a Server  643

c12.indd  09/14/2016  Page 643

Copy the id_rsa.pub file to the remote server. The key contents must be copied into the
∼/.ssh/authorized_keys file for your user account on the remote server. You can do that
using the cat command:

$ cat id_rsa.pub >> ∼/.ssh/authorized_keys

The double greater-than sign appends the text to the existing authorized_keys file. If
you log into the same server from multiple clients, just generate a key pair for each client
and append the public key to the authorized_keys file.

Once you’ve copied the public key to the server, you can use the ssh command to log in.
This time you won’t be prompted for a password; you’ll just go directly to the command
prompt for the remote server.

OpenVPN
The OpenSSH package is great for securely connecting a client to a server session or for
performing quick secure connections between two clients. But what if you need to connect
two systems on separate networks for a long-term period? Linux has a solution for that too.

A virtual private network (VPN) establishes a secure encrypted tunnel between two devices
on separate networks with a public network between them, as shown in Figure 12.6.

F i gu r e 12 .6     Using a VPN to connect two remote systems

Public network

Local network

VPN

Local network

Host 2Host 1

The encrypted tunnel acts as a separate private network, allowing you to pass any
type of network between the two systems securely. A few different VPN applications are
available in Linux, but the LPIC-2 exam focuses on the OpenVPN package (www.openvpn
.net). The OpenVPN package creates an encrypted tunnel between two remote Linux
systems. The Linux systems can then route any type of network traffic destined for the
network to which the remote system is connected. Most Linux distributions include the
OpenVPN package in their standard software repositories.

In a strange set of terminology, even though the connection is peer-to-peer,
OpenVPN calls one end of the connection the server and the other the cli-
ent. In point-to-point connections, it doesn’t matter which end is called
the server. However, if you implement a multi-point VPN between several
sites, one site must be called the server and the others, clients.

http://www.openvpn.net
http://www.openvpn.net

644  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 644

Installing and Configuring OpenVPN
The OpenVPN package is available in both the Debian and Red Hat software repositories,
so you can use the standard software installation programs to install the package:

$ sudo apt-get install openvpn

yum install openvpn

OpenVPN allows you to change option settings, either by storing them in a configuration
file or by specifying them on the command line when you run the openvpn command. When
you specify the options on the command line, you must precede the options with a double
dash (--). When you specify the options in the configuration file, you need to use two sepa-
rate configuration files:

■■ /etc/openvpn/server.conf for the server

■■ /etc/openvpn/client.conf for the client

The option settings are shown in Table 12.4.

Ta b le 12 . 4     The openvpn configuration options

Option Description

config Specify additional configuration files to use to store options

dev Specify the virtual network device name for the VPN tunnel

nobind Create the tunnel without a local network address or port

ifconfig Set the IP addresses of the local and remote VPN tunnel endpoints

secret Specify a static key encryption file

OpenVPN supports two types of encryption methods for creating the tunnel:

Static key encryption: Both the server and client use the same encryption key file.

Public key encryption: The server and client both generate private and public keys and
then share the public key with the remote system.

To use the public key encryption, you need to use a certificate authority (CA) to sign the
private and public keys. It uses the OpenSSL engine to generate those, as demonstrated in
Chapter 9, “Offering Web Services.” OpenVPN includes several scripts to help generate the
required certificates and keys:

vars: Creates the certificate signing request (CSR) to create a CA certificate from
settings in the /etc/openvpn/vars file

Connecting Securely to a Server  645

c12.indd  09/14/2016  Page 645

build-ca: Creates the CA certificate

build-key-server: Creates the public and private key pair for the server

build-key: Creates the public and private key pair for the client

build-dh: Computes a large prime number used for the encryption process

When you run the scripts to build the server and client keys, you’ll be asked lots of questions
about the system name for the keys. Each system in the VPN requires a unique common name
to establish the connections.

After you run these scripts, the key files will be generated and placed in the /etc/openvpn/
keys folder. You must move the client keys to the appropriate client systems using a secure
method, such as by copying them using scp or by copying them to a USB drive and then man-
ually copying them to the remote system.

The static key encryption method is much simpler. Since both the server and client share
the same static key, you don’t need to generate separate sets of keys. Instead, you can use
the openvpn command to generate a single secret key:

$ openvpn—genkey—secret secret.key

This generates the secret.key file, which is used by both the server and the client. If you
must copy the key to a remote client, be careful that you do that securely.

With the keys generated, you’re ready to start configuring the VPN connection. For the
server configuration, you’ll use something like this:

dev tun
ifconfig 192.168.1.10 10.0.1.1
keepalive 10 60
ping-timer-rem
persist-tun
persist-key
secret secret.key

The ifconfig line sets the local and remote IP addresses or hostnames used for the VPN
endpoints. This creates device tun0 as the VPN network interface.

For the client.conf configuration file used on the client system, the configuration file
would look something like this:

remote vpnserver.example.net
dev tun
ifconfig 10.0.1.1 192.168.1.10
keepalive 10 60
ping-timer-rem
persist-tun
persist-key
secret secret.key

646  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 646

Once you have the configuration process complete, you’re ready to use OpenVPN to
communicate securely between systems.

Using OpenVPN
To establish the secure VPN connection, on the server, enter the command

$ sudo openvpn server.conf

Then, on the client, enter the command

$ sudo openvpn client.conf

That’s all that is required! The client should attempt to establish a connection with the
server. If successful, you’ll see the tun0 device created. You can look at its statistics by using
the ifconfig command to ensure that data is traversing the connection.

Security Resources
Installing and using encryption software and intrusion detection software goes a long way
in protecting the data on your Linux system. However, security is a fluid process, and new
vulnerabilities appear every day. As a conscientious Linux administrator, you should do
your best to keep up with the latest security issues and fixes.

The easiest way to do that is to follow one or more of the major security websites. They
provide up-to-date information on the latest attacks and vulnerabilities. This section walks
you through some of the security websites referenced in the LPIC-2 exam to give you an
idea of what they are.

US-CERT
The United States Computer Emergency Readiness Team (US-CERT) is part of the
U.S. Department of Homeland Security, and it leads the nation’s efforts to coordinate
cybersecurity sharing and manage cyber risks to the nation.

The team was created by the U.S. Congress in 2000 and was originally called the
Federal Computer Incident Response Center (FedCIRC). In 2003, it was moved to the
Department of Homeland Security and renamed US-CERT.

The US-CERT maintains a website (www.us-cert.gov), and a news feed to which
anyone can subscribe. Both publish four types of information:

Weekly vulnerability bulletins summarize new vulnerabilities documented in the U.S.
National Vulnerability Database (NVD) as well as information on how to patch the
vulnerabilities.

Technical alerts provide information about vulnerabilities, incidents, and trends as
soon as they’re detected.

http://www.us-cert.gov

Security Resources  647

c12.indd  09/14/2016  Page 647

Current activity entries contain a concise description of an issue and associated actions
administrators can take.

Tips detail issues with broad appeal to US-CERT constituents.

The US-CERT technical alerts news feed is an excellent way of staying up to date with
all of the latest issues facing Linux system administrators.

SANS Institute
The SANS Institute is a private U.S. company that specializes in cyber security training and
certification. As part of this mission, it also supports cyber security research and posts its
findings in information security research papers for public viewing. While not necessarily
up to date, the research papers do provide very useful information on how vulnerabilities
work and ways to prevent them from happening on your system.

Bugtraq
The Bugtraq mailing list is a component of the SecurityFocus website (www.securityfocus
.com) sponsored by Symantec. What makes it unique is that it is a “full disclosure” listing
of vulnerabilities—not only does it report known vulnerabilities, but it also reports on how
attackers are exploiting them to gain access to systems. Their opinion is that by publishing
a full disclosure of known vulnerabilities, vendors will be more proactive in fixing issues
when they occur.

E x e rc i s e 12 .1

Setting Up and Testing a Firewall

This exercise demonstrates how to use the iptables utility to create a firewall on your
Linux system:

1.	 Log in as root, or acquire root privileges by using su or by using sudo with each of
the commands in the following steps.

2.	 Display the current iptables rules and policies. Open a command prompt, and then
type sudo iptables -L. Enter your password if prompted. Note if the rules are
empty or if your system is currently blocking any network traffic.

3.	 Open a second command-prompt window, and use the nc command to start a server,
listening on TCP port 1234. Type the command nc –l 1234.

4.	 Back in the original command prompt window, use the nc command to connect to
the server. Type the command nc 127.0.0.1 1234.

5.	 Enter text in the client window, and press the Enter key to send it to the server. You
should see the text appear in the second command-prompt window. Press Ctrl+C to
stop the session.

http://www.securityfocus.com
http://www.securityfocus.com

648  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 648

6.	 Create a firewall rule to block TCP traffic on port 1234. Type the command sudo
iptables –A OUTPUT –p tcp --dport 1234 –j DROP.

7.	 Check the new rule by typing the command sudo iptables -L.

8.	 Go to the second command-prompt window, and restart the server by typing the
command nc -l 1234.

9.	 Back in the original command-prompt window, connect to the server by typing the
command nc 127.0.0.1 1234.

10.	 Type text at the client window, and press the Enter key to send it. Nothing should
happen on the server. The new iptables rule has blocked the network traffic. Press
Ctrl+C to exit the nc client.

11.	 Clear out the rule by typing the command sudo iptables –F OUTPUT.

12.	 Start the client by typing the command nc 127.0.0.1 1234.

13.	 Type text in the client window, and press the Enter key to send it. Now you should
see the text appear in the server window.

Summary
Operating a Linux system in a network environment can be a challenge. You must protect
your system from attacks by both internal and external attackers. Linux provides a few tools
that you can use to help monitor and prevent network attackers. Several different tools are
available to help monitor the Linux system for open network ports. You can use the telnet
command to check individual TCP ports or the nc and nmap commands to check a range of
TCP or UDP ports. The OpenVAS tool provides a web-based frontend to several vulnerabil-
ity scanners.

Intrusion detection systems (IDS) can monitor your system and inform you when suspicious
activity occurs. The fail2ban program can monitor both system and application log files and
determine when an attack is occurring and then notify you of the attack. The Snort applica-
tion provides network intrusion detection system (NIDS) features by monitoring network traf-
fic and looking for suspicious behavior.

Linux also provides a couple of ways for you to connect securely to remote servers. The
OpenSSH program provides a secure shell connection to a remote server, as well as the ability
to copy files securely between servers. The OpenVPN program creates a secure private tunnel
between two Linux systems, which allows you to route any type of network traffic across the
private tunnel to get to the other end.

Finally, quite a few security resources can provide important up-to-date information on
vulnerabilities. The US-CERT group is operated by the Department of Homeland Security,

E x e r c i s e 12 .1   (c ont inue d)

Exam Essentials  649

c12.indd  09/14/2016  Page 649

and it posts up-to-date releases on known vulnerabilities and attack methods. The SANS
Institute doesn’t provide real-time reports, but instead it publishes useful research papers that
help shed light on the inner workings of vulnerabilities to help you understand them more.
The Bugtraq mailing list from SecurityFocus provides full disclosure of any vulnerability, giv-
ing you a sneak peek at just what types of program code are being compromised by attackers.

Exam Essentials
Describe how an IPv4 private address or IPv6 link local address can help make a Linux
system more secure.    IPv4 private addresses and IPv6 link local addresses work only
on the local network. External hosts can’t route traffic to private or link local network
addresses. You can create NAT on the local network to allow outbound traffic from the
private addresses or link local addresses to outside networks.

Explain how to create a firewall using the iptables command.    The Linux kernel processes
network packets using five chains: PREROUTING, INPUT, FORWARD, POSTROUTING,
and OUTPUT. There are also three tables that control what you can do to the packets:
FILTER, MANGLE, and NAT. You can define rules and default policies in each table to
determine how packets are handled. The iptables command updates the rules and default
policies in the kernel. Unfortunately, these updates are not retained when the kernel is
rebooted, so it’s necessary to save the rule and policy changes to a file and run it at boot
time to update the tables and chains.

Describe how SSH allows you to log into a remote system without using a password.    OpenSSH
allows you to log into a remote system using a public and private key pair. You use ssh-keygen
to generate both a private and public key on your system. You then copy the public key to the
remote server and append it to the authorized_keys file in your .ssh folder. When you attempt
to log into the remote server, Open SSH matches the private key on your system to the public key
on the server and allows the session if they match.

Explain the difference between the sshd and ssh applications.    The sshd OpenSSH application
is an SSH server that listens for incoming connections. The ssh OpenSSH application is an
SSH client that can connect to a remote SSH server to start a secure shell.

Summarize how to manage login attempts with the sshd application.    The sshd OpenSSH
application uses the /etc/ssh/sshd_config configuration file to define how to process
login attempts. The PasswordAuthentication option allows clients to use passwords when
connecting. The PubkeyAuthentication option allows them to use certificates. You can
restrict which users can log in using SSH with the AllowUser and DenyUser options. The
PermitRootLogin option determines if the root user account is allowed to log in using SSH.

Explain an intrusion detection system.    An intrusion detection system (IDS) monitors
the system or network and detects when an attack is attempted. It compares events to
predefined rules that define bad behavior, such as too many login attempts or too many

650  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 650

network connection attempts. The IDS can be configured to notify the administrator when
an attack attempt is detected.

Describe two types of IDS packages used in Linux.    The fail2ban IDS package monitors
both system and application error logs, looking for anomalies. You can define rules to tell
fail2ban what to look for (such as three failed login attempts in a row) and what action
to take when that rule is matched (such as disable access to the client’s IP address). The
Snort IDS package is a network IDS (NIDS) application. It monitors network traffic on the
network and can detect attacks based on their network footprint. As with fail2ban, you
can configure rules in Snort on what type of events to monitor and what actions to take
when an event is detected.

Explain how port redirection works.    When external clients need to access an application
on a server located in a private network, you can use port redirection to allow that. The
NAT server on the network accepts incoming network traffic as a proxy server and then
forwards the traffic to the server on the private network address. This should be used
sparingly, though, because it opens internal servers to external clients.

Describe how to communicate securely between two public networks.    When a client on
one public network needs to communicate securely to a server on another public network,
you can establish an encrypted tunnel between the two devices using a virtual private
network (VPN). The OpenVPN software package lets you create a secure VPN between
two or more devices located on separate networks. Once the VPN is created, it appears as
a network interface on the end points, and any application can send network traffic to the
remote end point securely.

Review Questions  651

c12.indd  09/14/2016  Page 651

Review Questions
You can find the answers in the Appendix.

1.	 What do you call a vulnerability that allows an attacker to gain access to a system?

A.	 Attack vector

B.	 Open port

C.	 Open application

D.	 Unsecure communication

2.	 What file contains a list of standard application ports?

A.	 /etc/ssh/sshd_conf

B.	 /etc/openvpn

C.	 /etc/services

D.	 /proc/sys/net/ipv4

3.	 How can you use the telnet command to detect an open port?

A.	 telnet port address

B.	 telnet address port

C.	 telnet address:port

D.	 The telnet command only connects to port 23.

4.	 Which command can display a list of TCP ports that are listening for incoming connections
on a local server?

A.	 telnet

B.	 iptables

C.	 ssh

D.	 netstat

5.	 Which option of the netcat command allows it to scan multiple ports?

A.	 -v

B.	 -z

C.	 -l

D.	 -6

6.	 Which nmap option specifies that it should determine the fingerprint of the remote system?

A.	 -A

B.	 -sT

C.	 -sU

D.	 -p

652  Chapter 12  ■  Setting Up System Security

c12.indd  09/14/2016  Page 652

7.	 What OpenVAS feature allows it to simulate different vulnerability attacks on the system it scans?

A.	 National Vulnerability Database (NVD)

B.	 Software Repository

C.	 Network Vulnerability Tests (NVT)

D.	 Web interface

8.	 What type of software can warn you of an active attack on your system?

A.	 Port scanner

B.	 Network Vulnerability Test (NVT)

C.	 Virtual private network (VPN)

D.	 Intrusion detection system (IDS)

9.	 What file contains the fail2ban rules?

A.	 fail2ban.conf

B.	 jail.conf

C.	 pwdfail

D.	 error.log

10.	 Which application is a network intrusion detection system (NIDS)?

A.	 Snort

B.	 OpenVPN

C.	 OpenSSH

D.	 OpenVAS

11.	 Which Snort mode dumps packets to the display for viewing?

A.	 Logging mode

B.	 NIDS mode

C.	 Sniffer mode

D.	 Command-line mode

12.	 What does the HOME_NET variable define in the Snort configuration?

A.	 The remote addresses to monitor

B.	 The address of the local host

C.	 The local addresses to monitor

D.	 The default configuration folder

13.	 Which rule address format tells Snort only to look for packets going from the 10.0.0.1
address to the 10.0.0.2 address?

A.	 10.0.0.1 <- 10.0.0.2

B.	 10.0.0.2 -> 10.0.0.1

C.	 10.0.0.1 <> 10.0.0.2

D.	 10.0.0.1 -> 10.0.0.2

Review Questions  653

c12.indd  09/14/2016  Page 653

14.	 How many private network address ranges does IPv4 support?

A.	 Two

B.	 Three

C.	 Four

D.	 None

15.	 What value do IPv6 link local addresses start with?

A.	 fe80

B.	 ff02

C.	 ff05

D.	 aabb

16.	 What system allows you to connect clients on a private network address to outside servers?

A.	 SSH

B.	 Telnet

C.	 NAT

D.	 IDS

17.	 What Linux command do you use to create firewall rules on the system?

A.	 nc

B.	 iptables

C.	 netstat

D.	 nmap

18.	 Which iptables option adds a new rule to a chain?

A.	 -L

B.	 -F

C.	 -A

D.	 -j

19.	 Which iptables policy is used to send a return packet back to the source indicating that
the packet was dropped?

A.	 REJECT

B.	 DROP

C.	 ACCEPT

D.	 LOG

20.	 Which iptables option defines the default policy for a chain?

A.	 -P

B.	 -j

C.	 -L

D.	 -F

bapp01.indd  09/14/2016  Page 655

Appendix Answers to Review
Questions

656  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 656 bapp01.indd  09/14/2016  Page 657

Chapter 1: Starting a System
1.	 A.  The workstation firmware looks for the bootloader program to load an operating sys-

tem. The init and telinit programs (options B and E) are used to change the runlevel
of a running Linux system, so they aren’t useful until after the Linux system has started.
The Windows operating system only starts after a Windows bootloader program runs, so
option C is incorrect. The mount program is a Linux tool for attaching a partition to the
virtual directory, which isn’t available until after the Linux system starts, so option D is
also incorrect.

2.	 B.  The workstation firmware looks at the first sector of the first hard drive to load the boot-
loader program. This is called the Master Boot Record, so option B is correct. The bootloader
program itself can use the chainloader feature to look for another bootloader in a boot
partition, but the firmware can’t do that, so option D is incorrect. Option A specifies the
configuration folder used to store the GRUB configuration file and the kernel image file, but
the actual GRUB bootloader program can’t be stored there. Option C specifies the common
log file folder, but that doesn’t contain the GRUB bootloader program. Option E also speci-
fies a common Linux configuration file directory, but it’s not used to store the GRUB boot-
loader program that the firmware can access.

3.	 D.  The kernel ring buffer, which you can view by typing dmesg, contains boot messages
from the kernel; thus option D is correct. The fsck program (option A) fixes corrupt parti-
tions, and the mount program (option C) is used to attach partitions to the virtual directory,
so neither of those is correct. Option B, the init program, is used to start programs from
the kernel, not display boot messages, so it also is incorrect. Option E, the chkconfig pro-
gram, is used to display the runlevels assigned to individual programs in the startup scripts
and is not related to the boot messages, so it too is incorrect.

4.	 C.  Most Linux distributions store boot log files in the /var/log folder. The /etc folder
is most often used for storing system and application configuration files, not boot logs, so
option A is incorrect. Some Unix systems use the /var/messages folder for storing log files,
but Linux has not adopted this standard, so option B is also incorrect. The /boot folder
contains the GRUB configuration files along with the image files necessary to boot the
system, but it’s not where Linux stores boot logs and is thus incorrect. The /proc folder is
unique in that the Linux kernel dynamically stores information about the system there, but
it doesn’t store boot log information there.

5.	 A, B, C, D, E.  The BIOS firmware can look in multiple locations for a bootloader program.
Normally, it looks at the internal hard drive installed on the system; however, if none is
found, it can search other places. Most workstations allow you to boot from an external
hard drive or from a DVD drive. Modern workstations now also provide the option to boot
from a USB memory stick inserted into a USB port on the workstation. Finally, many work-
stations provide the PXE boot option, which allows the workstation to boot remotely from
a network server.

6.	 A.  The Master Boot Record (MBR) is located in only one place—on the first sector of the
first hard drive on the workstation. Thus option A is the only correct answer. The boot par-
tition in any hard drive may contain a bootloader, but it is not the MBR, which is run first

Chapter 1: Starting a System  657

bapp01.indd  09/14/2016  Page 656 bapp01.indd  09/14/2016  Page 657

by the firmware; thus option B is incorrect. The other locations are not valid for the MBR,
so options C, D, and E are all incorrect.

7.	 D.  The ESP is stored in the /boot/efi directory on Linux systems. The UEFI firmware
always looks for the /boot/efi directory for bootloader programs, so option D is correct.
The /etc directory is used to store application and system configuration files, not boot-
loader programs, so option B is incorrect. The /var folder is used to store variable files such
as log files, not bootable files, so option C is incorrect. Option E, the /boot/grub file, is
used in GRUB Legacy and GRUB2 to store the bootloader configuration files, as well as the
kernel image files. However, it is not used to store the bootloader files themselves, so option
E is incorrect.

8.	 E.  The UEFI specification doesn’t require a specific extension for UEFI bootloader files;
however, it has become somewhat common in Linux to use the .efi file extension to iden-
tify them; thus option E is correct. Option A and option D specify file extensions used to
identify GRUB2 (option A) and GRUB Legacy (option D) configuration files, not UEFI
bootloader files, so they are both incorrect. Option C specifies the .lst file extension,
which is also used for GRUB Legacy configuration files, so it too is incorrect. The .uefi
file extension is not used in Linux, so option B is incorrect.

9.	 B.  The Linux Loader (LILO) bootloader program was the first bootloader used in Linux,
so option B is correct. The GRUB Legacy bootloader, despite its name, wasn’t the first boot-
loader but the second bootloader commonly used in Linux. The GRUB2 bootloader was
a later improvement over the GRUB Legacy bootloader, so options A and C are incorrect.
Option D, the SYSLINUX bootloader, provided features for use with Microsoft FAT parti-
tions so that you can boot Linux from a USB memory stick, but it was a later creation and
not the first Linux bootloader. Option E, ISOLINUX, was also a later bootloader, which
lets you boot Linux from a CD or DVD drive.

10.	 A.  The GRUB Legacy configuration files are stored in the /boot/grub directory, so option A
is correct. Option B, the /boot/efi directory, is used to store UEFI bootloader programs,
not GRUB configuration files, so it is incorrect. Option C, the /etc directory, stores many
application and system configuration files but not the GRUB Legacy configuration files. The
/var directory stores variable files, such as log files, but not configuration files, so option D
is incorrect. Likewise, Linux uses the /proc directory to provide dynamic kernel runtime
data and not configuration files.

11.	 B, C.  The GRUB2 bootloader stores configuration files in both the /boot/grub direc-
tory and the /etc/grub.d directory, so options B and C are correct. Linux uses the /proc
directory to provide dynamic kernel runtime data and not configuration files, so option A
is incorrect. Option D, /boot/efi, stores UEFI bootloader program files, not GRUB2 con-
figuration files, so it is also incorrect. Option E, /var, is used to store variable files, such as
log files, and not configuration files, so it is incorrect.

12.	 C.  The grub-mkconfig command combines the configurations defined in the /etc/
default/grub file and all of the files in the /etc/grub.d folder into a single grub.cfg
configuration file. The chkconfig command (option A) is used to check and change run-
levels for programs, so it is incorrect. Likewise, the update-rc.d command (option B) is
also used to change runlevels for programs on Debian systems, so it too is incorrect. The

658  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 658 bapp01.indd  09/14/2016  Page 659

grub-install program is used by the GRUB Legacy bootloader to install the bootloader in
the MBR or a boot partition, but it isn’t used to generate the GRUB2 configuration files and
is thus incorrect. Option E is the init program, which starts background programs from
init scripts on the Linux system and is an incorrect answer for this question.

13.	 D.  The kernel starts the init program, which in turn uses the init scripts to start and
stop other programs based on the default system runlevel, so option D is correct. The
GRUB2 program is a bootloader, which is started by the workstation firmware, not the
kernel, so option A is incorrect. Option B, the systemctl program, is used to control pro-
grams in the systemd startup method, but it isn’t started by the kernel, so it is incorrect.
Option C, the telinit program, can be used to change the current runlevel, but it isn’t
used by the kernel to start programs, so it too is incorrect. Option E, the BIOS, is the work-
station firmware that begins the startup process, so it can’t be started by the kernel.

14.	 B.  The /etc/inittab file contains the initdefault setting, which defines the default
runlevel for the Linux system. The /etc/init.d and /etc/rc.d folders contain the startup
scripts used by the init program to start and stop programs, but they don’t define the
default runlevel, so options A and D are incorrect. Option C, the /etc/grub.d directory,
and option E, the /boot/grub.cfg file, both contain the configuration settings for the
GRUB2 bootloader, but they don’t control the default runlevel.

15.	 E.  Debian-based systems use runlevel 2 to start all of the applications necessary for multiuser
activity on the system, so option E is correct. Option A, runlevel 0, shuts the system down,
and option C, runlevel 6, reboots the system, so neither of these can support running
applications. Option B, runlevel 1, indicates single-user mode, and it is not typically used
in desktop and server environments but rather in troubleshooting and maintenance modes.
Option D, runlevel 5, is used by Red Hat–based Linux distributions as the default runlevel
for graphical workstations, but it is not used by Debian-based systems.

16.	 A, D.  Both the init and telinit commands are used to change the current runlevel on
a Linux system, so both options A and D are correct. The chkconfig command is used to
change the start and stop runlevels of an individual program but not for the running sys-
tem, so option B is incorrect. Likewise, the update-rc.d command is used in Debian-based
systems to change the start and stop runlevels for an individual program but not the run-
ning system. Option E, the dmesg command, displays the boot messages and does not influ-
ence the runlevel for the system, so it is incorrect.

17.	 A.  The chkconfig command displays the status of the program at the seven different run-
levels, so it is the correct answer. The update-rc.d command in option D is used to control
the runlevels in which a program starts and stops, but it doesn’t display the status of the
runlevels and is thus incorrect. The init (option B) and telinit (option E) commands can
change the runlevel of the entire system, but they don’t display the runlevels associated with
an individual program, so they are incorrect. Option C, the dmesg command, isn’t related
to runlevels; rather it just shows the most recent boot messages for the system.

18.	 B.  Debian-based systems use the update-rc.d command to change the runlevels assigned
to individual programs. They generally don’t use the chkconfig program, although that is
used by Red Hat–based systems, so option A is incorrect. The init (option C) and telinit
(option D) programs are used to alter the runlevel of the entire system, but they can’t be

Chapter 2: Maintaining the System  659

bapp01.indd  09/14/2016  Page 658 bapp01.indd  09/14/2016  Page 659

used to change the runlevels for individual programs. The dmesg program (option E) is
incorrect because it only displays the boot messages and can’t alter runlevels.

19.	 C.  The fsck program can perform a filesystem check and repair multiple types of filesys-
tems on partitions. You should use it on any partition that can’t be mounted due to errors.
The mount program (option A) is used to append a partition to a virtual directory; it can’t
correct a partition that contains errors (and will usually refuse to mount them). The umount
command (option B) is also incorrect. It is used to remove a mounted partition from the
virtual directory. Options D (the init command) and E (the telinit command) are used
to change the current runlevel of the Linux system and not for fixing corrupted disk drives.

20.	 A.  The mount command lets you specify both the partition and the location in the virtual
directory where you want to append the partition files and folders. The files and folders
contained in the partition then appear at that location in the virtual directory. The umount
command (option B) is used to remove a mounted partition. Option C, the fsck command,
is used to fix a hard drive that is corrupted and can’t be mounted; it doesn’t actually mount
the drive itself. The dmesg command in option D is used to view boot messages for the
system, which may tell you where a hard drive is appended to the virtual directory, but it
doesn’t actually do the appending. Option E, the init command, controls the runlevel of
the Linux system and doesn’t directly handle mounting hard drives to the virtual directory.

Chapter 2: Maintaining the System
1.	 B, E.  Option B, the write command, and option E, the wall command, will allow a

message to be sent to any tty terminals with write access allowed. Option A is incorrect,
because the mesg command checks whether write access to the terminal is allowed, and it
also can set the access. Option C, the echo command, simply displays whatever follows it
to the current terminal’s standard output. Option D, if implemented on your system, allows
the user to send and read email, not terminal messages.

2.	 C.  The ––no-wall option allows a shutdown to proceed with no wall messages to the ter-
minal users. Only the super user issuing the command will receive a message. Option A is
incorrect, because the -c option cancels a shutdown. Option B is also incorrect, because the
-k option does not bring down the system but disables logins and sends out shutdown mes-
sages. The ––wall option shown in option D is made up.

3.	 A.  Option A is the best choice. By editing the /etc/issue file, the legal notification will
display to anyone before attempting to log into the system via a terminal. It would also
be worthwhile to put the notice in the /etc/issue.net file for users connecting over the
network, as well as in a login banner, if you have GUI users. Option B is not a good choice,
because the notice would not be displayed until after a user is logged into the system. Option
C is also not a good choice, because it would send a one-time-only message only to GUI
users. Option D is not a good choice, because the ~./bashrc file is a login environment
script.

4.	 D.  Currently, SSDs can be expensive, but if you have the money, they provide the fastest
media for backups. Option A, magnetic tapes, is one of the slowest choices for backups.

660  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 660 bapp01.indd  09/14/2016  Page 661

Optical discs, option B, have limited capacity, so you have to change them out more often,
and they are also slower than SSDs. Hard disk drives, option C, are faster than tape but
slower than SSDs. Finally, with option E, you cannot tell what media type is network
attached; therefore it is not the best answer.

5.	 B, C.  An incremental backup, option B, is a copy of all data that has been added or modi-
fied since the last backup. Therefore, it doesn’t matter whether the last backup was a full
one or not; the SSD can contain this backup type. Also, the differential backup, option C, is
a copy of all data that has been added or modified since the last full backup. Since the last
backup was a full backup, it’s possible that the SSD contains this backup type. Option A
doesn’t work, because a full backup copies all data.

6.	 A, B.  The /bin/ directory, option A, contains utility programs that will be needed in a
full system restore situation, so they should be included in the backup. The /home/ direc-
tory, option B, typically has system user files. They should also be included in the backup.
Option C, /run/, and option D, /tmp/, both contain temporary data and do not need to be
included in any data backups.

7.	 A, B, D.  Amanda, Duplicity, and Bacula are all GUI and/or web-based backup solutions
that you can employ to assist in system backups. Option C, Nagios, and option E,
connectd, are both utilities used in resource monitoring.

8.	 B, C, E.  The options that cause tar to use gzip compression when creating a tarball include
the ––gzip option, which is a long-style option; the -z option, which is a short-style option;
and the z option, which is an old-style option. The -g (option A) and g (option D) are used
by tar for incremental backups, not compression.

9.	 E.  The snapshot file can have any name you desire and can be located anywhere within
the filesystem, however, it needs the .snar file extension to indicate that it is a tar archive
snapshot file. Option A, .tar, indicates that the file is a tar archive file. Option B, .tgz,
indicates that the file is a tarball compressed with gzip. Options C and D, .tar.snap and
.snap, are made-up file extensions.

10.	 A, B, C, D.  The ––compare and ––diff (options A and B) are long-style options of -d
(option C). These three options compare a tar archive file’s members with external files and
list the differences. Option D, the -W option (long style is ––verify), automatically verifies a tar
archive as soon as it is created. However, it cannot be used with tarballs, only tar archives.
Option E, -J, is a tar option that causes the tar command to employ xz compression.

11.	 A, C.  The /dev/st0 (SCSI) and /dev/ht1 (PATA) tape device files are for automatically
rewinding tape devices. Options B, D, and E all point to non-rewinding tape devices as
indicated by the leading n in their device filename, /dev/n*.

12.	 C.  The mt program allows you to control a tape and determine its current status. The tar
(option A) and star (option B) utilities can use tapes as a storage medium but do not con-
trol them. The rsync (option D) utility is a backup program, but it cannot be used with
magnetic tapes, much less control them. Option E, the dd command, can also be used as a
backup utility, but it does not control tapes.

Chapter 2: Maintaining the System  661

bapp01.indd  09/14/2016  Page 660 bapp01.indd  09/14/2016  Page 661

13.	 D.  Option D uses the proper rsync syntax for sending a backup over to the remote
ServerA host using encryption via OpenSSH. Option A is simply using rsync to send a
backup to a removable media device, indicated by /run/media/ServerA. In option B, the
Project file is simply copied to another file, called ServerA. In option C, the filenames
are flipped-flopped, so that the ServerA file is copied to a new file, Project. In option E,
the file is copied to a remote host, ServerA. However, OpenSSH is not used. The rsync
daemon is used instead, and therefore the transfer is not encrypted.

14.	 A, E.  The dd command can be used for creating a low-level copy of a hard drive. It can also be
used to zero-out a drive by employing the /dev/zero file. The dd command is not popular for
daily incremental backups (option B), because it can easily corrupt a mounted drive. Therefore,
option C is also incorrect. The dd command is not used for managing tapes (option D).

15.	 A, B.  The README and INSTALL files typically can provide you with additional installation
instructions, including items such as what other packages are needed to complete the instal-
lation successfully. The COPYING file (option C) often holds software license information.
The RELEASE-NOTES (option D) and NEWS (option E) typically contain features and bug fixes
that have been included in the latest program version.

16.	 B.  The configure utility is really a script that checks your system for various program
dependencies and a compiler. It also creates or updates the Makefile with the Makefile.in
file’s contents and what it finds on your system. Option C, the make command, takes the
information in the Makefile and uses it to compile the source code into binary. Option D,
the make install command, moves the program files to their necessary locations in the
directory structure. The cp command (option E) just copies files. You may use it to copy
the program installation file’s tarball from one place to another. Option A, the INSTALL
file, typically can provide additional installation instructions.

17.	 A, D, E.  The free (option A) and vmstat (option E) commands provide information pri-
marily about system memory usage. The top (option D) command, while providing other
resource statistics, also provides memory usage data. The mpstat (option B) command pro-
vides network statistic information, while the mtr (option C) command provides a dynamic
display of network routing data.

18.	 D.  The sar 2 20 command will display CPU usage information 20 times and space it
2 seconds apart. The uptime command (options A and B) does not accept parameters, and
therefore it would display CPU data only one time. In option C, the sar command param-
eters are backward. In this case, it would display CPU information 2 times and space it
20 seconds apart.

19.	 A, C, D.  MRTG, collectd, and Nagios are all resource-monitoring solutions that can be
employed on your Linux system. Duplicity (option B) can also be employed on your Linux
system, but it is used for backing up data, not monitoring resource usage.

20.	 B, C.  Memory for idle processes can be swapped out from RAM to a special partition called
swap space, swap, or virtual memory. Therefore, options B and C are correct. Memory is
divided up into chunks called pages (option A), not sheets. Swapping is the memory manage-
ment technique where idle processes’ memory is swapped out to swap. The processes do not
trade memory (option D). Finally, the psmap tool is primarily for mapping processes (option E).
The best tools for viewing memory statistics are tools like free, sar, and vmstat.

662  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 662 bapp01.indd  09/14/2016  Page 663

Chapter 3: Mastering the Kernel
1.	 B.  The kernel manages the system memory in Linux, so answer B is correct. The GNU

utilities provide programs that mimic common Unix programs for file and data manipula-
tion, but they don’t manage the system memory, so answer A is incorrect. The graphical
desktop manages the graphical environment on the display but not memory, so answer C
is incorrect. Application software doesn’t manage the system memory, so answer D is
incorrect.

2.	 A.  Swap space is the area on the hard drive that’s used to store memory pages in the virtual
memory, so answer A is correct. Physical memory is the memory locations stored in the
actual RAM on the system, so answer D is incorrect. Virtual memory is the combination of
both RAM memory and hard disk memory, so answer B is incorrect. The filesystem stores
data on the disk, not memory locations, so answer C is incorrect.

3.	 C.  Linux uses modules to load device drivers into the kernel, so answer C is correct.
DLL files are used to load device drivers in the Microsoft Windows world, but they
aren’t used in Linux, so answer A is incorrect. Virtual memory expands the physical
memory used by the Linux system by utilizing a swap space on the hard drive, but it
doesn’t help with loading device drivers, so answer B is incorrect. The bootloader loads
the kernel software into memory, but it doesn’t load device drivers into the kernel, so
answer D is incorrect.

4.	 A.  Compiling the kernel source code produces a binary file that’s loaded into memory, so
answer A is correct. The kernel source code files can’t be loaded into memory, so answer D
is incorrect. Likewise, the source code patch files can’t be loaded into memory, so answer C
is also incorrect. Modules are loaded into the kernel after the system boots, so they aren’t
used directly to boot the Linux system, so answer B is incorrect.

5.	 A.  The Linux kernel developers release patches to upgrade source code easily from one
version to the next version, so answer A is correct. Modules are used to load device driver
software into the kernel, so answer B is incorrect. Binary files are used to load the kernel
into memory to run, so answer C is incorrect. Development releases are full source
code software releases and are not used to upgrade an existing kernel, so answer D is
incorrect.

6.	 D.  The config target produces questions on the Linux console that you must answer to
determine the configuration settings for the kernel, thus answer D is correct. The xconfig
target produces a graphical menu system, which isn’t text-based, so answer A is incorrect.
The mrproper and clean targets are used to remove previous configuration settings, not
create new configuration settings, so answers B and C are incorrect.

7.	 C.  The gconfig target uses the GNOME desktop library to produce a graphical menu to
determine the configuration settings, so answer C is correct. The config target uses text
questions to determine the configuration settings, so answer A is incorrect. The mrproper
and clean targets remove previous configuration settings, they do not create new settings,
so answers B and D are incorrect.

Chapter 3: Mastering the Kernel  663

bapp01.indd  09/14/2016  Page 662 bapp01.indd  09/14/2016  Page 663

8.	 B.  The mrproper target removes all old configuration settings and object files from the
source code folders, allowing you to start with a new configuration, thus answer B is cor-
rect. The gconfig and bzImage targets are used to create a new configuration file but don’t
remove any previous object files, so answers A and C are incorrect. The oldconfig target
uses the old configuration file, but it doesn’t remove any old object files, so answer D is
incorrect.

9.	 A.  The zImage and bzImage targets create a compressed kernel binary file from the source
code, so answer A is correct. The kernel target is invalid, and it will produce an error mes-
sage, so answer B is incorrect. The config target creates a configuration file, but it doesn’t
compile the kernel binary file, so answer C is incorrect. The clean target removes any
previous configuration settings but doesn’t compile the kernel binary file, so answer D is
incorrect.

10.	 C.  Debian-based systems use the mkinitramfs program to create the initial RAM disk
used at boot time, so answer C is correct. The mkinitrd program is used by Red Hat–based
systems, but it is not available on Debian-based systems, so answer A is incorrect. There is
no make target to create an initial RAM disk, so answers B and D are incorrect.

11.	 D.  To list all of the installed modules in the running kernel, you use the lsmod command,
so answer D is correct. The modinfo command only lists module information for a single
module—it doesn’t list all of the installed modules, so answer A is incorrect. The insmod
and rmmod commands are used to insert and remove modules, respectively, so answers B
and C are incorrect.

12.	 C.  The insmod command allows you to insert a module, but you must know the module
filename, so answer A is incorrect. The modprobe command allows you to insert a module
based on the module name, so answer C is correct. You use the rmmod command to remove
a module and the lsmod command to list all modules, so answers B and D are incorrect.

13.	 A.  The lsusb command lists all of the USB devices connected to the Linux system, so
answer A is correct. The lspci command lists PCI cards but not USB devices, so answer B
is incorrect. The lsmod command lists modules loaded, which may show some of the USB
devices installed, but if any USB device drivers were compiled into the kernel, it won’t list
all of the USB devices, so answer C is incorrect. The lsdev command displays information
about hardware device I/O ports and interrupts but for all devices, not just the USB devices,
so answer D is incorrect.

14.	 D.  The verbose option of the lsusb command displays detailed information about the USB
devices, so answer D, –v, is correct. The –d option only displays USB devices with a specific
vendor ID, so answer A is incorrect. The –s option only displays USB devices connected to
a specific bus, so answer B is incorrect. The –t option displays information in a tree for-
mat, so you can see device dependencies but not detailed information about the devices, so
answer C is incorrect.

15.	 B.  Hotplug devices, such as USB devices, allow you to connect the device while the system
is running, so answer B is correct. Coldplug devices can be connected only while the system
is powered off, so answer A is incorrect. Both PCI and PCIe boards can be inserted only
while the system is powered off, so answers C and D are both incorrect.

664  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 664 bapp01.indd  09/14/2016  Page 665

16.	 B.  The udev device manager system uses the udevd program to listen to kernel event mes-
sages and load the appropriate modules for inserted hardware based on rules, so answer B
is correct. The lsusb command only lists installed modules, so answer A is incorrect. The
modprobe and insmod commands can only install modules manually; they can’t automati-
cally detect new devices, so answers C and D are incorrect.

17.	 D.  The /etc/udev/udev.conf configuration file defines settings that control how the
udevd program operates, thus answer D is correct. The /lib/modules folder is used to
store module files, not configuration files, so answer A is incorrect. The /boot folder is used
to store the kernel binary file but not the udevd configurations, so answer B is incorrect.
The /etc/udev/rules.d folder stores udevd rules but not the configuration settings, so
answer C is incorrect.

18.	 B.  Rules for the udevd program are stored in the /etc/udev/rules.d folder, so answer B
is correct. The /etc/udev/udevd.conf file contains configuration settings for controlling
the udevd program, not rules, so answer A is incorrect. The /boot folder is used to store
the kernel binary file, not udevd rules, so answer C is incorrect. The /lib/modules folder
is used to store kernel module files, not configuration files, so answer D is incorrect.

19.	 C.  The /proc filesystem is created by the kernel automatically to allow you to read and write
kernel settings and view kernel performance statistics, so answer C is correct. The /usr/src/
linux folder is used to store the kernel source code files, so answer D is incorrect. Answers A
and B are folders that aren’t valid in the Linux system, so they are both incorrect.

20.	 A.  The sysctl command allows you to change kernel settings at any time, so answer A is
correct. The lsmod and lsdev commands allow you to view the kernel modules and device
information, respectively, so answers B and D are incorrect. The modprobe command
allows you to insert and remove modules but not change any of the module settings, so
answer C is incorrect.

Chapter 4: Managing the Filesystem
1.	 A, C, E.  Answers A, C, and E all contain legitimate mkfs command variations, which for-

mat the /dev/sdd2 partition into an ext2 filesystem. Option B uses an invalid filesystem
type, extended2, and therefore is incorrect. There is no mke2fs.ext2 command, so option
D is also incorrect.

2.	 A.  The /proc/filesystems file, option A, contains a list of all of the filesystems supported
by your system. The /etc/mtab and /proc/mounts files show currently mounted filesys-
tems. While these are supported filesystems, they are not all of the supported filesystems,
and therefore options B and C are incorrect. Option D is incorrect, because the /proc/
swaps file contains information concerning your system’s swap space. Option E is also a
wrong answer, because the /proc/cpuinfo file contains information concerning your
system’s processors.

3.	 E.  The mount command with the proper options and parameters will temporarily attach
the filesystem to the Linux virtual directory structure. Therefore, option E is the best

Chapter 4: Managing the Filesystem  665

bapp01.indd  09/14/2016  Page 664 bapp01.indd  09/14/2016  Page 665

answer. The mkfs command is for high-level formatting and not attaching a filesystem, and
therefore option A is incorrect. Option B is a bad answer, because even though you can use
the e2label command to determine a filesystem’s label, which you might use in the mount
command, it does not attach a filesystem. Option C is also a bad answer, because AutoFS
has to be configured before it will automatically attach a network-based file. The /etc/
fstab file is for persistently attached filesystems, so if you added an entry for the filesystem
in this file, it would not be temporarily attached. Therefore, option D is not the best answer.

4.	 C.  The number shown in the question is a filesystem UUID number. The -U option is used
with the mount command to identify a filesystem via its UUID number. Therefore, option
C is correct. The -o is for specifying filesystem mount options, so option A is incorrect.
Option B is wrong, because the -L option is used to identify a filesystem to be mounted by
its label. The -a option, used with the mount command, will cause any filesystem listed in
the /etc/fstab file that is not currently mounted to be mounted. Therefore, option D is
incorrect. The mount command -n option will mount a filesystem but not update the /etc/
mtab file, and thus option E is the wrong answer.

5.	 D.  Option D is correct, because the sync command allows you to flush the filesystem
buffers, which essentially forces the data commitment process to take place immediately.
Option A’s unmount is not a command (umount is the correct spelling of the unmount com-
mand), and it is therefore not correct. Options B and C are incorrect, because the fuser
and lsof commands are for assisting you in determining who is using a filesystem when
you are unsuccessfully attempting to unmount it. The dmesg command displays the kernel
ring buffer, which may be helpful in determining attached USB flash drive names but not in
flushing filesystem buffers. Therefore, option E is incorrect.

6.	 A, B, D.  The six fields for each /etc/fstab entry include name (partition, volume, UUID,
and so on), mount point, filesystem type, mount options, dump option, and filesystem check
(fsck) priority. Therefore, options A, B, and D are correct. Option C is incorrect, because
the dump utility, not the cpio utility, is indicated in the /etc/fstab file. Option E is wrong,
because filesystems that are mounted via the AutoFS service should have no entries within
the /etc/fstab file.

7.	 B.  The blkid command, when used with super user privileges, displays various block
device attributes, including a device’s UUID. Therefore, option B is correct. Option A’s
findmnt command displays all of the mounted filesystems in a tree format, but it does not
display device UUIDs, so it is incorrect. The e2label utility shows a filesystem’s label, not
its UUID, so it is also incorrect. Option D is wrong because the findfs command finds file-
systems, but you must already know either its label or its UUID, and only the device name
is shown. Finally, option E is wrong because, although the mount command shows you the
currently mounted filesystems, their UUID is not displayed.

8.	 A, B, E.  Options A, B, and E are correct, because RAID 0, RAID 1, and RAID 10 configu-
rations can be implemented on a btrfs filesystem. Options C and D are incorrect, because
RAID 5 and RAID 6 configurations cannot be implemented on a btrfs filesystem…yet.

9.	 C, D, E.  El Torito, Joliet, and Rock Ridge are all ISO9660 standard extensions for use with
optical media. Therefore, options C, D, and E are correct. Option A is incorrect, because
Universal Disk Format (UDF) is a cross-platform specification standard primarily for

666  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 666 bapp01.indd  09/14/2016  Page 667

DVDs, not an ISO9660 extension. Option B is also wrong, because btrfs is a filesystem, not
an optical media standard.

10.	 C.  The mkisofs command will allow you to create an ISO image, so option C is correct.
The mkfs command is for making filesystems, and there is no -t iso option, so options
A and B are wrong. Option D’s cdrecord allows you to record an ISO image onto optical
media but not create the image, so it is incorrect. Finally, option E is incorrect, because
it is the start of the command to allow you to temporarily mount optical media with an
ISO9660 filesystem but not create an ISO image.

11.	 B.  Option B is correct, because the mkswap command is used to perform the preparations
necessary to ready a partition to be used as swap space. Option A is incorrect, because
there is no -t swapon option for the mkfs command. Option C is also incorrect. Although
you can use this command to activate the swap space on /dev/sde3, it is not the command
used to prepare the swap space. Option D is wrong, because the swapoff command deacti-
vates the designated swap space. The swapon -s command is useful for displaying current
swap statistics but not for preparing swap space, so option E is also incorrect.

12.	 A, B, C.  Options A, B, and C are all map types that you may find in the AutoFS master
map file, /etc/auto.master. Option D’s SMART refers to Self-Monitoring Analysis and
Reporting Technology devices, not AutoFS map types. Therefore, option D is incorrect.
Option E is incorrect, because a road map is used for navigating your way while driving or
walking, and it is not a known AutoFS map type.

13.	 E.  The /etc/sysconfig/autofs file, shown in option E, is a correct configuration file to
modify. Depending on your distribution, the file’s name might be /etc/default/autofs.
Option A’s file is a direct map file and is therefore incorrect. Options B and D show two
possible indirect map type files and are also incorrect. In option C, an old AutoFS script
file, /etc/autofs.net, that may be found on older distributions is shown but is also
incorrect.

14.	 C.  The eCryptfs filesystem is a pseudo-filesystem that is layered on top of another filesys-
tem, and it provides file-by-file encryption. Thus, option C is correct. Both options B and
D show encrypted filesystems, but they are not considered layered filesystems, so they are
incorrect. Option A’s XFS filesystem is not encrypted, and neither is option E’s btrfs filesys-
tem, so they are also incorrect.

15.	 D.  The uuidgen utility is used for producing new UUID numbers that can be assigned to
filesystems. It does not adjust any filesystem, and therefore option D is the correct answer.
Commands in options A, B, C, and E all adjust extended filesystems and are therefore
incorrect answers.

16.	 E.  Option E’s tune2fs command can use the generated UUID and change the filesystem’s
UUID, so it is the correct answer. Commands in options A, B, and C also adjust extended
filesystems but not the UUID number and are therefore incorrect answers. The blkid com-
mand in option D can display a device’s UUID but not change it, so it is also an incorrect
answer.

17.	 E.  Because the XFS filesystems (btrfs too) have their own repair utilities and do not operate
in the same fashion as extended filesystems, the fsck.xfs utility does nothing. Therefore,

Chapter 5: Administering Advanced Storage Devices  667

bapp01.indd  09/14/2016  Page 666 bapp01.indd  09/14/2016  Page 667

option E is correct. For extended filesystems, you may see the actions in options A through
D occur, depending on your command options and actions prior to running the command.
However, in this case, options A through D are incorrect.

18.	 D.  Option D, btrfs restore, is the most powerful command for restoring the btrfs file-
system data, and it is the best choice. Options A and C also can help, but they are not as
powerful as option D, so they are not the correct answers. The btrfs commands in options
B and E do not do repairs or restores, so those answers are also incorrect.

19.	 A.  Option A is correct, because the xfs_check utility checks an XFS filesystem’s consis-
tency but does no repairs. It is typically no longer included in many distributions, but you
can use the xfs_repair -n command in its place. Option B’s xfsdump creates a backup of
the filesystem’s data and attributes but does no checking, so it is incorrect. The xfs_info
command displays and checks filesystem information, but it does not look for filesystem
inconsistency, so option C is wrong. Option D’s xfs_metadump only copies the filesystem’s
metadata to a file, so it is also wrong. Finally, the xfsrestore command restores a filesys-
tem’s data and attributes from a backup dump, so option E is incorrect.

20.	 B.  Option B’s command will show you a quick drive summary health status, including
whether or not it has passed the overall health self-assessment test. Therefore, option B is
correct. The commands in options A and E will conduct tests but will not show the results,
so they are incorrect. Option C’s command will display information concerning the drive,
such as whether or not it supports SMART and whether or not SMART is enabled. It is also
incorrect. The command in option D will provide you with the drive’s health information,
but it displays all of the information, not just a summary, so it is also an incorrect choice.

Chapter 5: Administering Advanced
Storage Devices
1.	 B, C, D, E.  Answers B, C, D, and E are all considered fault tolerant because of their struc-

tures. Only RAID 0 is not fault tolerant, because it uses disk striping. Thus, option A is the
only incorrect choice.

2.	 E.  RAID 6 is also called disk striping with double parity, and so option E is the correct
answer. RAID 0 is called disk striping, so option A is incorrect. Option B is incorrect,
because RAID 1 is also called disk mirroring. Option C is also wrong due to RAID 10
being called disk mirroring and striping. RAID 5 is called disk striping with parity (not
double parity), and therefore option D is also incorrect.

3.	 A.  The /proc/mdstat file will indicate if that RAID level is supported, and thus software
RAID is potentially supported, so option A is correct. Option B is incorrect because /dev/md0
is a device file representing a RAID array. The filesystem table, /etc/fstab, may have a
record for mounting a RAID array at boot, but it is not the indicator being sought, and
therefore option C is also incorrect. Option D is wrong because /etc/mdadm/mdadm.conf is
a RAID configuration file, not a status file. Finally, option E’s /dev/mapper is the directory

668  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 668 bapp01.indd  09/14/2016  Page 669

holding LVM and RAID Device Mapper files, and it is also not a status file indicating
software RAID support, so it is an incorrect choice.

4.	 C.  Option C, delete mode, is a made-up mdadm command mode and therefore is the cor-
rect choice. Option A’s grow mode is a legitimate mode, which grows, shrinks, or reshapes
a RAID array. Option B’s --follow is an option to indicate follow mode, which monitors
md drives, and if an event or alert occurs, performs a designated action. The --manage in
option D is an option to indicate manage mode. In manage mode, the mdadm utility can
manage RAID array members, such as adding a new spare drive to a RAID array. Option E’s
miscellaneous mode is a mode for RAID array operations that do not fall into any other
mode category, such as deleting a drive’s superblock.

5.	 D.  Option D is correct, because the -C option chooses the create mode, so a RAID array
can be created. The ––create option does too. Option A chooses the grow mode, option B
chooses the follow/monitor mode, and option E chooses the miscellaneous mode. While
these are legitimate modes, they do not create RAID arrays and are thus incorrect choices.
Option C’s answer is made up and therefore also incorrect.

6.	 D.  Current RAID array status can be found in option D’s /proc/mdstat file, and it is
therefore the correct answer. Options A and B are incorrect because mdadm.conf is a RAID
configuration file, not a status file, which can be stored in either the /etc/ or the /etc/
mdadm/ directory, depending on the distribution. The /etc/fstab file does not hold RAID
status, and so option C is wrong. Finally, the /etc/sysctl.conf file is a configuration file
for the sysctl command, and it is therefore an incorrect choice.

7.	 B.  Option B is the best answer, because any RAID array that the drive may belong to will
be displayed using these mdadm options. Option A is close, but if the /dev/sdc1 drive is
not a member of the /dev/md0 RAID array, then you won’t know which RAID array has
its membership. Therefore, option A is incorrect. Option C is also close and yet incorrect,
because again if the /dev/sdc1 drive is not a member of the /dev/md0 RAID array, then
you won’t know which RAID array has its membership. Option D is incorrect, because it
only shows various options available in monitor mode. Since option B is correct, option E is
incorrect.

8.	 A, D.  Options A and D are correct, because you must first stop a RAID array and then
delete the superblocks on each of the array’s drives. There is no need to delete the drives’
data, so option E is incorrect. In addition, you neither need to shrink the RAID array nor
monitor it in order to delete it, so options B and C are both incorrect.

9.	 E.  The hdparm utility can view, test, and, if needed, modify various PATA, ATAPI, SATA,
and SCSI drive settings. Therefore, option E is correct. However, it can only handle SCSI
devices that support SCSI-ATA command Translation (SAT), and only some hdparm options
can be used on them.

10.	 E.  If no option is included along with the sdparm command, it will show all of the com-
mon mode parameters for a designated device. Therefore, option E is correct. Option A will
show all of the recognized file information for the device type, option C will display the
device’s VPD pages in hex, and option D will display the hex code associated with each of
those VPD pages. Therefore, those options are all incorrect. Option B is a correct option,

Chapter 5: Administering Advanced Storage Devices  669

bapp01.indd  09/14/2016  Page 668 bapp01.indd  09/14/2016  Page 669

but the correct option parameters include stop, sync, start, and load but not show. Thus,
option B is also incorrect.

11.	 C.  Option C is correct, because the IQN designates both the iSCSI target server as well as
an iSCSI disk it is offering. A WWID is the same as a WWN, and while they may uniquely
identify an iSCSI disk, they do not identify an iSCSI target, so options A and B are incor-
rect. A LUN can also uniquely identify an iSCSI disk, but it does not identify an iSCSI
target, so option D is also incorrect. Option E is a command that you can use to create a
unique iSCSI number, so it is incorrect as well.

12.	 C, D.  During the discovery process, two records are created by the iscsiadm tool: a dis-
covered node record stored in the /var/lib/iscsi/nodes database file (option C) and the
target server’s IP address record stored in the /var/lib/iscsi/send_targets file (option D).
Therefore, options C and D are correct. Option A is the iscsiadm tool’s configuration file,
so it is incorrect. Option B is the scsi_id command’s directory location, so it also is incor-
rect. Option E is a made-up file, so it is a wrong choice.

13.	 B, D.  Both RAID and logical volume management or Logical Volume Manager (LVM)
allow multiple partitions to be grouped together and used as a single partition for format-
ting, mounting on the Linux virtual directory structure, storing data, and so on. Thus,
options B and D are correct. PATA is drive interface technology, so option A is incorrect.
Option C is incorrect, because iSCSI is a storage network transport protocol, which makes
a target server’s iSCSI disk appear as a locally attached disk, but no grouping is involved.
Finally, option E’s storage fabric is an incorrect choice, because it is any hardware that con-
nects SAN storage devices to systems.

14.	 A.  Option A is correct, because a physical volume (PV) is a designated unused disk parti-
tion (or whole drive) to be used by LVM. A volume group (VG) has PVs in its storage pool
and feeds logical volumes (LVs), which consist of storage space chunks (logical extents).
Therefore, options B and C are incorrect. Option D’s SATA is incorrect, because SATA is
a drive interface technology. Option E is incorrect, because a backstore is a data accessing
method that points and allows access to a physical storage medium in a storage fabric SAN.

15.	 C.  The PE block size is actually set during the process of adding a PV to a VG. Therefore,
option C is the correct answer, because it is not true. Options A, B, D, and E are all correct
statements concerning PEs and are therefore incorrect choices.

16.	 B.  Option B is true, because logical extents (LEs) are mapped to VG physical extents.
Option A is not true, because LVs are made up of logical extents (LEs), and therefore it is
an incorrect choice. Option C is not true, because the mapping provides a way to access the
data, not block the data. Therefore, option C is a wrong choice. Option D is incorrect, because
LE mapping does not occur during PV designation. Finally, option E is incorrect, because
option B is true.

17.	 D.  Option D is the correct answer, because the pvcreate utility can designate a parti-
tion as a PV. The pvdisplay utility displays PV attributes. Option B is incorrect, because
vgcreate adds a single PV or more to a VG pool. Option C is incorrect, because lvcreate
either creates an LV from a VG pool or creates snapshots. Option E is also incorrect,
because the pvscan utility lists all of the various PVs on a system.

670  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 670 bapp01.indd  09/14/2016  Page 671

18.	 D. Option D is the correct answer, because the vgdisplay utility displays a VG’s attributes,
and vg01 is a VG. Option A is incorrect, because pvdisplay displays PV attributes. Option B
is incorrect, because vgcreate adds a single PV or more to a VG pool. Option C is incor-
rect, because the pvscan utility lists all of the various PVs on a system and vg01 is a VG.
Option E is also incorrect, because lvdisplay displays an LV’s attributes.

19.	 A, C.  Options A and C are true and therefore correct. Option B is not true and is incorrect,
because an LV snapshot has both read and write access. Option D is incorrect, because the
original data is not copied to a LV snapshot. Option E is also not true, because LV snap-
shots are created with the lvcreate command.

20.	 A.  Option A is correct, because the lvrename command allows an LV’s name to be changed.
Option B is incorrect, because the lvremove deletes a LV. The lvconvert utility changes
an LV’s layout, and therefore option C is an incorrect answer. Option D’s lvs is incorrect,
because it displays information about LVs on a system. Finally, option E is incorrect because
lvmchange is an obsolete command.

Chapter 6: Navigating Network Services
1.	 B.  The Wi-Fi Protected Access encryption protocol protects access to wireless access

points. The wireless network operates at the physical network layer, so option B is correct.
The network layer uses addressing protocols, such as IP, to send data between systems on
the network, but it doesn’t interact with the wireless signal, so answer A is incorrect. The
transport layer uses ports to direct network traffic to specific applications running at the
application layer so options C and D are both incorrect.

2.	 D.  The netmask value determines the network portion of the IP address, which identifies
to which network the system is connected. Thus, option D is correct. The default router
is another IP address on the network, but it doesn’t indicate the network portion of the
address, so it can’t be used to determine the network address, and option B is incorrect. The
IP address by itself doesn’t define the network address without the netmask, so option A is
incorrect. The hostname doesn’t indicate the network address, so option C is incorrect. The
DNS server maps hostnames to IP addresses, but if you only know the IP address, you still
won’t know the network portion of the address, so option E is incorrect.

3.	 A.  The netmask value sets the network portion of the IP address to 1s and the host portion
of the IP address to 0s. Thus, the netmask value must have consecutive 1s in the address
at the start of the value. Option A, 255.255.255.0, indicates that the first 24 bits of the
address are 1s, so it represents a proper netmask value, and it is the correct option. In
option B, the 1s values aren’t consecutive, so it is not a proper netmask value and is thus
incorrect. Option C shows a network address but not the netmask address, while option D
shows a host address but not the netmask address, so those are both incorrect. Option E shows
an address that uses consecutive 1s values, but they are at the end of the address and not at
the beginning, so it is incorrect.

4.	 E.  An IP address consists of the network address and a unique host address, so option E is cor-
rect. The host address and router address won’t indicate the network address, so option A

Chapter 6: Navigating Network Services  671

bapp01.indd  09/14/2016  Page 670 bapp01.indd  09/14/2016  Page 671

is incorrect. Using the netmask and host address won’t reveal the network address, so option B
is incorrect. Likewise, the netmask and router addresses determine the network address, but
not the host address of the system, so option C is incorrect. The hostname is not part of the
IP address, so option D is also incorrect.

5.	 C.  IP version 6 uses 128 bits separated into eight groups of four hexadecimal values, so
option C is correct. The original IP version 4 addresses use 32 bits, but not IPv6, so option A
is incorrect. Many IPv6 networks use a 64-bit network address and a 64-bit host address,
but the full IPv6 address is 128 bits, so option B is incorrect. Currently, there isn’t an IP
version that uses either 256 or 8 bits, so options D and E are incorrect.

6.	 A.  The default router is used to send packets from the local network to remote networks,
so to communicate with a remote host you need to define the default router address, mak-
ing option A correct. The netmask only defines the local network; it doesn’t define what to
do with packets for remote hosts, so option B is incorrect. The hostname and IP address
only define features of the local host, so options C and D are incorrect, while the DNS
server defines how to retrieve the IP address of a host based on its domain name, so option
E is incorrect.

7.	 E.  The DNS server maps the hostname to an IP address, so you must have a DNS server
defined in your network configuration to be able to use hostnames in your applications.
Thus, option E is correct. The default router only defines how to send packets to remote
hosts; it doesn’t map the hostname to the IP address, so option A is incorrect. The netmask
value defines the local network but not how to map hostnames to IP addresses, so option B
is incorrect. The hostname and IP address define features of the local host, so options C
and D are incorrect.

8.	 B.  The Dynamic Host Configuration Protocol (DHCP) is used to assign dynamic IP
addresses to client workstations on a network, so option B is correct. The default router
can’t assign addresses to devices, so option A is incorrect. The ARP table maps the hard-
ware address of the network card to IP addresses, but it doesn’t assign the IP addresses,
so option C is incorrect. The netmask value determines the network address but not the
IP address of the host, so option D is incorrect. The ifconfig command can set the
static IP address of the host, but it doesn’t automatically assign the IP address, so option E
is incorrect.

9.	 B.  The loopback address is a special address assigned to the loopback interface, which
allows local applications to communicate with each other, making option B the correct
answer. Dynamic and static IP addresses are assigned to network interfaces, which interact
with remote systems, not local applications, so options A and C are incorrect. The host-
name identifies the local host for remote connections, not for local applications, so option D
is incorrect. The MAC address identifies the network card hardware address, but it isn’t
used by local applications, so option E is incorrect.

10.	 A.  TCP guarantees packet delivery between applications, so option A is correct. UDP is
faster, but it doesn’t guarantee packet delivery, so option B is incorrect. ICMP is used to
send control messages between applications, but they are not guaranteed, so option C
is incorrect. DNS and DHCP are not transport layer protocols, so options D and E are
incorrect.

672  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 672 bapp01.indd  09/14/2016  Page 673

11.	 B.  HTTP connections use TCP port 80, and to listen on TCP port 80 you would use the
–l 80 option for the nc command, making option B the correct format. Option A shows
the nc command to connect to the web server running on host 192.168.1.77, so it’s incor-
rect. Option E listens on TCP port 22, so it’s incorrect. Options C and D are not in the
proper format for the nc command, so they are both incorrect.

12.	 A.  Red Hat–based systems use separate files to store the IP address and router information.
Those files are stored in the /etc/sysconfig/network-scripts folder, making option A
correct. Option B is where Debian-based systems store the interfaces file, which contains
the network configuration settings. The ifcfg-eth0 is a file used to store the configura-
tion, not a folder, so option C is incorrect. The ifconfig and iwconfig are commands and
not folders, so options D and E are incorrect.

13.	 B.  Option B is the correct format to set a dynamic IP address for the interface. The Debian
system uses the iface setting to set features for an interface, so options C and E are incor-
rect. Option A sets a static IP address for the interface and not a dynamic address, so it’s
incorrect. Option D sets a link local IPv6 address and not a dynamic IP address, so it’s
incorrect.

14.	 B.  The DNS servers are listed in the /etc/resolv.conf configuration file using the name
server setting, so option B is correct. Options A, C, and E list files that are used in the
tcp_wrappers program, not the DNS system, so they are all incorrect. Option D specifies
the file used to define most network settings in a Debian-based system, but the DNS servers
are not specified in that file, so it is incorrect.

15.	 A.  The ifconfig command must specify the network interface, the IP address, and then
the netmask option before the netmask address. You can use the up or down option to place
the network card in an active or inactive state by default, but it’s not required. Option A
is the only option that uses the correct values in the correct order. Option C is close, but it
fails to specify the network interface. Option B is not in the correct format, and options D
and E fail to list the necessary configuration settings.

16.	 A.  The iwlist command displays all of the available wireless network access points detected
by the wireless network card, so option A is correct. The iwconfig command configures
the network card to connect to a specific access point, but it doesn’t list all of the detected
access points, making option B incorrect. Option C specifies the ifconfig command,
which is used to assign an IP address to a wireless network card, but it doesn’t list the
access points. The ip command specified in option D likewise can be used to set the IP
address of the card, but it doesn’t list the access points. Option E, the arp command, maps
hardware addresses to IP addresses so that you can find duplicate IP addresses on your net-
work, but it doesn’t list the wireless access points.

17.	 D.  The SSID value defines the access point name, and it is set using the essid option in the
iwconfig command, making option D the correct answer. The key specifies the encryp-
tion key required to connect to the access point but not the access point name, making option A
incorrect. The netmask and address values aren’t set by the iwconfig command, so options B
and C are incorrect. The channel defines the radio frequency the access point uses, not the
access point name, so option E is also incorrect.

Chapter 7: Organizing Email Services  673

bapp01.indd  09/14/2016  Page 672 bapp01.indd  09/14/2016  Page 673

18.	 E.  The ip command allows you both to display and to set the IP address, netmask, and
default router values for a network interface, so option E is correct. The ifconfig com-
mand can set the IP address and netmask values but not the default router. The iwconfig
command is used to set the wireless access point settings, and the router command is used
to set the default router but not the IP address or netmask values. The ifup command only
activates the network interface; it can’t set the address values.

19.	 C.  The ping command sends ICMP packets to a specified remote host and waits for a
response, making option C the correct answer. The netstat command displays statistics
about the network interface, so it’s incorrect. The nmap command can scan remote hosts
for open ports, but it doesn’t send ICMP packets, making option B incorrect. The nc com-
mand allows you to simulate a server or client with TCP or UDP connections, but it doesn’t
handle ICMP packets, making option D incorrect. The tcpdump program captures network
packets but doesn’t send them, so option E is also incorrect.

20.	 B.  The tcpdump command captures packets from the network interface and displays them
or saves them in a file, so option B is correct. The netstat command only displays statis-
tics about the network interface; it doesn’t capture packets, so option D is incorrect. The
dig command is used to find DNS information about networks, the ping command sends
ICMP packets to remote hosts, and the nc command sends or receives packets to simulate a
client and server, so options A, C, and E are all incorrect.

Chapter 7: Organizing Email Services
1.	 B.  The Postfix package installs the configuration files in the /etc/postfix directory, so

option B is correct. The /var/spool/postfix directory contains the email processing direc-
tories and files but not the configuration files, so answer A is incorrect. The /var/spool/
mail directory contains local user mailboxes but not configuration files, so answer C is incor-
rect. The /var/log directory contains log files but not configuration files, so answer D is
incorrect. The /etc/mail directory is not part of the Postfix setup, so answer E is incorrect.

2.	 C.  The master process in Postfix controls which Postfix programs are started for process-
ing messages, so option C is correct. The qmgr, pickup, cleanup, and smtp processes han-
dle email messages in the mail queue but don’t control the other processes, so options A, B,
D, and E are all incorrect.

3.	 A.  The master.cf configuration file contains settings that define when the Postfix pro-
cesses start and stop, so option A is correct. The main.cf configuration file controls how
Postfix handles email messages but not the individual processes, so option B is incorrect.
The install.cf configuration file controls what features Postfix installs and enables,
but it doesn’t control the individual processes, so option C is incorrect. The /var/spool/
postfix and /var/log/maillog options are not Postfix configuration files, so they are
both incorrect.

4.	 D.  The main.cf configuration file contains settings that control how Postfix processes
email messages, so option D is correct. The master.cf configuration file contains settings
that control how Postfix manages processes but not how it processes email messages, so

674  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 674 bapp01.indd  09/14/2016  Page 675

option A is incorrect. The sendmail.cf configuration file is used by sendmail, not Postfix,
so option B is incorrect. The /etc/aliases file contains alias names and local user mail-
box names for forwarding email messages, but it doesn’t control how Postfix processes the
email messages, so option C is incorrect. The /var/log/maillog file contains log entries
from Postfix; it is not a configuration file, so option E is incorrect.

5.	 B.  The /var/spool/postfix directory contains subdirectories where Postfix stores mes-
sages as they are being processed, so option B is correct. The /var/spool/mail directory
contains mailbox files for storing delivered email but not as the messages are processed, so
option A is incorrect. The /etc/postfix directory contains the Postfix configuration files
but not messages as they’re processed, so option C is incorrect. The /etc/mail directory is
not used by Postfix, so option D is incorrect.

6.	 E.  The mailq command shows the number of email messages waiting in the mail queue to
be delivered, so option E is correct. The master, pickup, and smtp programs are part of the
Postfix email process and aren’t used from the command line, so options B, C, and D are
incorrect. The newaliases command creates a new alias database file from a text alias file,
but it doesn’t display the number of messages in the mail queue, so option A is incorrect.

7.	 A.  The newaliases command converts the text alias entries to the aliases database file for
processing, so option A is correct. The master, pickup, and smtp commands are part of
the Postfix email processing system, but they don’t process aliases, so options B, C, and D
are all incorrect. The mailq command displays the number of email messages waiting in the
queue to be sent, so option E is incorrect.

8.	 A.  The /etc/aliases file contains alias names and the local user accounts to which they
point. The newaliases command reads this file to generate the binary aliases database
used by Postfix when delivering messages, so option A is correct. The master.cf, main.cf,
and install.cf files are Postfix configuration files, but they don’t specify alias mappings,
so options B, C, and D are incorrect.

9.	 B.  Postfix writes system messages to the /var/log/maillog file by default, so option B is
correct. The /var/spool/mail file is where Postfix stores mbox-style mail messages, so
option A is incorrect. The /var/spool/postfix directory is where Postfix stores messages
as it processes them, so option C is incorrect. The /var/log/messages file is where the
kernel stores system messages, but that is not used by Postfix, so option D is incorrect.

10.	 C.  Each user on the system can create personalized recipes and store them in the .procmailrc
file in their $HOME directory, so option C is correct. The /etc/postfix directory is not part
of the procmail setup, so option A is incorrect. The /etc/procmailrc file defines recipes
applied to all email messages for all user accounts, so option B is incorrect. The /etc/
aliases file defines alias mappings to local user accounts, not procmail recipes, so option
D is incorrect. The .procmailrc file must be located in the user’s $HOME directory so that
they can access it; since the /users folder doesn’t relate to a specific user account, option E
is incorrect.

11.	 B.  Procmail applies the recipes defined in the /etc/procmailrc file to all incoming email
messages, so option B is correct. Procmail applies the $HOME/.procmailrc file only to
incoming messages for the specific user account, so option C is incorrect. Options A, D,
and E are not valid locations for procmail recipes.

Chapter 7: Organizing Email Services  675

bapp01.indd  09/14/2016  Page 674 bapp01.indd  09/14/2016  Page 675

12.	 C.  The :0 c recipe matches against all incoming email messages, and the c option copies
the messages to the specified directory, so option C is correct.

13.	 B.  The procmail program is the only one listed that is an MDA program used for process-
ing incoming email messages, so option B is the only correct answer.

14.	 A.  The mailbox_command setting defines a program to which Postfix sends all incom-
ing local email messages, so option A is correct. The mydestination setting defines
addresses for which Postfix will accept incoming email messages, so option B is incor-
rect. The myhost setting defines the hostname of the local server, so option C is incorrect.
The relayhost setting defines a host to which to send all outbound email messages, so
option D is incorrect.

15.	 D.  The mbox mailbox style stores all messages for a user in a single file, either in the /var/
spool/mail directory or the user’s $HOME directory, so option D is correct. Sendmail,
Courier, and exim are application names and not mailbox styles, so options A, B, and E
are incorrect. The maildir style of mailboxes uses a directory to store email messages, so
option C is incorrect.

16.	 C.  The maildir mailbox style creates separate files for each email message stored in a com-
mon folder, so option C is correct. Sendmail, Courier, and exim are application names and
not mailbox styles, so options A, B, and E are incorrect. The mbox mailbox style uses a
single file to store all messages for a user, so option D is incorrect.

17.	 C.  The Courier program uses the /etc/courier folder to store the configuration files that
define how it operates, so option C is correct. The /var/spool/mail and /var/spool/
postfix folders store mail messages, not configuration files, so options A and B are incor-
rect. The /var/log directory stores log files and not configuration files, so option E is
incorrect. Courier doesn’t use the /etc/mail directory, so option D is incorrect.

18.	 A.  The MAXDAEMONS setting determines how many copies of the Courier program can run
at the same time, which controls how many clients can connect, so option A is correct. The
MAILDIRPATH setting defines the location of the mailbox directory, so option B is incorrect.
The ADDRESS setting defines the interface(s) to listen for incoming connections, so option
C is incorrect. The MAXPERIP setting defines the number of connections from a single client
but not the total number of clients that can connect, so option D is incorrect. The PORT set-
ting defines the TCP port to listen to for incoming connections, so option E is incorrect.

19.	 A,D.  Some Linux distributions store the Dovecot configuration settings in the dovecot
.conf configuration file, while some create multiple files under the /etc/dovecot directory,
so options A and D are both correct. Dovecot doesn’t use any of the Postfix files or folders, so
options B, C, and E are all incorrect.

20.	 B.  The mechanisms setting lists the authentication methods that the server supports, so
option B is correct. The mail_location setting defines the mailbox location, so option A
is incorrect. The listen setting defines the TCP port Dovecot listens to for incoming client
connections, so option C is incorrect. The login_max_connections settings define how
many users can connect at the same time, so option D is incorrect. The protocols setting
defines what email protocols the server supports, so option E is incorrect.

676  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 676 bapp01.indd  09/14/2016  Page 677

Chapter 8: Directing DNS
1.	 B.  Option B is correct, because the .edu domain is a Top-Level Domain (TLD), like .gov

or .us. The root domain, option A, can be represented by a single dot (.), and on the DNS
database tree structure it is a level below the TLDs. Therefore, option A is incorrect. A first-
level domain is a TLD subdomain, so option C is wrong. ICANN, option D, is incorrect,
because ICANN is the organization responsible for selecting TLD managers. Option E is
also wrong, because a second-level domain would be two levels above a TLD on the DNS
database tree structure.

2.	 A, B, C, E.  A root server is a server that helps to manage the root zone, so option D is
wrong. Options B and C are correct, because a zone can be either a first-level domain and
all of its subdomains or a first-level domain and a portion of its subdomains. A zone can be
the root zone, which is a special zone managed by root servers, and it encompasses the root
domain, so option E is correct. Option A is also correct, because the hint zone is another
name for the root zone.

3.	 A, C, E.  Options A, C, and E all fit the requirement of two servers per zone, because one
of the servers must be a primary (master) server and one of the following: secondary server,
caching server, or forwarding server. Options B and D are real server types but are missing
the primary server from their configuration, so these options are incorrect.

4.	 D.  Option D is the correct choice, because a resolver is a program or library routine that
creates a DNS query, checks its own cache for the answer, and if it doesn’t find it there,
sends the query to another name server. Option A is incorrect, because a name server is
not a program or library but a server that either has the name resolution data to answer a
DNS query or contains a resolver to get the answer. Cache is a location typically checked
for a DNS query’s answer, and it is not a program or library routine, so option B is wrong.
Option C is incorrect, because name resolution is the process of translating an FQDN into
an IP address (DNS query and answer). Finally, option E is also incorrect, because a zone is
a Domain Name Space portion and not a program or library routine.

5.	 A, B, C, D, E.  Options A, B, C, D, and E are all considered software that provides either
full or partial DNS protocol implementation. Option D is the tricky one, because it was
originally named BIND 10, and it has been renamed Bundy, which is maintained by the
Bundy-Project instead of ICANN.

6.	 C.  Option C is correct, because /usr/sbin/named is the BIND daemon. Option A is incor-
rect, but bind9 is the name of the BIND package on Ubuntu distributions. Option B is wrong,
but bind is the name of the BIND package on CentOS distributions. The named.conf file is a
BIND configuration file, not the BIND daemon, so option D is wrong. Option E is incorrect,
because bindutils is the name of the BIND utilities package on CentOS distributions, not
the BIND daemon.

7.	 A, B, C, E.  Options A, B, C, and E are all legitimate groupings (clauses) in the BIND’s
primary configuration file, named.conf. Option D is a utility, which will allow you to
check the named.conf file for proper syntax, and it is the only incorrect choice.

Chapter 8: Directing DNS  677

bapp01.indd  09/14/2016  Page 676 bapp01.indd  09/14/2016  Page 677

8.	 A, B, D, E.  Options A, B, D, and E all need to be set and/or modified when setting up a
local DNS caching-only server. Option A’s acl directive lets you create an access control
list of hosts allowed to use this caching-only server. Option B’s allow-query can use the
defined acl to allow the designated host to query this caching-only server. Option D’s
listen-on directive sets the port to listen on as well as the acl to listen to for DNS queries
coming from the allowed hosts. Option E’s recursion yes is modified, if needed, so that
allowed hosts may use this caching-only server. Option C is incorrect, because you don’t
have to have BIND logging set in order to use a DNS caching-only server (though it would
be a good idea to set this directive as well).

9.	 B, C, D, E.  Options B, C, D, and E all are methods for stopping the BIND service. Of
course, the methods that will work for your particular server depend on what distribution
is on the server. Option A is incorrect, because rndc flush flushes all of the server’s caches
but does not stop the BIND service.

10.	 B.  Option B is correct, because a category directive defines DNS message types to be
logged. The channel directive defines where DNS messages are to be logged (option A) and
how DNS messages are filtered (option D), so options A and D are incorrect. Option C’s
“How to restart BIND to load logging” has nothing to do with the category directive, so
it is a wrong answer. Also, DNS channel log sizes are not set by the category directive, so
option E is also incorrect.

11.	 A, C.  Options A and C are correct. The type master directive indicates that this is a
zone’s primary name server, and the type hint directive specifies that this is the hint or
root zone, which is a list of current root name servers. Option B is wrong, because the type
directive, which indicates that this is a zone’s secondary name server, is type slave and
not type secondary. Option D is incorrect, because to indicate that this zone is to enforce
a root zone’s delegation-only status, the type delegation-only directive should be used.
Finally, option E is incorrect, because there is no type root directive.

12.	 A, C, D.  Options A, C, and D are correct. A zone statement class can be either IN (Inter-
net), CH (Chaosnet network protocol), or HS (Hesiod network software). Options B and E
are made-up zone statement classes, so they are incorrect.

13.	 B, C, D.  Options B, C, and D are correct. In these cases, a zone transfer will occur. Option A
is incorrect, because a zone transfer is not initiated by the primary server’s BIND daemon
restarting. Option E is also incorrect, because this option essentially shuts down and removes
the BIND service on the secondary server.

14.	 C, E.  You’ll typically find your default zone databases located in either the /var/named/
directory or the /etc/bind/ directory, depending on your server’s distribution. Therefore,
options C and E are correct. The other directories are made up, so options A, B, and D are
incorrect.

15.	 E.  Option E is correct, because the SOA (start of authority) is the zone resource record
type that identifies an authority zone’s start and includes the zone’s authoritative data. The
CNAME (canonical name) record type maps an alias name to a host name, so option A is
incorrect. Option B’s A record type is a host address record for IPv4 addresses. A PTR record
type points to another domain name space location and is typically used in reverse lookups,

678  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 678 bapp01.indd  09/14/2016  Page 679

so option C is wrong. Option D’s NS record type specifies the zone’s authoritative name
server, so it is incorrect.

16.	 C.  Option C is correct, because a Reverse Zone is a special zone that provides a mapping
from an IP address to an FQDN (the reverse of regular DNS mappings). Option A is wrong,
because it describes a glue record. Option B is a zone transfer, so it is an incorrect answer.
Option D is wrong, because it describes a Hint Zone, and option E is also incorrect because
it is the definition of a zone.

17.	 A, B, C, E.  Options A, B, C, and E are correct. Only option D is incorrect. Updating BIND
software is not tied to a calendar. Because of constant malicious attack threats, BIND soft-
ware should be updated as soon as a new version is available.

18.	 D, E.  When setting up a chroot jail, either /chroot/named (option D) or /chroot/bind
(option E) is typically used as the new root (/) directory, depending on your distribution.
The other directories may also be used in the BIND configuration, but they are not used as
the new root (/) directory in a chroot jail. Therefore, options A, B, and C are incorrect.

19.	 C.  The zone signing key (ZSK) is the encryption key used to digitally sign a particular
zone’s resource records, so option C is correct. Option A’s digital signature is produced
when the ZSK is used to sign the zone’s resource records, so option A is incorrect. A key
signing key (KSK) is the encryption key used to sign a particular zone’s ZSK, so option B
is wrong. In option D, the chain of trust has a higher zone’s key sign a lower zone’s key,
creating a trusted chain with a trust anchor, so it is an incorrect choice. Finally, option E’s
DNSKEY is where the KSK is stored, so it also is an incorrect choice.

20.	 A.  Option A’s dnssec-keygen utility can produce either TSIG or DNSSEC keys, depending
on the options used, so it is the correct choice. The dnssec-signzone utility is used on sys-
tems that have the TSIG keys generated but do not set up automatic signing via the auto-
dnssec and inline-signing directives in the named.conf file, to sign the zone manually.
Therefore, option B is wrong. The dnssec-dsfromkey utility is used to create a record for
the parent zone in the chain of trust, so option C is also wrong. Options D and E contain
made-up utilities, so they are incorrect choices.

Chapter 9: Offering Web Services
1.	 C.  HTTP defines the client requests and server responses required to transfer a data

file from a web server, so option C is correct. HTML (option A) defines the format of a
web document but not the transfer protocol. SSL (option B) and TLS (option D) define
encryption protocols, and they aren’t used in the actual file transfer protocol, so both are
incorrect.

2.	 A.  The HTML standard defines formatting rules for creating web pages, so option A is
correct. HTTP (option C) defines the protocol used to transfer the document from the
web server to the client browser but not how to format the document itself, so option C is
incorrect. SSL and TLS are encryption protocols and don’t format any content in the actual
data, so options B and D are incorrect.

Chapter 9: Offering Web Services  679

bapp01.indd  09/14/2016  Page 678 bapp01.indd  09/14/2016  Page 679

3.	 D.  The 404 response code in HTTP indicates that the file requested by the client was not
found on the web server, so option D is correct. The 200 status code (option A) indicates
that the request was successful, so option A is incorrect. The 403 status code indicates that
the client does not have permission to retrieve the requested file, so option B is incorrect.
The 500 status code indicates that there is a server problem preventing the file from being
downloaded, so option C is incorrect.

4.	 B.  The apache2ctl utility allows you to issue a graceful shutdown request to the Apache
web server, preserving any existing connections to the server, so option B is correct. The
systemctl is used by some Linux distributions to stop or start processes, but it doesn’t shut
down the Apache web server gracefully, so option A is incorrect. The httpd and apache2
programs are the actual web server and don’t have options to stop the server gracefully, so
options C and D are incorrect.

5.	 B.  The apache2ctl utility can also parse the Apache configuration files and note any syn-
tax issues, so option B is correct. The systemctl utility is used by some Linux distributions
to stop or start processes, but it doesn’t parse configuration files, so option A is incorrect.
The httpd and apache2 programs are the main Apache web server, and they don’t have the
option to parse the configuration files, so options C and D are incorrect.

6.	 A.  The DocumentRoot directive defines the folder from which the web server allows clients
to request files, so option A is correct. The ServerRoot directive defines the location of the
configuration files for the server, so option B is incorrect. The Listen directive defines the
IP addresses and ports the Apache server uses to listen for incoming requests, so option C is
incorrect. The DirectoryIndex directive defines the default files to look for when a client
requests a folder name instead of a filename, so option D is incorrect.

7.	 C.  The <Directory> feature allows you to create a block of directives that apply to a
specific folder location, so option C is correct. The <VirtualHost> feature allows you to
create a block of directives that apply to a specific virtual host but not a directory, so option A
is incorrect. The <IfDefined> feature allows you to create a block of directives to apply
only when an environment variable is defined but not apply it only to a specific directory,
so option B is incorrect. The <IfModule> feature allows you to create a block of directives
to apply only when a module is loaded but not apply it to a specific directory, so option D is
incorrect.

8.	 B.  The LogFormat directive defines the format of the log file entries, allowing you to decide
what information is stored in the log file, thus option B is correct. The ErrorLog directive
defines where the error logs are located but not what they contain, so option A is incorrect.
The ErrorDocument directive defines how error messages sent to the clients are defined but
not how the error logs are formatted, so option C is incorrect. The DocumentRoot directive
defines the folder from which to serve files but not the format of the error log, so option D
is incorrect.

9.	 C.  The access.log file logs all client requests to the web server, so option C is correct.
The error.log file contains only errors, not valid requests, so option A is incorrect. The
apache2.conf and httpd.conf files are configuration files for the Apache web server, not
log files, so options B and D are both incorrect.

680  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 680 bapp01.indd  09/14/2016  Page 681

10.	 B.  The UserDir directive defines the folder name that users can create in their HOME fold-
ers to offer files on the web server, so option B is correct. The AuthUserFile defines the
location of a user authentication file, so option A is incorrect. The DocumentRoot directive
defines the server folder to offer to web clients, not the name of individual user folders, so
option C is incorrect. The LoadModule directive loads feature modules into the Apache
server; it doesn’t specify the location of the user web files folder, so option D is incorrect.

11.	 D.  The ServerName directive defines the domain name in each virtual host block,
so option D is correct. The DocumentRoot directive defines a folder and not a domain
name, so option A is incorrect. The NameVirtualHost directive defines the IP address
of the physical server, not the domain names to accept, so option B is incorrect. The
<VirtualHost> block defines all of the directives for the virtual host, not just the domain
name, so option C is incorrect.

12.	 A.  The Listen directive defines the IP address and port the Apache server uses to accept
incoming client requests, so option A is correct. The <VirtualHost> feature allows you
to create a block of directives for the virtual host, but it doesn’t define the IP addresses,
so option B is incorrect. The NameVirtualHost directive defines the common IP address
for name-based virtual hosts, but it isn’t used for IP-based virtual hosting, so option C is
incorrect. The DocumentRoot directive defines a folder and not an IP address, so option D
is incorrect.

13.	 B.  The htpasswd utility creates a text file with a userid and encrypted password that can
be used for authentication, so option B is correct. The httpd and apache2 programs are
names for the main Apache web server program and don’t generate text files, so options A
and C are incorrect. The mod_auth is a module used to implement authentication on the
Apache server, but it doesn’t create the userid/password file, so option D is incorrect.

14.	 C.  The AuthUserFile directive defines the location of the userid/password file used for
user authentication, so option C is correct. The AuthType directive defines the type of
authentication used but not the location of the authentication file, so option A is incorrect.
The AuthName directive defines the text used to query the client for authentication but not
the location of the authentication file, so option B is incorrect. The Order directive defines a
network restriction and not an authentication restriction, so option D is incorrect.

15.	 A.  The Common Gateway Interface (CGI) allows the Apache web server to pass files to an
external program interpreter to process embedded program code, so option A is correct.
mod_perl and mod_php are names for modules that incorporate internal program process-
ing; they don’t pass the code to an external program, so both options B and D are incorrect.
The mod_auth module is for authentication and not programming, so option C is incorrect.

16.	 B.  The AddHandler directive defines how the Apache web server should handle files based
on their file extensions. It is used to redirect files to specific processes, such as code inter-
preters, so option B is correct. The LoadModule directive installs a module but doesn’t redi-
rect files to separate processes, so option A is incorrect. The DocumentRoot directive defines
the folder on the server from which files are served but not how to process them, so option
C is incorrect. The DirectoryIndex directive defines what files should be used by default
when a client requests a directory but not how to process them, so option D is incorrect.

Chapter 10: Sharing Files  681

bapp01.indd  09/14/2016  Page 680 bapp01.indd  09/14/2016  Page 681

17.	 D.  The SSLCertificateFile directive defines the location of the signed server certificate
file that should be used for SSL sessions, so option D is correct. The DirectoryIndex
directive defines the default files to serve when a client requests a directory, so option A is
incorrect. The SSLCertificateKeyFile directive defines the encryption key file, not the
certificate file, so option B is incorrect. The SSLEngine directive defines when the server
should allow SSL connections but not the location of the certificate file, so option C is
incorrect.

18.	 A, C.  A web proxy server caches web requests from multiple clients so that future requests
can be served from the cache. It also can restrict the websites clients are allowed to view.
That makes options A and C correct. Option B defines the role of a reverse proxy server, not
a standard web proxy server, so it is incorrect. Option D defines the role of the DocumentRoot
directive, a web proxy server doesn’t restrict the files that a server can serve, so option D is
incorrect.

19.	 B.  The auth_param directive defines authentication settings used to authenticate clients,
so option B is correct. mod_auth is an Apache web server module and not a Squid direc-
tive, so option A is incorrect. The acl directive is used to define access groups, so option C is
incorrect, and the http_access directive is used to define access rules, so it too is incorrect.

20.	 B.  The server section in the nginx configuration file defines the directives that apply to the
entire server, so option B is correct. The location section defines directives that apply to
a specific folder location, not the entire server, so option A is incorrect. The root directive
defines the DocumentRoot location on the web server, so it is incorrect, and the listen
directive defines the IP addresses and ports the server uses to listen for incoming client
requests, so it too is incorrect.

Chapter 10: Sharing Files
1.	 C.  Option C is correct, because the /var/log/samba/ directory is where you would typi-

cally find Samba log files. The /etc/smb/ directory (option A), /etc/samba/ directory
(option B), and /etc/samba.d/ directory (option E) are all incorrect, because these are (or
were) directories for storing Samba configuration files. Option D is also incorrect, because
the /var/lib/samba/ directory is used for storing things such as Samba user databases,
not log files.

2.	 A, B, D.  Option A is correct, because it is the daemon used on a Samba server to imple-
ment the SMB protocol. Option B is a tricky one, but it is also correct. The CUPS daemon,
cupsd, can be used with the Samba server daemon to provide Samba print shares. Option D
is also correct, because if you have legacy Windows systems within your network and need
Samba services, NetBIOS over TCP via the nmbd daemon must be used. Option C is also a
tricky one, because the actual daemon name for the Name Service Switch daemon is winbindd
and not winbind, so option C is wrong. Option E is a made-up daemon name and therefore
is incorrect.

3.	 A.  Option A is correct, because the smb.conf is the main Samba configuration file. Option B
is made-up and is therefore a wrong choice. Option C, mount.cifs, is a command that

682  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 682 bapp01.indd  09/14/2016  Page 683

allows you to mount a Samba share on a client system and is an incorrect choice. Option D
is also incorrect, because /etc/samba.d is a directory (typically not used anymore) for
storing Samba configuration files. Option E’s smbcontrol is a command for managing the
Samba smbd daemon and is also an incorrect answer.

4.	 D.  Option D is correct, because after modifying the main Samba configuration file, you
should next check the file’s syntax, and the testparm command will do that. You should
not reload the configuration file into a Samba server daemon until you have checked the
configuration file’s syntax, and therefore option A is wrong. Option B is wrong, because
there is no need to reboot the Samba server daemon. The smbstatus command displays
current Samba server connections but does not check the Samba configuration file’s syntax,
so option C is wrong. Option E is also incorrect, because creating a directory or setting up
a printer queue to share is not the next needed step.

5.	 E.  Option E is correct, because the correct directive is workgroup and it needs to be set to
the Windows group or domain name for setting up Samba in a mixed Windows and Linux
environment. The other options are wrong because they are incorrect or made-up directive
names.

6.	 A, C, D.  Options A, C, and D are correct, because they are legal settings for the passdb
backend directive, and they are the various Samba user account information databases
typically located in the /var/lib/samba/ directory. Options B and E are incorrect, because
they are legal settings for the Samba security directive and not the passdb backend
directive.

7.	 C.  Option C is the best answer, because file shares are typically found under a share name,
such as [myshare]. Option A is incorrect, because the [global] section is for globally
applied directives that determine how the Samba server will conduct networking, logging,
name resolution, and so on. The [netlogins] section, option B, is incorrect, because this
section is for providing directives needed for when the Samba server is acting as a domain
controller. Option D’s [printers] is incorrect, because this section is for defining printer
shares. Option E is also wrong, because the [profiles] section holds directives needed for
roaming user profiles.

8.	 A.  Option A is correct, because the public directive can be set to no (passwords required)
or yes (passwords not required). The browseable directive (option B) is incorrect, because
it determines whether a share is seen in an available shares list. Option C is a wrong choice,
because the guest only directive sets whether only guest connections are allowed for this
service. The writable directive in option D is an antonym for the read only directive in
option E, and they are both incorrect choices because they determine whether write access
is granted to a share.

9.	 B.  Option B is correct, because the smbclient allows FTP-style access to a Samba share (as
long as the appropriate access is granted). The pdbedit command (option A) is incorrect,
because it does not provide access to a Samba share but instead manages any of the Samba
user databases. Option C is wrong, because the smbpasswd command manages either
the Samba smbpasswd or tdbsam database but provides no share access. The rpcclient
command in option D is incorrect, because this command executes Samba client Microsoft

Chapter 10: Sharing Files  683

bapp01.indd  09/14/2016  Page 682 bapp01.indd  09/14/2016  Page 683

RPC functions. Option E is an incorrect choice, because the ftp command is an older com-
mand that provides access to FTP servers, not Samba shares.

10.	 A, B, C, D, E.  All the answers are correct, because they are all potential troubleshooting
items if a Samba client is unable to access a Samba share. Of course, you may find and fix
the root problem cause before needing to complete all the various items.

11.	 E.  Option E, mountd, is correct because this daemon manages any NFS client mount requests
that come into the NFS server. Option A, portmapper, and option C, rpcbind, are the same
daemon (just different names), but they are not the correct answer, because this daemon reg-
isters RPC services to the various RPC ports, among other things. Option B, rpc.lockd, is
incorrect because it is the kernel service that provides NFS file locking. The statd daemon,
option D, is a wrong choice, because this daemon works with the lockd kernel service to
provide NLM protocol file locking.

12.	 A, C.  Option A is correct, because the primary NFS configuration file is /etc/exports.
Option C is also correct, because the /etc/exports.d/ directory may contain extra export
configuration files with an .exports file extension name. Option B is a made-up direc-
tory name, so it is an incorrect choice. The /proc/fs/nfs/ directory houses the exports
file, which contains current exports and the individual clients using them, so option D is a
wrong choice. Finally, option E is incorrect, because the /var/lib/nfs/ directory stores
the xtab, etab, and rmtab files, which contain various NFS export information.

13.	 D, E.  Options D and E are correct. On current distributions, system administrators typi-
cally use these filesystem locations to create subdirectories, which serve as NFS exports
(shares). Options A and B are wrong, because you should never share either the NFS serv-
er’s root directory (/) or its /etc/ directory. The /proc/ directory, option C, is also
incorrect, because it is illogical to share this directory, which houses process information.

14.	 A, C.  Options A and C are the best answers. The ro directive sets the share as read-only
and the async directive increases performance of read-only (ro) exports. The rw directive
sets the share as read/write, so option B is incorrect. The sync directive is best used with
read/write shares, so option D is also incorrect. Option E’s subtree_check enables permis-
sion checking on higher-level directories and is not directly tied to a read-only share.

15.	 A, D.  Options A and D are correct, because both the exportfs and the showmount utilities
display NFS share information. Option B’s mount.nfs utility is used for mounting an NFS
share from an NFS client, so it is a wrong choice. The rpcinfo command (option C) displays
RPC service information, and though the information may be related to NFS shares, it is
not NFS share information. Therefore, it is an incorrect choice. The smbstatus command
in Option E is used for displaying current Samba server connections and not NFS shares, so
it also is an incorrect choice.

16.	 E.  Option E is correct, because the exportfs -v uses the utility’s verbose mode and dis-
plays all the various NFS shares being offered with detailed information concerning them.
The -a (option A) is incorrect, because it is used to export all configured shares in the
/etc/exports file. Option B’s -o is also wrong, because it is used to export a share config-
ured on the command line. The -r operand (option C) re-exports configured shares, so it is

684  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 684 bapp01.indd  09/14/2016  Page 685

a wrong choice. Finally, the -u operand in option D unexports an NFS share, so it is also
an incorrect choice.

17.	 B, C.  The pure-ftpd daemon is from the Pure-FTPd FTP server package, so option B is
correct. The vsftpd daemon is the Very Secure FTP server, so option C is also correct.
FileZilla (option D) is a GUI-based FTP client, so it is an incorrect choice. Options A and E
(ftp and lftp) are command-line FTP clients, so they are wrong choices as well.

18.	 C, D.  For a passive FTP connection, only the FTP client is active in establishing the con-
nections, so option C is a correct choice and options A and B are wrong. A data connection
and a command connection are established for both active and passive modes, so option D
is correct. Option E is wrong, because only in active mode does the FTP server use ports
20 and 21. In passive mode, the FTP server uses port 20 as its data port but a random
unprivileged port as its command port.

19.	 A, E.  Option A is correct, because often the username accepted upon an FTP client con-
nection is anonymous. Option E is also correct, because the user and group for typical FTP
client connections is ftp and for vsftpd is set via the ftp_username directive. Option B is
incorrect, because it is a FTP server daemon. Individual usernames are not typically used
for anonymous FTP connections, so option C is wrong. Option D is also incorrect, because
it is a made-up username.

20.	 B, C, D, E.  Options B, D, and E are correct, because these three directives are needed by
vsftpd for files to be uploaded by anonymous. Option C is also correct, because this direc-
tive is needed by pure-ftpd for files to be uploaded by anonymous. Option A is a wrong
choice, because it is a made-up directive.

Chapter 11: Managing Network Clients
1.	 B.  The DHCPd application stores its configuration in the /etc/dhcp/dhcpd.conf text file,

so option B is correct. Some applications use a folder to store multiple configuration files,
but DHCPd doesn’t do that, so option A is incorrect. The isc-dhcp-server is the name of
the Debian software package, not the configuration file, so option C is incorrect. The
/etc/services file contains a list of valid TCP and UDP ports defined for the server, not
the DHCPd configuration file, so option D is incorrect.

2.	 C.  The router option defines the default router assigned to network clients, so option C
is correct. The smtp-server option defines a default mail server for clients, so option A
is incorrect. The broadcast-address option defines the address used to send broadcasts
on the network, so that is incorrect. The range option defines the pool of IP addresses
assigned to clients in the network, so that is also incorrect.

3.	 D.  The range option setting defines a range of IP addresses from which the DHCP server
can assign an IP address to network clients, thus option D is correct. The smtp-server
option defines a default mail server, so option A is incorrect. The broadcast-address option
defines the address used to send local broadcast messages on the network, so option B is

Chapter 11: Managing Network Clients  685

bapp01.indd  09/14/2016  Page 684 bapp01.indd  09/14/2016  Page 685

incorrect. The router option is used to define a default router for the network, so option C
is incorrect.

4.	 A.  IP addresses assigned to network clients are called leases, and the file used to track
currently leased IP addresses is the dhcpd.leases file, stored in the /var/lib/dhcp folder,
thus option A is correct. The /etc/dhcp/dhcpd.conf file is the standard configuration
file for DHCPd, but it doesn’t store the current IP address lease information, so option B
is incorrect. The dhcpd.leases file is not stored in the /etc/dhcp folder, so option C is
incorrect. IP address leases are not stored in the dhcpd.conf configuration file, so option D
is also incorrect.

5.	 D.  The hardware setting defines the Ethernet address (MAC) of a client to assign it a static
IP address, so option D is correct. The range setting defines a pool of IP addresses to assign
to network clients, not a static IP address, so option A is incorrect. The fixed-address
setting defines a fixed IP address to assign to a client but doesn’t define the client’s MAC
address, so option B is incorrect. The host-name option defines the local hostname to
assign to the client, but not the MAC address, so option C is incorrect.

6.	 A.  The host feature allows you to bundle multiple configuration settings and options
together to assign to a specific device on the network, so option A is correct. The group
feature is similar, but it bundles options and settings for multiple hosts on the network,
so option B is incorrect. The range setting defines a pool of IP addresses assigned to all
clients, not a specific client, so option C is incorrect. The fixed-address setting defines a
fixed IP address to assign to a specific client, but it doesn’t bundle multiple configuration
settings and options together for the client, so option D is incorrect.

7.	 A.  DHCP option 1 defines the subnet mask assigned to the network client, so option A is
correct. DHCP option 3 defines the default router, so option B is incorrect. DHCP option 5
defines the name server for the network, so option C is incorrect, and DHCP option 6 defines
the domain server for the network, so option D is incorrect.

8.	 C.  The pam_unix.so module uses the standard Linux /etc/passwd and /etc/shadow files
to authenticate users, so option C is correct. The pam_ldap.so module uses an LDAP net-
work directory to authenticate uses, so option A is incorrect. The pam_userdb.so module
uses a database to authenticate user accounts, so option B is incorrect, and the pam_sss.so
module uses the System Security Services Daemon (SSSD) method to authenticate users on
remote directories, not the local /etc/passwd and /etc/shadow files, so option D is
incorrect.

9.	 B.  The pam_ldap.so module uses an LDAP server to authenticate users using a network
directory, so option B is correct. The pam_unix.so module authenticates users using the
standard /etc/passwd file, so option A is incorrect. The pam_userdb.so module authenti-
cates users using a local database file, so option C is incorrect. The pam_access.so module
provides anonymous logins for FTP servers; it doesn’t authenticate users with a network
directory, so option D is incorrect.

10.	 C.  The pam_cracklib.so module provides checks for weak passwords, so option C is cor-
rect. The pam_limits.so module provides resource limits, such as number of files open
or CPU time, but it doesn’t restrict passwords, so option A is incorrect. The pam_unix.so

686  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 686 bapp01.indd  09/14/2016  Page 687

module just performs standard authentication using the /etc/passwd file; it doesn’t moni-
tor the user passwords, so option B is incorrect. The pam_userdb.so module authenticates
users against a local database, but it also doesn’t enforce any password restrictions, so
option D is incorrect.

11.	 B.  The PAM application uses the pam.conf configuration file, stored in the /etc/ folder,
so option B is correct. Option A, /etc/pam.d, is a folder, not a single configuration file, so
option A is incorrect. The /etc/pam.d/pam.conf location mixes the single file and multiple
file methods together and doesn’t exist in the PAM setup, so option C is incorrect. The
 /etc/pamd.conf file doesn’t exist in the PAM setup, so option D is incorrect.

12.	 A.  The PAM application uses the /etc/pam.d folder to store individual application con-
figuration files, so option A is correct. When using separate application configuration files,
PAM doesn’t use the pam.conf file, so options B and C are incorrect. The pamd.conf file
doesn’t exist in the PAM set up, so option D is incorrect.

13.	 C.  The requisite control entry terminates the authentication process if the authentication
fails. No other entries in the configuration are checked. Thus, option C is correct. The
sufficient entry passes the authentication if the check succeeds, but it doesn’t terminate
the authentication if it fails, so option A is incorrect. The required entry only indicates a
failure status if the authentication fails, but it allows the authentication process to check
other entries, so option B is incorrect. The optional entry doesn’t block further entries if it
fails, so option D is also incorrect.

14.	 B.  The session feature type allows you to define a log file where PAM will log authentica-
tion attempts, so option B is correct. The account feature type only verifies the account; it
doesn’t log the transaction, so option A is incorrect. Likewise, the auth feature type only
provides authentication services; it doesn’t log them, so option D is also incorrect. The
password feature type provides password management features but also doesn’t log the
transactions, so option C is incorrect.

15.	 D.  The object class defines a template that provides a set of attributes assigned to an object
in the LDAP database, so option D is correct. The object ID uniquely identifies each object,
but it doesn’t provide a template of attributes, so option A is incorrect. The schema defines
the structure of the database, but it isn’t used as a template for objects, so option B is incor-
rect. The LDAP tree encompasses the actual objects contained in the LDAP database, not
just a template for new objects, so option C is incorrect.

16.	 A.  The attributes define the data values associated with an object in the LDAP database,
so option A is correct. The object class defines a template of attributes that is applied to an
object but not the actual attribute values themselves, so option B is incorrect. The object ID
is a unique value assigned to each object, but it doesn’t include any information about the
object, so option C is incorrect. The schema defines the objects in the database and how
they are interrelated, but it doesn’t define the actual information about individual objects,
so option D is incorrect.

17.	 D.  Each object must have a unique distinguished name that references the location of the
object in the LDAP tree as well as the object name, thus option D is correct. The object ID
value for each object is unique, but it isn’t a name that you can reference, so option A is

Chapter 12: Setting Up System Security  687

bapp01.indd  09/14/2016  Page 686 bapp01.indd  09/14/2016  Page 687

incorrect. The attributes of objects aren’t unique, so option B is incorrect. The object class
defines a template that is applied to all similar objects in the LDAP tree, so it too is not
unique, and option C is incorrect.

18.	 B.  The main application program for the OpenLDAP server is slapd, so option B is cor-
rect. The slurpd program is used only when replicating LDAP servers, so option A is
incorrect. The slapadd program is used to add new objects to the LDAP database; it isn’t
the main LDAP server program, so option C is incorrect. The slapindex program allows
you to re-index the LDAP database, but it too isn’t the main LDAP server program, so
option D is incorrect.

19.	 C.  The slapadd command-line program allows you to update the LDAP database with
new objects, so option C is correct. The ldapadd and ldapmodify programs are client
applications and not server applications, so options A and D are incorrect. The slapindex
program only re-indexes the existing objects in the LDAP database; it can’t add new
objects, so option B is incorrect.

20.	 B.  The ldapadd program allows you to add new objects into the LDAP database from a
client, so option B is correct. The slapadd program also allows you to add new objects, but
only from the server, since it interacts directly with the LDAP files, so option A is incor-
rect. The ldapmodify program is a client program, but it can only modify existing LDAP
objects, not add new ones, so option C is incorrect. The slapindex program is a server
program that re-indexes the existing objects in the LDAP database, so option D is incorrect.

Chapter 12: Setting Up System Security
1.	 A.  An attack vector is any path that allows an attacker to gain access to a system. Since a

vulnerability allows access to a system, it’s an attack vector; thus option A is correct. The
other three options just describe other types of vulnerabilities, so options B, C, and D are
incorrect.

2.	 C.  The /etc/services file contains a mapping of port numbers to applications, so option
C is correct. The /etc/ssh/sshd_conf file is the configuration for the OpenSSH server, the
/etc/openvpn folder contains configuration files for the OpenVPN application, and the
/proc/sys/net/ipv4 folder contains settings for the IPv4 stack in the kernel, so options A,
B, and D are all incorrect.

3.	 B.  The second parameter of the telnet command specifies the TCP port to connect to, so
option B is correct. Options A and C show incorrect formats for the telnet command, so
they are incorrect. Option D is incorrect, because you can specify any TCP port number for
the second parameter.

4.	 D.  The netstat command can display all of the ports that are open, listening for incom-
ing network connections, so option D is correct. The telnet command can connect to only
one port at a time, so option A is incorrect. The iptables command works with the kernel
packet processing features and not network ports, so option B is incorrect. The ssh com-
mand can connect only to port 22, so option C is incorrect.

688  Appendix  ■  Answers to Review Questions

bapp01.indd  09/14/2016  Page 688 bapp01.indd  09/14/2016  Page 689

5.	 B.  The –z option specifies a list of ports or a port range that the netcat command should
scan looking for listening ports, so option B is correct. The –v option provides more ver-
bose output, so option A is incorrect. The –l option tells netcat to listen for incoming
connections, so option C is incorrect. The -6 option tells netcat to use IPv6 addresses, so
option D is also incorrect.

6.	 A.  The –A option tells nmap to perform a fingerprint analysis of the remote system, so
option A is correct. The –sT option scans all TCP ports, while the –sU option scans all UDP
ports, so options B and C are incorrect. The –p option specifies a port range to scan, so
option D is also incorrect.

7.	 C.  The Network Vulnerability Tests (NVT) simulate known attacks against systems, and
they are downloaded as part of OpenVAS, so option C is correct. The National Vulnerabil-
ity Database (NVD) is maintained by US-CERT to define vulnerabilities but not use them
to simulate the vulnerabilities, so option A is incorrect. The distribution Software Reposi-
tory doesn’t store vulnerabilities, so option B is incorrect. The web interface allows you to
interact with OpenVAS, but it doesn’t simulate vulnerabilities, so option D is incorrect.

8.	 D.  An intrusion detection system (IDS) can monitor system and network events, looking
for triggers that indicate an active attack is occurring, so option D is correct. Port scanners
can tell you of open attack vectors, but they can’t tell you when an attack is happening,
so option A is incorrect. The Network Vulnerability Test (NVT) simulates attacks, but it
doesn’t warn you of current attacks, so option B is incorrect. The VPN allows you to estab-
lish a secure connection between two remote hosts, but it doesn’t warn you of an attack, so
option C is incorrect.

9.	 B.  The jail.conf file, located in the /etc/fail2ban folder, contains the rule definitions
that determine what events fail2ban should monitor.

10.	 A.  The Snort application monitors the network looking for active attacks, so option A is
correct. The OpenVPN package provides an encrypted tunnel between two public networks
to provide a secure environment, but it doesn’t act as an NIDS, so option B is incorrect. The
OpenSSH application provides a secure channel between a client and server, but it doesn’t
monitor packets on the network, so option C is incorrect. The OpenVAS application is a
vulnerability tool, but it doesn’t monitor network packets by itself, so option D is incorrect.

11.	 C.  The sniffer mode of Snort displays a brief description of each packet received, so option C
is correct. Option A is the logging mode, which logs packets to a file instead of displaying
them, so option A is incorrect. The NIDS mode only reports vulnerability events, so option B
is incorrect. By default, the Snort command-line mode doesn’t display the packets, so
option D is also incorrect.

12.	 C.  The HOME_NET variable defines the local addresses for Snort to monitor, so option C
is correct. The EXTERNAL_NET variable defines remote addresses, so option A is incorrect.
Snort doesn’t need to define local addresses or point to the configuration folder name, so
options B and D are both incorrect.

13.	 D.  The arrow indicates the traffic flow, so 10.0.0.1 -> 10.0.0.2 defines the traffic
flow we are looking for, and option D is correct. The <- indicator shows that the traffic is
coming from the .2 address to the .1 address, which is wrong, so option A is incorrect.

Chapter 12: Setting Up System Security  689

bapp01.indd  09/14/2016  Page 688 bapp01.indd  09/14/2016  Page 689

Option B also shows the traffic going the wrong way, so option B is incorrect. Option C
uses the <> bidirectional operator, so it too is incorrect.

14.	 B.  The IPv4 specifications use the 10.0.0.0 through 10.255.255.255, 172.16.0.0 through
172.31.255.255, and 192.168.0.0 through 192.168.255.255 network address ranges; thus
option B is correct. Options A, C, and D all have the incorrect number of address ranges, so
they are all incorrect.

15.	 A.  The fe80 value identifies the starting address for link local addresses in IPv6. The
remainder of the address is usually derived from the Ethernet MAC address to ensure it’s
unique on the network. The ff02 value is the multicast address for routers, and ff05 is
the multicast address for DHCP servers, so option C is incorrect. The aabb value isn’t a
reserved number in IPv6, so option D is incorrect.

16.	 C.  Network Address Translation (NAT) allows a client on a private network address to
have its address translated to a public address before leaving the network, so option C is
correct. SSH provides an encrypted network connection, so option A is incorrect. The tel-
net command provides plaintext communication, so option B is incorrect. The IDS soft-
ware detects attackers; it doesn’t provide connection support, so option D is incorrect.

17.	 B.  The iptables command allows you to manipulate the rules defined in the kernel chains
and tables to filter the network traffic, so option B is correct. The nc command provides
only network communication, so option A is incorrect. The netstat and nmap commands
allow you to view only network port status, so options C and D are both incorrect.

18.	 C.  The –A option is used to add new rules to a chain or table, so option C is correct. The
–L option lists the existing rules, so option A is incorrect. The –F option flushes the rules
cache, so option B is incorrect. The –j option specifies a default action; it does not add a
new rule, so option D is incorrect.

19.	 A.  The REJECT policy drops the packet but sends an ICMP message back to the source IP
address indicating the failure; thus option A is correct. The DROP policy drops the packet
silently, so option B is incorrect. The ACCEPT and LOG policies accept all packets, while
the LOG policy stores packet information in a log file, so options C and D are incorrect.

20.	 A.  The –P option defines the chain and policy to use as the default. The –j option defines
the action for a rule, so option B is incorrect. The –L option only lists chains and tables; it
doesn’t modify them, so option C is incorrect. The –F option flushes all rules out from the
chain, so option D is incorrect.

bindex.indd  09/14/2016  Page 691

HTTPS configuration, 474–482
installing, 462–464
log files, 467–468
modules, 459, 467, 470–472, 473–474

apache2ctl command, 463–464
apachectl command, 463
APPEND command, IMAP, 337
AppleTalk, 274
application layer, 279
archive files, 51, 61

media storage considerations, 54–55
ARP (Address Resolution Protocol), 289–290
arp command, 289–290
ARP table, 289–290
asymmetric encryption, 433–434

DNSSEC (DNS Security Extensions),
434–439

ATA over Ethernet (AoE), 234–235
ATAPI (Advanced Technology Attachment

Packet Interface) drives, 221–222, 223
attack vectors, 621
auth configuration setting, Dovecot, 360
auth feature, PAM, 594
authentication

Apache, 470–472
Courier, 359–360
Exim, 321
IMAP, 335–336
LDAP, 597–612
PAM, 591–597
POP3, 333
Postfix, 349
Squid, 485–486
SSH, 642–643

authoritative data, 407
authoritative information, 376
authoritative servers, 376, 377
AUTHORS files, 75
auto-mounting filesystems, 180–183
AutoFS, 180–183

0 runlevel, 17, 21
1 runlevel, 17, 21
2 runlevel, 17, 18
3 runlevel, 17, 18
4 runlevel, 17
5 runlevel, 17, 18
6 runlevel, 17

A
A flag, procmail, 353
a flag, procmail, 353
AAAA resource record, 409
absolute domain names, 374
access logs, Apache, 467–468
access lookup table, Postfix, 349
access points, 273–274, 274, 283
AccessFileName directive, Apache, 466
AccessFilename directive, Apache, 466
account feature, PAM, 594
action commands, Sieve, 357
action response codes, SMTP, 329, 330
address command, Sieve, 357
ADDRESS configuration setting, Courier, 353
address match list, 383
Address Resolution Protocol (ARP), 289–290
ads security mode, Samba, 522
Advanced Host Controller Interface (AHCI),

222, 232
alerts, RAID arrays, 216–219
alias lookup table, Postfix, 349
allof command, Sieve, 357
Amanda backup solution, 59–60
anyof command, Sieve, 357
AoE (ATA over Ethernet), 234–235
Apache web server

configuring, 464–472
dynamic web programming, 472–474
features, 459–460

Index
Note to the Reader:  Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

692  automatic trim  –  caching servers

bindex.indd  09/14/2016  Page 692 bindex.indd  09/14/2016  Page 693

reverse zones, 414–415
security, 427–431
starting/stopping/reloading, 395–398
troubleshooting, 418–427
zone configuration files, 403–407
zone databases, 407–414

binmail, 322, 324
binrpm-pkg, 119
BIOS (Basic Input/Output System), 6–7
blacklists, 297
blkid command, 151–152, 159–160
block device files, 101
/boot directory backup considerations, 58
boot managers, 8, 15
boot process, 4

failures, 27–29
initialization. See initialization process
monitoring, 5–6
steps, 4–5

bootloaders, 6–7, 8–9
chainloading, 7
GRUB Legacy, 8, 9–12, 31
GRUB2, 8–9, 12–14, 31
LILO, 8, 30
Syslinux project, 14, 32

BOOTP (Bootstrap Protocol), 588–589
bottlenecks, 86
browseable directive, Samba, 509
Btrfs filesystem, 142, 163–170

formatting partitions, 164
mounting, 164–165
snapshots, 169–170
subvolumes, 165–169

btrfs filesystem show command, 165
Bugtraq mailing list, 647
built-in maps, AutoFS, 181
--bunzip2 option, tar, 66
bzImage kernel binary file, 104, 115–116, 133
--bzip2 option, tar, 62

C
c flag, procmail, 353
CA. See certificate authority (CA)
caching servers, DNS, 376, 378, 380, 388–395

automatic trim, 233
automount unit configuration files, 183

B
B flag, procmail, 353
b flag, procmail, 353
BackupPC, 60
backups, 51

cloud solutions, 55
data recovery, 57
directories to back up, 57–59
media, 52–54
performing

with dd, 71–72
with rsync, 70–71
with shell scripts, 72
with tar, 61–66

software solutions, 59–61
strategy, 51–61
types, 55–57

Bacula backup solution, 60
Bacula Systems, 60
bandwidth throttling, Apache, 459
Bareos backup solution, 60
Berkeley Internet Name Domain. See BIND
/bin directory backup considerations, 58
/bin/bash file, 72
/bin/dash file, 72
/bin/init directory, 16
/bin/mesg command, 39, 87
/bin/notify-send command, 42–44
/bin/sh file, 72
binaries, 72
binary files, 104–105
BIND, 372, 378–379. See also DNS

alternatives, 379
chroot jail, 392, 431–433
configuring, 388–395
daemon differences, 381–382
installing, 380
logging, 385, 398–403
named.conf file, 382–386
named.default-zones file, 386–387
named.rfc1912.zones file, 386–387

Cacti  –  device I/O  693

bindex.indd  09/14/2016  Page 692 bindex.indd  09/14/2016  Page 693

COW (Copy-on-write) filesystems, 143,
163, 194

cpio command, 60
CPU, troubleshooting, 85–86
CREATE command, IMAP, 337
--create option, tar, 62
CSR (Certificate Signing Request)

creating, 475–476
signing, 476–479

curl, 76

D
D flag, procmail, 353
DANE (DNS-based Authentication of

Named Ethics), 442–445
DATA command, SMTP, 327, 328–329
data loggers, 83, 83
data recovery, 57
dd command, 71–72
deb-pkg, 119
Debian

Apache log files, 467–468
boot messages log file, 6
chkconfig, 20
configuration files, 280–281
initial RAM disk files, 117–118
NFS packages, 534
OpenVPN installation, 644
runlevels, 17–18
Samba packages, 501

debugfs command, 185, 187, 193
default routers, 276

route command, 287–288
traceroute command, 291–293

default.target files, 24
defconfig script, 112
define macro, sendmail, 341
deja-dup, 60
DELE command, POP3, 333
delegating zones, 417–418
DELETE command, IMAP, 337
/dev directory backup considerations, 58
device files, 101
device I/O, troubleshooting, 85–86

Cacti, 83–84, 85
canonical lookup table, Postfix, 349
CAPABILITY command, IMAP, 337
capacity planning, 83–85, 84–85
categories, BIND logging, 401–403
certificate authority (CA), 458–459, 475–479,

481, 492
CGI (Common Gateway Interface), 473
chain of trust, DNSSEC, 435
chainloading, 7
chains, 634–638
character device files, 101
CHECK command, IMAP, 337
chgrp command, 520
child zones, 417–418
chkconfig command, 19–20, 32
chroot jail, 392, 431–433
CIDR (Classless Inter-Domain Routing), 277
CIFS (Common Internet File System), 180
cifs-utils package, 500, 501
Classless Inter-Domain Routing

(CIDR), 277
clauses, named.conf file, 383
client/server paradigm, 279
CLOSE command, IMAP, 337
cloud backup solutions, 55
CNAME resource record, 409, 412–413
coldplug devices, 128
collectd, 84
commands

GRUB Legacy, 9–11
IMAP, 336–337
sendmail emulation, 348
Sieve, 357–358
SMTP, 327–329

comment directive, Samba, 509
Common Gateway Interface (CGI), 473
Common Internet File System (CIFS), 180
--compare option, tar, 64
computer networking. See network services
conditional configuration settings,

Apache, 466
control commands, Sieve, 357
COPY command, IMAP, 337
COPYING files, 74
Courier email server package, 359–360

694  Device Mapper  –  dynamic web programming

bindex.indd  09/14/2016  Page 694 bindex.indd  09/14/2016  Page 695

DNS (Domain Name System), 277, 282, 372.
See also BIND

caching servers, 376, 378, 380, 388–395
dig command, 295–297
exam essentials, 445–446
forwarding servers, 376, 379, 380, 406
hierarchical structure, 373, 373–374
host command, 295
name resolution, 372–378
review answers, 676–678
review questions, 447–450
security

basic steps, 427–431
chroot jails, 431–433
DANE (DNS-based Authentication of

Named Ethics), 442–445
DNS Security Extensions, 434–439
TSIG (Transaction Signature), 440–442

troubleshooting, 418–427
zones, 403

delegating, 417–418
reverse zones, 414–415
signing, 438–439
updates, 430–431
zone configuration files, 403–406
zone databases, 407–417

dnsmasq, 379, 388, 394
DNSSEC (DNS Security Extensions), 434–439
dnssec-keygen utility, 438–439, 440–442
dnssec-signzone command, 438
documentation, kernel, 107
DocumentRoot directive, Apache, 466
DocumentRoot folder, 468, 469–470, 489, 491
DOMAIN macro, sendmail, 341
Domain Name Space, 373–378
domain security mode, Samba, 522
dotted-decimal notation, 275
Dovecot email server package, 360–362
dual horizon servers, 429–430
dumpe2fs command, 187
Duplicity backup solution, 60
dynamic IP addresses, 582, 583.

See also DHCP
Dynamic Kernel Module Support

(DKMS), 120
dynamic web programming, 472–474

Device Mapper, 263–264
device nodes, 101–102
devpts filesystem, 162
df command, 183, 520
dhclient, 288
DHCP (Dynamic Host Configuration

Protocol), 277–278, 583
client programs, 287–288
client software packages, 584–585
configuring clients, 590–591, 591
configuring servers, 585–590
DHCP options, 583–584
DHCP relaying, 589–590, 590
installing servers, 585
log files, 590
sample Debian network, 281

dhcpcd, 288
DHCPd, 584

dhcpd.conf file, 585–590
installing, 585

--diff option, tar, 64
differential backups, 56
dig command, 295–296, 394, 420–423
direct maps, AutoFS, 181–182, 193
direct memory access. See DMA
directory configuration settings,

Apache, 467
DirectoryIndex directive, Apache, 466
disable netbios directive, Samba, 506
discard (TRIM), 233
discard command, Sieve, 357
disk mirroring (RAID 1), 201, 201–202
disk recovery, 57
disk striping (RAID 0), 201, 201
disk striping with double parity (RAID 6),

203–204, 204
disk striping with parity (RAID 5), 203, 203
distinguished names, LDAP, 599, 600, 605
divert(n) macro, sendmail, 341
djbdns, 379
DKMS (Dynamic Kernel Module Support),

120
dm-crypt, 183–184
DMA (direct memory access), 223–227
dmesg command, 5–6, 151–152,

288–289, 309

E flag  –  /etc/init.d/rcx.d folder  695

bindex.indd  09/14/2016  Page 694 bindex.indd  09/14/2016  Page 695

ESMTP (Extended SMTP), 331–332
ESP (EFI System Partition), 7
/etc directory backup considerations, 58
/etc/aliases file, 348
/etc/auto.direct file, 181–182
/etc/auto.directory file, 182
/etc/auto.master file, 181
/etc/auto.master.d folder, 182
/etc/auto.misc file, 182
/etc/auto.tmp file, 182
/etc/bind/named.conf file, 382, 385–386,

404–406, 414
/etc/conf,modules file, 120
/etc/courier directory, 359
/etc/cups/printers.conf file, 525
/etc/default/grub file, 13
/etc/default/nfs-common file, 535,

540, 550
/etc/default/nfs-kernel-server file,

535, 540, 550
/etc/default/sysstat file, 83
/etc/dhcp folder, 585
/etc/dhcp/dhcp.conf file, 585
/etc/dovecot directory, 360
/etc/dovecot.conf file, 360
/etc/exports file, 535, 536–538, 539,

545–547
/etc/exports.d/ directory, 535
/etc/fail2ban/jail.conf file, 628
/etc/fstab file, 157, 188, 192

AutoFS, 180, 183
Device Mapper names, 264
eCryptFS, 184
fsck command, 188
mounted arrays, 215
persistent filesystems, 154–156
swap filesystems, 177–180

/etc/grub.d folder, 13
/etc/hostname file, 282
/etc/hosts.allow file, 297, 551–552
/etc/hosts.deny file, 297, 551–552
/etc/idmapd.conf file, 531
/etc/inetd.conf file, 297
/etc/init directory, 16
/etc/init.d/rc script, 19
/etc/init.d/rcx.d folder, 19

E
E flag, procmail, 353
e flag, procmail, 353
e2label command, 154, 161, 185, 193
eCryptfs, 184
EFI (Extensible Firmware Interface), 7, 14
EFI System Partition (ESP), 7
El Torito filesystem, 171, 174, 175
email services, 318–319, 319

binmail, 322
ESMTP (Extended SMTP), 331–332
Exim (Experimental Internet Mailer),

320–321
IMAP (Internet Message Access

Protocol), 334–338
MDA (mail delivery agent), 321, 321–322
MTA (mail transfer agent), 319–320
MUA (mail user agent), 323–325
POP (Post Office Protocol), 332–334
PostFix, 320, 342–351
procmail, 322–323, 351–356
remote delivery, 359–362
review answers, 673–675
sendmail, 320, 338–342
server setup and testing, 362–363
Sieve, 356–358
SMTP (Simple Mail Transfer Protocol),

326–331
encryption

asymmetric, 433–434, 434–439
encrypted filesystems, 183–184
OpenSSH, 640–643
OpenVPN, 643–646
SSL (Secure Sockets Layer), 458, 474–482
TLS (Transport Layer Security), 458, 481
wireless networking, 274, 283, 287

encryption keys, OpenSSL, 475
Enhanced Status Codes options, ESMPT
envelope command, Sieve, 357
EPEL (Extra Packages for Enterprise Linux)

repositories, 568–570
error logs, Apache, 467–468
error response codes, SMTP, 329, 330
ErrorDocument directive, Apache, 466
ErrorLog directive, Apache, 466

696  /etc/inittab file  –  FEATURE macro

bindex.indd  09/14/2016  Page 696 bindex.indd  09/14/2016  Page 697

/etc/snort folder, 630
/etc/sopenvas folder, 627
/etc/squid folder, 483
/etc/squid3 folder, 483
/etc/ssh folder, 640
/etc/ssh/sshd_conf file, 640–641, 649
/etc/sysconfig/network file, 280
/etc/sysconfig/network-scripts

directory, 280
/etc/sysconfig/nfs file, 535, 540
/etc/sysconfig/sysstat file, 83
/etc/sysctl.conf file, 132
/etc/sysctl.d folder, 132
/etc/sysctl/conf file, 229
/etc/sysctl/d/99-sysctl.conf file, 229
/etc/systemd/system folder, 24
/etc/udev/rules.d folder, 128
/etc/udev/rules.d/50-hdparm.rules

file, 223
/etc/udev/udev.conf file, 128
/etc/vsftpd directory, 557
eth0 network interface, 284–285
Evolution email client, 324–325, 325
EXAMINE command, IMAP, 337
Exim (Experimental Internet Mailer), 320–321
exists command, Sieve, 357
EXPN command, SMTP, 327, 329
exportfs utility, NFS, 538, 539–540, 542,

544, 546, 552
EXPUNGE command, IMAP, 337
Extended SMTP (ESMTP), 331–332
EXTLINUX bootloader, 14, 32
--extract option, tar, 66

F
f flag, procmail, 353
fail2ban, 628, 650
failures

kernel, 27–29
root drive, 29–31

false command, Sieve, 357
FCoE (Fibre Channel over Ethernet), 235
fdisk utility, 207–209
FEATURE macro, sendmail, 341–342

/etc/inittab file, 18–19, 26, 32
/etc/iscsi/initiatorname.iscsi

file, 244
/etc/iscsi/iscisid.conf file, 240–241
/etc/issue file, 47–48, 48
/etc/issue.net file, 49–50, 50
/etc/lilo.conf file, 8
/etc/lvm/lvm.conf file, 261–262
/etc/mail/sendmail.cf file, 339–340
/etc/mdadm folder, 215
/etc/mdadm.conf file, 215–216
/etc/modules file, 120
/etc/modules-load.d folder, 120
/etc/motd file, 50, 50–51
/etc/mtab file, 148
/etc/named.conf file, 380, 382–390,

398–399, 400, 404, 414–415, 426
/etc/network/interfaces file, 280
/etc/nfsmount.conf file, 535
/etc/nginx folder, 488
/etc/nginx/sites-enabled/default

file, 489
/etc/nsswitch.conf file, 524
/etc/openvpn/client.conf file, 644–646
/etc/openvpn/server.conf file, 644–646
/etc/pam.conf file, 594–595
/etc/pam.d directory, 561
/etc/pam.d folder, 595–596
/etc/passwd file, 591, 594–595, 614
/etc/postfix directory, 345
/etc/procmailrc file, 352, 365
/etc/proftpd/proftpd.conf file, 556
/etc/rc.d/rc script, 19
/etc/rcx.d folder, 19
/etc/resolv.conf file, 282, 523
/etc/samba directory, 503
/etc/samba/smb.conf file, 503, 504–511,

520–521
/etc/services file, 621, 622
/etc/shadow file, 591–592, 594–595, 614
/etc/shells file, 561–562
/etc/slapd.conf file, 605–607
/etc/slapd.d folder, 605, 607
/etc/smartd.conf file, 190, 230
/etc/smartmontools/smartd.conf file,

190, 230

FedCIRC (Federal Computer Incident Response Center)  –  [global] section  697

bindex.indd  09/14/2016  Page 696 bindex.indd  09/14/2016  Page 697

native, 142–143
network-based, 180
non-native, 143–144
optical, 171–177
review answers, 664–667
review questions, 195–198
structures, 140–141
swap, 177–180
swap partitions, 177–180

FILTER chain, 634
findfs command, 161–162
fireproof backup media, 54
firewalls, 633, 633

creating with iptables, 647–648
firmware, 6

BIOS startup, 6–7
UEFI startup, 7–8

first-level domains, 374
fluid messaging, 39

notify-send command, 41–44
shutdown command, 44–47
wall command, 39–41

formatting filesystems, 144–146
FORWARD chain, 634, 639
forwarding servers, DNS, 376, 379, 380, 406
FQDNs (fully qualified domain names),

372–374. See also name resolution
free command, 178
fsck command, 29, 32, 187
fstrim command, 233–234
FTP (File Transfer Protocol), 553–554

operating modes, 554–555
Pure-FTPd, 568–575
Very Secure FTP, 556–568

full backups, 56
full partition recovery, 57

G
gconfig script, 112
Geany IDE, installing, 77–78
--get option, tar, 66
global addresses, IPv6, 276
global configuration settings, Apache, 466
[global] section, smb.conf, 508

FedCIRC (Federal Computer Incident
Response Center), 646

FETCH command, IMAP, 337
Fibre Channel over Ethernet (FCoE), 235
Fibre Channel SAN, 234
file sharing

exam essentials, 575–576
FTP, 553–554

operating modes, 554–555
Pure-FTPd, 568–575
Very Secure FTP, 555–568

NFS
daemons, 531–532
directories, 535–536
disabling, 540
documentation, 532–533
/etc/exports file, 536–538
installing, 533–535
permanent exports, 545–549
security, 549–552
temporary exports, 540–544
troubleshooting, 552–553
utilities, 538–540
versions, 530–531

review answers, 681–684
review questions, 577–580
Samba. See Samba

File Transfer Protocol. See FTP
fileinto command, Sieve, 357
filesystems, 140

Btrfs, 163–170
encrypted, 183–184
exam essentials, 192–194
formatting, 144–146
maintenance, 185–192
management, 102–104
memory-based, 162–163
mounting, 146

auto-mounting, 180–183
Btrfs, 164–165
optical media, 171–177
persistently, 154–159
removable media, 151–152
temporarily, 146–149, 152–154
unmounting, 149–151
viewing attached filesystems, 159–162

698  graphical.target unit configuration file  –  initialization process

bindex.indd  09/14/2016  Page 698 bindex.indd  09/14/2016  Page 699

hosts deny directive, Samba, 506
hotplug devices, 128
htop command, 80
htpasswd utility, 471
HTTP, 452–454, 453

client requests, 454
server responses, 454–458

HTTPS (HTTP Secure), 458, 458–459
humidity controls, 54
hybrid servers, 376
Hypertext Transfer Protocol. See HTTP

I
i flag, procmail, 353
I/O blocking, 86
Icinga, 84
ICMP (Internet Control Message Protocol),

290–291, 304
identity mapping (IDMAP), 524
IDMAP (identity mapping), 524
IDSs (intrusion detection systems), 628–631
if command, Sieve, 357
ifconfig command, 284–287, 288
iftop command, 80
image files, 104–105, 133
IMAP (Internet Message Access Protocol), 334

commands, 336–337
sample session, 334–335
user authentication, 335–336

Include directive, Apache, 466
incremental backups, 56
indirect maps, AutoFS, 182–183, 193
informational response codes, SMTP, 329,

330
init program, 16

changing runlevels, 21
location of, 16
SysV-init version, 16, 17–21
Upstart version, 17, 26–27

initialization process, 16–17, 99. See also
bootup process

systemd method, 21–26
SysV method, 17–21
Upstart method, 26–27

graphical.target unit configuration file,
23–24

Group directive, Apache, 465
group directive, Samba, 509
GRUB Legacy bootloader, 8, 9–12, 31
grub-install command, 11–12, 31–32
grub-mkconfig command, 13
grub.cfg file, 12, 13, 32
grub.conf file, 9, 31
GRUB2 bootloader, 8–9, 12–14, 31
guest only directive, Samba, 509
--gunzip option, tar, 66
--gzip option, tar, 62

H
H flag, procmail, 353
h flag, procmail, 353
halt command, 21
hard disk drives (HDDs), 53
hardware

automatically detecting, 128
management, 101–102

hashing, 434
HDDs (hard disk drives), 53
hdparm utility, 223–227
header command, Sieve, 357
header files, 106–107
HELO command, SMTP, 327
HELP command, SMTP, 327, 329
HFS filesystem, 171
HFS+ filesystem, 171
hidden DNS servers, 376
Hint for Root Level Servers, 385
/home directory backup considerations, 58
[homes] section, smb.conf, 508
host addresses, 275–276

default router, 276
DHCP, 277–278
local loopback interfaces, 285–287
netmask addresses, 276–277
static, 278

host command, 294–295
hostnames, 277, 282
hosts allow directive, Samba, 506

initrd  –  kernel  699

bindex.indd  09/14/2016  Page 698 bindex.indd  09/14/2016  Page 699

checking, 242–243
formatting, 243–244
initiator disk setup, 240–242
initiators, 235
IQNs (iSCSI Qualified Names), 236
LUNs (logical unit numbers), 235,

236, 239
mounting, 243–244
partitioning, 243–244
target disk setup, 237–240
targets, 235

iSCSI Qualified Name (IQN), 236
iscsiadm utility, 240–244
ISO images, 173–177
ISO-9660 filesystem, 171
ISOLINUX bootloader, 14, 15, 32
isolinux.bin file, 15, 32
isolinux.cfg file, 15, 32
iw command, 288
iwconfig command, 284, 287, 288

J
jailing BIND, 392, 431–433
Joliet filesystem, 171, 174, 176

K
keep command, Sieve, 357
Kerberos, 592, 593, 604, 610
kernel, 94

binary files, 104–105
compiling, 108

booting kernel, 118–119
compiling/installing modules, 116
compiling/installing source code,

114–116
creating configuration file, 110–114
creating initial RAM disk, 116–118
creating packages, 119
obtaining source code, 109–110

documentation, 107
exam essentials, 133–134
failures, 27–29

initrd, 116–118
INPUT chain, 634, 638
INSTALL files, 74
installing

Apache web server, 462–464
BIND, 380
kernel modules, 116, 122–125
NFS, 533–535
nginx web servers, 487–488
OpenLDAP, 602
programs from source, 72–78
Samba, 500–502
Squid web servers, 482–483

interfaces directive, Samba, 506
Internet Control Message Protocol (ICMP),

290–291, 304
Internet Message Access Protocol. See IMAP
invalid users directive, Samba, 509
iostat command, 80, 82
iotop command, 80
IP (Internet Protocol). See also IPv6

default routers, 276
DHCP, 277–278
hostnames, 277
IP addresses, 275, 275–276
netmask addresses, 276–277

IP addresses, 582–583. See also DHCP
dynamic, 582, 583
static, 582, 587–588

ip command, 80, 288
IP-based virtual web hosting, 469–470
ipcs command, 97
iptables, 633–639
iptables command, 634–639, 647–648
iptraf command, 80
IPv6 (Internet Protocol version 6), 275–276

default routers, 276
global addresses, 276
link local addresses, 276, 281
local loopback interfaces, 285
open connections, 298
test packets, 290–291

IQNs (iSCSI Qualified Names), 236
irqbalance utility, 80
iSCSI, 222, 234

alternatives, 234–235

700  kernel ring buffer  –  log level directive

bindex.indd  09/14/2016  Page 700 bindex.indd  09/14/2016  Page 701

ldappasswd command, 607
ldapsearch command, 607, 609–612
LE (logical extent), 246
levels, RAID, 200–204
lftp command, 556, 562–563, 565,

567–568, 572
/lib directory backup considerations, 58
/lib/modules directory, 105
/lib/udev/rules.d folder, 128
libsmbclient package, 500, 501
libwbbclient package, 500
Lightweight Directory Access Protocol.

See LDAP
LILO (Linux Loader) bootloader, 8, 32
lilo.conf file, 8, 32
link local addresses, IPv6, 276,

281–282, 291
linux command, 13, 28–29
Linux Foundation, 95
Linux Loader (LILO) bootloader, 8, 32
Linux Standard Base (LSB), 27
Linux Unified Key Setup (LUKS), 184
LIST command

IMAP, 337
POP3, 333

--list option, tar, 64
--listed-incremental=file option,

tar, 62
listen configuration setting,

Dovecot, 360
Listen directive, Apache, 465
lo interface, 284–285
load balancing

Apache, 460
nginx, 461

LoadModule directive, Apache, 466
local loopback interface, 284–285
lockd daemon, 532
log file directive, Samba, 506
log files

Apache web server, 467–468
BIND, 385, 398–403
boot messages, 5–6, 288–289
DHCP, 590
Samba, 528

log level directive, Samba, 507

features, 94
filesystem management, 102–104
hardware management, 101–102
header files, 106–107
maintaining

hardware, 125–128
module files, 120–125

modules, 105
files, 120
getting information about, 122
installing, 116, 122
listing, 121–122

panic mode, 16
patch releases, 106
process management, 98–101
review answers, 662–664
review questions, 135–138
source code, 105–106, 109–110
system memory management, 95–98
troubleshooting

/proc filesystem, 130–132
displaying version number, 129–130

versions, 107–108
kernel ring buffer, 5–6
key signing key (KSK), 435, 438–439
kill command, 395–396
KMail, 325
.ko file extension, 105
KSK (key signing key), 435, 438–439

L
LDAP (Lightweight Directory Access

Protocol). See also OpenLDAP
hierarchical database design, 597–598,

598
implementing clients, 607–612
LDAP tree, 598–599, 599
schemas, 598

designing, 604–605
implementing, 605–607

storing database, 600–601
ldapadd command, 607, 609
ldapdelete command, 607
ldapmodify command, 607–609

LogFormat directive  –  mdadm utility  701

bindex.indd  09/14/2016  Page 700 bindex.indd  09/14/2016  Page 701

M
m4 macro processor, 340–342
MAC (media access control) addresses, 276,

289–290
machine code, 72
magnetic tape, 52–53, 66–70, 67
MAIL command, SMTP, 327
mail delivery agent (MDA), 321, 321–322
mail transfer agent (MTA), 319–320
mail_location configuration setting,

Dovecot, 360
MAILDIRPATH configuration setting,

Courier, 359
MAILER macro, sendmail, 341
mailq utility

Postfix, 345
sendmail, 348

make command, 76
make install command, 76–77
Makefile, 75
Makefile file, 76
MANGLE chain, 634
manual trim, 233
MASQUERADE_AS macro, sendmail, 341
Master Boot Record (MBR), 7, 11–12
master map, AutoFS, 181–183
max log size directive, Samba, 507
MaxClients directive, Apache, 466
MAXDAEMONS configuration setting,

Courier, 359
MAXPERIP configuration setting, Courier, 359
MaxSpareServers directive, Apache, 466
MBR (Master Boot Record), 7, 11–12
md superblock, 207
MDA (mail delivery agent), 321, 321–322
mdadm utility

adding spare disks to RAID arrays, 219–220
checking RAID arrays, 212–214
creating RAID configuration files, 215–216
grow mode options, 220
installation, 206
modes, 209–212
monitoring RAID arrays, 216–219
removing RAID arrays, 220–221
syntax, 209

LogFormat directive, Apache, 466
logical extent (LE), 246
logical volume management/manager.

See LVM
logical volumes, 245

creating, 246–254, 262–263
Device Mapper, 263–264
increasing size, 254–257
LVM configuration file, 261–262
LVM overview, 245–246
removing, 261–2262
renaming, 260
snapshots, creating/maintaining,

257–160
login_max_connections configuration

setting, Dovecot, 360
login_max_processes_count configuration

setting, Dovecot, 360
login_process_per_connection

configuration setting, Dovecot, 360
logon messaging, 47. See also static

messaging
LOGOUT command, IMAP, 337
lookup tables, Postfix, 348–349
/lost+found directory backup

considerations, 58
ls command, 183
LSB (Linux Standard Base), 27
lsblk command, 160–161, 207–209
lsdev command, 131–132
lsof command, 80, 150–151, 297–298
lsscsi command, 68
LSUB command, IMAP, 337
LUKS (Linux Unified Key Setup), 184
LUNs (logical unit numbers), 235,

236, 239
lusb command, 127–128
lvcreate command, 252
lvdisplay command, 253
LVM (logical volume management),

245–246
lvm.conf file, 261–262
LVs. See logical volumes
lvs command, 253
lvscan command, 253
lwlist command, 287

702  mdadm.conf file  –  MUA (mail user agent)

bindex.indd  09/14/2016  Page 702 bindex.indd  09/14/2016  Page 703

mod_perl module, Apache, 492
mod_php module, 473, 474
mod_php module, Apache, 492
mod_python module, 473
mod_ruby module, 473
mod_ssl module, 474–475, 480
modprobe command, 205, 264–265
modules, Apache, 459, 467. See also

specific modules
authentication, 470–472
configuration settings, 467
programming, 473–474

modules, kernel, 101, 105
compiling and installing, 116
files, 120
getting information about, 122
header files, 106–107
initial RAM disks, 116–118
installing, 122–125
listing, 121–122
removing, 125

monitor mode events, RAID arrays, 216–219
motd file, 50–51
mount command, 29–30, 32, 146–149, 151,

517–519
mount.cifs utility, 503
mount.nfs utility, 538
mountd daemon, 532, 539, 550, 552
mounting filesystems, 146

auto-mounting, 180–183
Btrfs, 164–165
optical media, 171–177
persistently, 154–159
removable media, 151–152
temporarily, 146–149, 152–154
unmounting, 149–151
viewing attached filesystems, 159–162

mountpoint command, 159
mountstats utility, NFS, 538, 547–548
mpstat command, 80
MRTG (Multi Router Traffic Grapher), 84,

85, 86
mt command, 68–70
MTA (mail transfer agent), 319–320
mtr command, 80, 292–293
MUA (mail user agent), 323–325

mdadm.conf file, 215–216
mechanisms configuration setting,

Dovecot, 360
media, backups, 52–54
/media directory backup considerations, 58
members, of archive files, 65
MEMDISK bootloader, 14
memory

free command, 80, 85, 178
management, 95–98
pages, 96
swapoff command, 179–180
swapping out, 96
troubleshooting usage, 85
vmstat command, 81, 85, 86

memory-based filesystems, 162–163
menu commands, GRUB, 12–13
menu.lst file, 9, 31
menuconfig script, 112
menuentry command, GRUB2, 12–13
mesg command, 39, 87
messages. See also log files

boot, 5–6, 288–289
fluid messaging, 39–47
static messaging, 47–51

MIME (Multipurpose Internet Mail
Extensions), 323

mini-bootloaders, 15–16
MinSpareServers directive, Apache, 466
mke2fs command, 145
mkfs command, 141, 144–146, 154, 164
mkinitramfs utility, 117–118
mkinitrd utility, 116–117
mkisofs command, 173–177
mkswap command, 178–179
/mnt directory backup considerations, 58
mod_access module, 471, 472, 492
mod_access_compat module, 471
mod_authn_anon module, 470
mod_authn_db module, 470
mod_authn_dbm module, 470
mod_authn_file module, 470, 471
mod_authnz_ldap module, 470
mod_authnz_mysql module, 470
mod_authz_host module, 471
mod_perl module, 473, 474

Multi Router Traffic Grapher (MRTG)  –  network services  703

bindex.indd  09/14/2016  Page 702 bindex.indd  09/14/2016  Page 703

client software packages, 584–585
configuring clients, 590–591, 591
configuring servers, 585–590
DHCP options, 583–584
DHCP relaying, 589–590, 590
installing servers, 585
log files, 590
sample Debian network, 281

exam essentials, 613–614
LDAP. See also OpenLDAP

hierarchical database design,
597–598, 598

implementing clients, 607–612
LDAP tree, 598–599, 599
schemas, 598, 604–607
storing database, 600–601

PAM, 591–594, 592
application files, 595–596
authentication modules, 592–593
configuring, 594–595
control actions, 594
library modules, 593

review answers, 684–687
review questions, 615–617

network device files, 101
Network File System. See NFS
Network Information Service (NIS), 592, 593
network intrusion detection systems

(NIDS), 628
network layer, 274–278
Network Manager, 282–284, 283
network services

configuring, 279–288
command-line tools, 284–288
configuration files, 280–282
Network Manager, 282–284, 283

documenting, 307
layered system, 272

application layer, 279
network layer, 274–278
physical layer, 272–274
transport layer, 278

review answers, 670–673
server security, 620

external connections, 631–634
intrusion detection systems, 628–631

Multi Router Traffic Grapher (MRTG), 84,
85, 86

Multiple Device Administration. See mdadm
utility

Multiple Disk Administration. See mdadm utility
Multipurpose Internet Mail Extensions

(MIME), 323
MX resource record, 409, 412, 413, 422
My Traceroute. See mtr command

N
Nagios, 84, 85
name resolution, 372–378
name servers, 375–378

recursive, 377–378, 384
secondary, 407
security, 427–431

name-based virtual web hosting, 469
named-checkconf command, 390
named-checkzone utility, 415–416
named-compilezone utility, 408, 426
named.conf file, 380, 382–390, 398–399,

400, 404, 414–415, 426
naming systems, Btrfs subvolumes, 165
NAS (network-attached storage), 55
NAT (Network Address Translation), 632,

632–633
NAT chain, 634
native Linux filesystems, 142–143
nc (netcat) command, 622–623
nc command, 293–294
NDP (Neighbor Discovery Protocol), 378
net utility, Samba, 509
NetBIOS, 529–530
netbios name directive, Samba, 506
NetBIOS over TCP/IP, 499
netcat (nc) command, 622–623
[netlogin] section, smb.conf, 508
netmask addresses, 276–277
netstat command, 80, 298–302, 622
network access points, 273–274, 274, 283
network clients

DHCP, 277–278, 583
client programs, 287–288

704  Network Time Protocol (NTP)  –  OpenLDAP

bindex.indd  09/14/2016  Page 704 bindex.indd  09/14/2016  Page 705

nginx web servers, 460, 487–489
nginx.conf file, 488–489
NIDS (network intrusion detection systems),

628. See also Snort
NIS (Network Information Service), 592, 593
nmap command, 302–303, 623–626
nmbd daemon, 499, 515, 528, 529–530
nmblookup utility, Samba, 503, 528–529
nodes, 101–102, 374
non-anonymous user accounts, 559
non-native Linux filesystems, 143–144
NOOP command

IMAP, 337
POP3, 333
SMTP, 327

not command, Sieve, 357
notify-send command, 42, 42–44, 43, 44
NS resource record, 409, 412, 422
nslookup command, 390–392, 423–425
ntfs filesystem, 143, 151, 152
ntop utility, 81
NTP (Network Time Protocol), 523
null, 373
NVM Host Controller Interface

(NVMHCI), 232
NVMe (Non-Volatile Memory Express)

drives, 8, 222–223, 230–232, 265
nvme utility, 230–232
NVMHCI (NVM Host Controller

Interface), 232
NVTs (network vulnerability tests), 626–627

O
object classes, LDAP, 598
object IDs, LDAP, 598
oldconfig script, 112
open network connections, 297–300
OpenLDAP, 597, 601–602

client programs, 607–612
designing directory schema, 604,

604–605
implementing directory schema, 605–607
installing, 602
server programs, 602–604

iptables, 634–639
OpenSSH, 640–643
OpenVPN, 643–646
port scanning, 620–627
resources, 646–647
routing tables, 639

troubleshooting, 288
ARP cache, 289–290
client/server connectivity, 293–294
host information, 295–297
log files, 288–289
network routes, 291–293
network statistics, 300–302
open connections, 297–300
scanning, 302–303
security, 297
test packets, 290–291
throughput, 86
traffic, 303–307

Network Time Protocol (NTP), 523
network vulnerability tests (NVTs), 626–627
network-attached storage (NAS), 55
network-based filesystems, 180
newaliases command, sendmail, 348
NEWS files, 75
NFS (Network File System)

daemons, 531–532
directories, 535–536
disabling, 540
documentation, 532–533
/etc/exports file, 536–538
installing, 533–535
permanent exports, 545–549
security, 549–552
temporary exports, 540–544
troubleshooting, 552–553
utilities, 538–540
versions, 530–531

NFS server export table, 535
nfs-common package, 534, 550
nfs-kernel-server package, 534
nfs-utils package, 533, 534
nfs-utils-lib package, 533
nfsd daemon, 532, 550
nfsiostat utility, NFS, 538
nfsstat utility, NFS, 538

OpenMediaVault  –  /proc directory  705

bindex.indd  09/14/2016  Page 704 bindex.indd  09/14/2016  Page 705

physical volumes (PVs)
adding to VGs, 250–251
displaying information about, 249–250
physical extents (PEs), 246

ping command, 290–291
ping6 command, 290, 291
pmap utility, 81
POP (Post Office Protocol), 332–334
PORT configuration setting, Courier, 359
portmap package, 533, 534
portmapper daemon, 532, 552
ports

Samba, 513–515
scanning, 620–628
well-known, 279

POST (Power-On Self Test), 4
Post Office Protocol (POP), 332–334
postalias utility, 345
postcat utility, 345
postconf utility, 345
Postfix, 320, 336–342, 343

configuration files, 345–348
core programs, 343–3344
lookup tables, 348–349
security, 349–350
starting, 344–345
utility programs, 345

postfix utility, 345
postkick utility, 345
postlock utility, 345
postlog utility, 345
postmap utility, 345, 349
POSTROUTING chain, 634
postsuper utility, 345
Power-On Self Test (POST), 4
PowerDNS, 379
poweroff command, 21
Pre-boot Execution (PXE) standard, 14
preloader mini-bootloader, 16
PREROUTING chain, 634
[printers] section, smb.conf, 508
[profiles] section, smb.conf, 508
private network addresses, 631–632
/proc directory

backup considerations, 58
viewing, 130–132

OpenMediaVault, 180
OpenSSH, 640–643
openssl command, 475, 476, 477–478
OpenVAS, 626–627, 627
OpenVPN, 643–646
/opt directory backup considerations, 58
optical discs, as backup media, 53, 54, 87
optical filesystems, 171–177
optional control action, PAM, 594
OSTYPE macro, sendmail, 341

P
pages, 85
PAM (Pluggable Authentication Module),

591–594, 592
application files, 595–596
authentication modules, 592–593
configuring, 594–595
control actions, 594
library modules, 593

panic mode, 16
parent zones, 417–418
parted utility, 146
partitioning, 140–141

Btrfs, 163, 164
eCrtyptfs, 184
mkfs example, 145
mount point, 154
swap partitions, 177–180
tune2fs example, 185–186

passdb backend directive, Samba, 507
password feature, PAM, 594
PATA (Parallel Advanced Technology

Attachment) drives, 221, 223–226
patch releases, 106
path directive, Samba, 509
PCI (Peripheral Component Interface) cards,

125–127
PCIe (PCI Express), 125
pdbedit utility, Samba, 509, 512
pdnsd, 379
physical extents (PEs), 246
physical layer, 272–274

706  /proc/fs/nfs/exports file  –  redirect command

bindex.indd  09/14/2016  Page 706 bindex.indd  09/14/2016  Page 707

creating arrays, 209–212
determining support for, 204–206
formatting arrays, 214–215
grow mode options, 220
implementing arrays, 204–216
managing arrays, 216–221
monitoring arrays, 216–219
mounting arrays, 214–215
preparing drives for membership,

206–209
removing arrays, 220–221
saving array configurations,

215–216
structures, 200–204

RAID 0 (disk striping), 201, 201
RAID 1 (disk mirroring), 201, 201–202
RAID 10 (disk mirroring and striping),

202, 202
RAID 2, 202
RAID 3, 202–203
RAID 4, 202–203
RAID 5 (disk striping with parity),

203, 203
RAID 6 (disk striping with double parity),

203–204, 204
RAM, 85
RCPT command, SMTP, 327
README files, 74
realm directive, Samba, 506
reboot command, 21
recovery time objective (RTO), 52, 57
recovery, data, 57
Recursive Name Server, 377–378, 384
Red Hat distributions

Apache log files, 467–468
BIND, 380, 381
boot messages log file, 6
chkconfig, 19–20
GRUB Legacy configuration file, 9
kernel documentation, 107
NFS packages, 533
OpenVPN installation, 644
runlevels, 17–18
Samba packages, 500–501
systemd, 17, 21–26

redirect command, Sieve, 357

/proc/fs/nfs/exports file, 535
/proc/meminfo file, 97–
proc filesystem, 162–163
processes

init, 99
shared memory pages, 98
single-user mode, 99
troubleshooting usage, 85–86
viewing, 99–101

procmail, 322–323
installing, 351–352
recipes, 352–356

ProFTPD, 556
protocols configuration setting,

Dovecot, 360
ps command, 99–101, 482
ps utility, 81, 85–86
pstree utility, 81, 85
PTR resource record, 409, 415, 421–422
public directive, Samba, 509
public/private key pair authentication,

642–643
PulledPork, 630
pump, 288
Pure-FTPd, 555, 568–575
pvcreate command, 248–249
pvdisplay command, 249–250
PXE (Pre-boot Execution) standard, 14
PXELINUX bootloader, 14, 15, 32
pxelinux.0 file, 15, 32
pxelinux.cfg directory, 15, 32

Q
QUIT command

POP3, 333
SMTP, 327

R
r flag, procmail, 353
RAID, 200

adding spare disks to arrays, 219–220
checking array status, 212–214

bindex.indd  09/14/2016  Page 706 bindex.indd  09/14/2016  Page 707

Redundant Array of Independent Disks.  –  /sbin directory backup considerations  707

runlevels, 16–17
and kernel failures, 27
SysV initialization, 17–21
Upstart initialization, 26–27

S
sa1 utility, 83
sa2 utility, 83
sadc utility, 83
Samba, 498–499

configuring
as Active Directory member, 522–524
client file shares, 515–520
client printer shares, 526–527
security levels, 521–522
server file shares, 504–515
server printer shares, 525–526
username maps, 520–521

Debian packages, 501
directories, 502–503
installing, 500–502
ports, 513–515
Red Hat packages, 500–501
troubleshooting, 527–530
utilities, 503–504

samba package, 500, 501
Samba Suite, 500
samba-client package, 500, 501
samba-client-libs package, 501
samba-common package, 501
samba-common-bin package, 501
samba-common-libs package, 501
samba-common-tools package, 501
samba-libs package, 501
samba-winbind package, 501
samba-winbind-clients package, 501
SAML command, SMTP, 327
SANs (storage area networks), 55
SANS Institute, 647
sar command, 81, 82–83, 85, 86
SAS (Serial Attached SCSI), 222
SATA (Serial Advanced Technology

Attachment) drives, 221–222, 223–226
/sbin directory backup considerations, 59

Redundant Array of Independent Disks.
See RAID

registering RPC services, 532
RELEASE-NOTES files, 75
relocated lookup table, Postfix, 349
RENAME command, IMAP, 337
require command, Sieve, 357
required control action, PAM, 594
requisite control action, PAM, 594
rescue disks, 29
resize2fs utility, 185, 193
resolvers, 376–378, 388, 434–435
response codes, SMTP, 329–331
RETR command, POP3, 333
reverse proxy servers, 460, 461. See also

nginx web servers
reverse zones, 414–415
RIP (Router Information Protocol), 639
rndc command, 383–384, 396–398,

425–426
Rock Ridge filesystem, 171, 175, 176
/root directory backup considerations, 59
root domain, 373
root drive failures, 29–31
root servers, 375, 377, 385
route command, 284, 287, 287–288
Router Information Protocol (RIP), 639
routers, default, 276

route command, 287–288
traceroute command, 291–293

routing tables, 639
rpcbind package, 532, 533, 534–535, 541,

551–552
rpcclient utility, Samba, 509
rpcinfo utility, NFS, 538, 539, 550
rpm-pkg, 119
rquotad daemon, 532
RRDTool, 83, 84–85
RSET command

POP3, 333
SMTP, 327

rsync command, 70, 70–71, 71, 88
RTO (recovery time objective), 52, 57
/run directory backup considerations, 59
/run/motd.dynamic file, 51
runlevel command, 21

708  /sbin/init directory  –  shares

bindex.indd  09/14/2016  Page 708 bindex.indd  09/14/2016  Page 709

SSL, 458, 474–482
TLS, 458, 481
wireless networking, 274, 283, 287

external network connections, 631–633
intrusion detection systems (IDSs), 628–631
iptables, 633–639
NFS, 549–552
OpenSSH, 640–643
OpenVPN, 643–646
port scanning, 620–628
Postfix, 348–349
resources, 646–647
review answers, 687–689
routing tables, 639

security directive, Samba, 507
SELECT command, IMAP, 337
self-signed certificates, 476–479
SEND command, SMTP, 327
sendmail, 320, 320, 332–336

configuring, 339–342
emulation commands, 348
m4 macro processor, 340–342
running, 342

sendmail.cf file, 339–340
Serial Attached SCSI (SAS), 222
Server Name Indication (SNI), 482
server security mode, Samba, 522
server string directive, Samba, 506
ServerAdmin directive, Apache, 465
ServerName directive, Apache, 466
ServerRoot directive, Apache, 466
ServerSignature directive, 481
ServerTokens directive, 481
service response codes, SMTP, 329, 330
session feature, PAM, 594
sestatus command, 513
set command, GRUB2, 12
[share-name] section, smb.conf, 508
share security mode, Samba, 522
shared memory pages, 97–98
shares

NFS, 531
exporting, 531
permanent configurations, 545–549
temporary configurations, 540–544
typical directories, 536

/sbin/init directory, 16
/sbin/named-checkzone utility, 415–416
/sbin/named-compilezone utility, 408, 426
/sbin/shutdown command, 44–47
schemas, LDAP, 598

designing, 604–605
implementing, 605–607

scp command, 642, 645
scripts

for backups, 72
Sieve, 358

SCSI (Small Computer System Interface)
drives, 222, 223

backstores, 237–238
hdparm utility, 223–227
logging, 228
sdparm utility2, 227
smartd daemon, 230

sdparm utility, 227
SEARCH command, IMAP, 337
secondary name servers, 407
secure boot, 15–16
Secure Shell (SSH), 642–643
Secure Sockets Layer (SSL), 458, 474–482
security

authentication
Courier, 359–360
Exim, 321
IMAP, 335–336
LDAP, 597–612
PAM, 591–597
POP3, 333
Postfix, 349
Samba, 521–522
SSH, 642–643

DNS, 427
basic steps, 427–431
chroot jails, 431–433
DANE, 442–445
DNS Security Extensions, 434–439
TSIG, 440–442

encryption
asymmetric, 433–434, 434–439
encrypted filesystems, 183–184
OpenSSH, 640–643
OpenVPN, 643–646

shim mini-bootloader  –  star command  709

bindex.indd  09/14/2016  Page 708 bindex.indd  09/14/2016  Page 709

SMTP (Simple Mail Transfer Protocol), 319,
320–331

basic client commands, 327–329
ESMTP (Extended SMTP), 331–332
response codes, 329–331

snapshot backups, 56–57
snapshot files, 63
snapshots, Btrfs, 169–170
SNI (Server Name Indication), 476
Snort, 628–631, 629
snort.conf file, 630
SOA resource record, 403, 405–407, 410
socket statistics, 302
SOML command, SMTP, 327
source code

compiling/installing, 114–116
installing programs from, 72–78
kernel, 105–106, 109–110
obtaining, 109–110

split configuration, 406
split DNS servers, 429–430
split horizon servers, 429–430
split-mirror snapshot, 56
Squid web servers, 460, 461, 482–487

client configuration, 486–487
configuring, 483–486
installing, 482–483

/srv directory backup considerations, 59
ss command, 81, 302, 514–515
SSDs (solid state drives), 53–54

fragmentation, 232–233
internal fragmentation, 232

SSH (Secure Shell), 642–643
ssh client program, OpenSSH, 640
sshd server program, OpenSSH, 640
sshd.service unit configuration file, 23
SSID (Service Set Identifier), 273–274,

284, 287
SSL (Secure Sockets Layer), 458, 474–482
SSLACertificateChainFile directive, 481
SSLCACertificateFile directive, 481
SSLCACertificatePath directive, 481
SSLCipherSuite directive, 481
SSLProtocol directive, 481
star command, 61

Samba, 499
cifs-utils package, 501
file shares, 504–510
printer shares, 525–527
security, 521
smbclient utility, 503
verifying, 512–513

shim mini-bootloader, 16
showmount utility, NFS, 538, 542, 544, 546,

552, 553
shutdown command, 21, 44–47, 45
Sieve programming language, 356–358
Simple Mail Transfer Protocol. See SMTP
single-user mode, 25, 28, 30–31, 99
size command, Sieve, 357
slapadd command, 606–607, 609
slapcat command, 606
slapd command, 602–603
slapd-config, 605
slapindex command, 606
slappasswd command, 606
slurpd command, 602, 603–604
smarctl utility, 230
SMART devices, 189–192

scheduled tests, 230
smartctl command, 190–192
smartd daemon, 230
SMB (Service Message Block), 498.

See also Samba
security levels, 521–522

smb encrypt directive, Samba, 507
smb ports directive, Samba, 506
smb.conf file, 503, 504–511, 520–521
smbcacls utility, Samba, 503
smbclient package, 501
smbclient utility, 503, 512–513, 516–517,

525–527
smbcontrol utility, 503
smbd daemon, 499, 514–515
SMBFS, 180
smbmount utility, 503
smbpasswd utility, 502, 503, 511–512
smbspool utility, Samba, 503
smbstatus utility, Samba, 504, 528
smbtar utility, Samba, 504

710  StartServers directive  –  system startup

bindex.indd  09/14/2016  Page 710 bindex.indd  09/14/2016  Page 711

mounting arrays, 214–215
preparing drives for membership,

206–209
removing arrays, 220–221
saving array configurations, 215–216
structures, 200–204

review answers, 667–670
review questions, 267–270

storage fabrics, 237
STORE command, IMAP, 337
structures, RAID, 200–204
subnetting, 586–587
SUBSCRIBE command, IMAP, 337
subvolumes, Btrfs, 165–169
sufficient control action, PAM, 594
swap filesystems, 177–180
swap partitions, 177–180
swap space, 85, 96

free command, 178
mkswap command, 178–179
swapoff command, 179–180
swapon command, 179
vmstat command, 81, 85, 86

swapoff command, 179–180
swapon command, 178, 179
swapping, 85
swapping out, 96
sync command, 152
/sys directory backup considerations, 59
sysctl utility, 228–229
sysfs filesystem, 162
SYSLINUX bootloader, 14, 32
System Activity Data Collector, 83
System Activity Reporter. See sar command
system maintenance, 36

backups. See backups
installing programs from source, 72–78
managing resource usage, 79–86
notifying users, 38

fluid messaging, 38–47
static messaging, 47–51

system recovery, 27, 57
kernel failures, 27–29
root drive failures, 29–31

system startup
boot loaders, 8–16
boot process, 4–6

StartServers directive, Apache, 466
startup. See system startup
STAT command, POP3, 333
statd daemon, 532
static host addresses, 278
static IP addresses, 582, 587–588
static messaging, 47–51
STATUS command, IMAP, 337
Stealth DNS servers, 376
stop command, Sieve, 357
storage area networks (SANs), 55
storage devices

drive interfaces, 221–223
exam essentials, 264–266
iSCSI, 222, 234

alternatives, 234–235
checking, 242–243
formatting, 243–244
initiator disk setup, 240–242
initiators, 235
IQNs (iSCSI Qualified Names), 236
LUNs (logical unit numbers), 235,

236, 239
mounting, 243–244
partitioning, 243–244
target disk setup, 237–240
targets, 235

logical volumes, 245
creating, 246–254, 262–263
Device Mapper, 263–264
increasing size, 254–257
LVM configuration file, 261–262
LVM overview, 245–246
removing, 261–2262
renaming, 260
snapshots, creating/maintaining,

257–160
RAID, 200

adding spare disks to arrays, 219–220
checking array status, 212–214
creating arrays, 209–212
determining support for, 204–206
formatting arrays, 214–215
grow mode options, 220
implementing arrays, 204–216
managing arrays, 216–221
monitoring arrays, 216–219

system uptime  –  UEFI (Unified Extensible Firmware Interface)  711

bindex.indd  09/14/2016  Page 710 bindex.indd  09/14/2016  Page 711

transport lookup table, Postfix, 349
TRIM command, 233
troubleshooting

BIND, 418–427
kernel

displaying version number, 129–130
failures, 27–29
/proc filesystem, 130–132

network services, 288
ARP cache, 289–290
client/server connectivity, 293–294
host information, 295–297
log files, 288–289
open connections, 297–300
routes, 291–293
security, 297
statistics, 300–302
test packets, 290–291
throughput, 86
traffic, 303–307

NFS, 552–553
resource usage, 85–86
root drive failures, 29–31
Samba, 527–530

true command, Sieve, 357
trust anchors, DNSSEC, 435
TSIG (Transaction Signature), 440–442
tty1.conf file, 26–27
tune2fs command, 185–186, 187
tune2fs utility, 161, 185–186, 187, 193
TURN command, SMTP, 327
TXT resource record, 403

U
U-Boot bootloader, 14
udev device manager, 128
UDF (Universal Disk Format) filesystem,

171, 172, 175, 193
UDP (User Datagram Protocol), 278

netstat command, 299
well-known ports, 279

UEFI (Unified Extensible Firmware
Interface), 6, 7–8, 9

secure boot, 15–16

firmware, 6–8
initialization process, 16–27
system recovery, 27–31

system uptime, 81
systemctl command, 22, 24–26, 32
systemd, 17, 21–26

default target, 24
units, 21–24

Systemd-boot bootloader, 14
SysV, 16, 17–21

T
tar command, 61–66
tarball, 61–70
targetcli utility, 237–240
targets, systemd, 21–26
TCP (Transmission Control Protocol), 278

lsof command, 298
nc command, 293, 294
netstat command, 299
nmap command, 303
telnet command, 621
well-known ports, 279

TCP Wrappers, 532, 551–552
tcpdump command, 81, 303–307
telinit command, 21
Telnet, 621
temperature controls, 54
test commands, Sieve, 357
testparm utility, Samba, 510–511, 527
throughput, troubleshooting, 86
Thunderbird email client, 325
time command, 391–392
TLDs (Top-Level Domains), 374
TLS (Transport Layer Security), 458, 481
TLSA publisher, 443
/tmp directory backup considerations, 59
tmpfs filesystem, 162
top command, 81, 86
TOP command, POP3, 333
Torvalds, Linus, 94–95, 107–108
TraceEnable directive, 481
traceroute command, 291–292
Transaction Signature. See TSIG
transport layer, 278

712  UID command  –  vsftpd (Very Secure FTP)

bindex.indd  09/14/2016  Page 712 bindex.indd  09/14/2016  Page 713

/var/log directory, 6
/var/log/apache2/error.log file, 467
/var/log/boot directory, 6
/var/log/boot.log directory, 6
/var/log/httpd/error_log file, 467
/var/log/messages file, 553
/var/log/sa directory, 83
/var/log/samba directory, 502, 528
/var/www/html directory, 468
variable ??, procmail special condition,

354
variable substitutions, 507
--verbose option, tar, 64
--verify option, tar, 64
versioning system, kernel, 107–108,

129–130
Very Secure FTP (vsftpd), 555, 556–568
vfat filesystem, 143, 151, 152
VFS (Virtual File System), 104
vgcreate command, 250–251
vgdisplay command, 251
Virtual File System (VFS), 104
virtual lookup table, Postfix, 349
virtual memory, 85, 96

free command, 80, 85, 178
swapoff command, 179–180
vmstat command, 81, 85, 86

virtual web hosting, 460, 469–470
Vital Product Data (VPD), 227
vmlinux kernel binary file, 104, 133
vmlinuz kernel binary file, 104, 115, 133
vmstat command, 81, 85, 86
volume groups (VGs), 245, 246

checking, 251
creating, 250–251
increasing size, 254–257

VPD (Vital Product Data), 227
VPNs (virtual private networks), 643, 643

OpenVPN, 643–646
VRFY command, SMTP, 327
vsftpd (Very Secure FTP), 555, 556–568

access
via anonymous accounts, 563–568
via TCP Wrappers, 563
via username/password, 560–563

configuration directives, 557–559
installing, 556–557

UID command, IMAP, 337
UIDL command, POP3, 333
umount command, 149–151
umount.nfs utility, 538
uname -r command, 204
uninterruptible sleep, 86
units, systemd, 21–24
Unix System V. See SysV
unmount command, 30
UNSUBSCRIBE command, IMAP, 337
--unxz option, tar, 66
update-rc.d, 19, 20, 32
--update option, tar, 62
Upstart initialization process, 26–27
uptime command, 81, 86
US-CERT, 646–647
USB (Universal Serial Bus) devices, 127–128
User Datagram Protocol. See UDP
User directive, Apache, 465
user security mode, Samba, 522
user-based web hosting, 460, 468
username maps, Samba, 520–521
/usr directory backup considerations, 59
/usr/bin/mesg command, 39, 87
/usr/bin/notify-send command, 42–44
/usr/bin/wall command, 39–41
/usr/sbin/sendmail file, 351
/usr/scr/kernels folder, 107
/usr/scr/linux folder, 106, 107, 110
/usr/scr/linux/Documentation folder, 107
/usr/src folder, 107
uuidgen command, 186
UUIDs (Universally Unique IDentifiers), 154

V
vacation extension, Dovecot, 361
valid users directive, Samba, 509
validating resolvers, 435
/var directory backup considerations, 59
/var/lib/nfs/etab, 536
/var/lib/nfs/etab file, 542, 553
/var/lib/nfs/rmtab, 536
/var/lib/nfs/rmtab file, 544, 553
/var/lib/nfs/xtab, 536
/var/lib/samba directory, 502

w command  –  ZSK (zone signing key)  713

bindex.indd  09/14/2016  Page 712 bindex.indd  09/14/2016  Page 713

Wired Equivalent Privacy (WEP), 274
wired network connections, 272–273, 273

eth0 interface, 284–285
kernel boot messages, 289
Network Manager, 282–284

wireless network connections, 272,
273–274, 274

encyption, 274, 283, 287
Network Manager, 282–284, 283
wlan0 interface, 286–287

wlan0 interface, 286–287
workgroup directive, Samba, 506
World Wide Identifiers (WWIDs), 236
World Wide Names (WWNs), 236
WPA (Wi-Fi Protected Access), 274
WPA2 (Wi-Fi Protected Access version 2),

274
writable directive, Samba, 509
write command, 39–40, 40
write list directive, Samba, 509
write-back caching, 223–227
WWIDs (World Wide Identifiers), 236
WWNs (World Wide Names), 236

X
xconfig script, 112, 113
--xz option, tar, 62

Z
ZFS filesystem, 144
zimage kernel binary file, 104, 133
Zmanda Management Console, 60
ZoL (ZFS on Linux), 144, 149
zone signing key (ZSK), 435
zones, DNS

child, 417–418
parent, 417–418
zone configuration files, 403–407
zone databases, 407–414

ZSK (zone signing key), 435

W
w command, 81
w flag, procmail, 353
W flag, procmail, 353
wall command, 39–41, 41
wbinfo utility, Samba, 504, 524, 529
weak cache consistency, 530–531
wear leveling, 232
web proxy servers, 460. See also Squid web

servers
web servers, 452–453

Apache, 459, 461
configuring, 464–472
dynamic web programming, 472–474
features, 459–460
HTTPS configuration, 474–482
installing, 462–464

exam essentials, 491–492
HTTP standard, 452–459

client requests, 454
server responses, 454–458

nginx, 461, 487
configuring, 488–489
installing, 487–488

review answers, 678–681
review questions, 493–496
Squid, 460, 461, 482, 482–487

client configuration, 486, 486–487,
487

configuring, 483–486
installing, 482–483

testing, 489–490
well-known ports, 279
WEP (Wired Equivalent Privacy), 274
wget command, 73
whitelists, 297
who -t command, 40
Wi-Fi Protected Access (WPA), 274
Wi-Fi Protected Access version 2

(WPA2), 274
winbind idmap backends, 524
winbind package, 499, 501
winbindd, 499, 501, 515, 524,

529, 530
wins support directive, Samba, 506

Comprehensive Online
Learning Environment
Register on Sybex.com to gain access to the comprehensive online interactive learning

environment and test bank to help you study for your LPIC-2 certification.

The online test bank includes:

•	 Assessment Test to help you focus your study to specific objectives
•	 Chapter Tests to reinforce what you learned
•	 Practice Exams to test your knowledge of the material
•	 Digital Flashcards to reinforce your learning and provide last-minute test prep before

the exam
•	 Searchable Glossary gives you instant access to the key terms you’ll need to know for

the exam
Go to http://www.wiley.com/go/sybextestprep to register and gain access to this comprehensive
study tool package.

http://www.wiley.com/go/sybextestprep

	LPIC-2 Study Guide
	Acknowledgments
	About the Authors
	Contents at a Glance
	Contents
	Table of Exercises
	Introduction
	Assessment Test
	Answers to Assessment Test
	Part I The LPI 201 Exam
	Chapter 1 Starting a System
	The Linux Boot Process
	Following the Boot Process
	Viewing the Boot Process

	The Firmware Startup
	The BIOS Startup
	The UEFI Startup

	Linux Bootloaders
	GRUB Legacy
	GRUB 2
	Alternative Bootloaders
	Secure Bootloaders

	Process Initialization
	The SysV Method
	The systemd Method
	The Upstart Method

	System Recovery
	Kernel Failures
	Root Drive Failure

	Summary
	Exam Essentials
	Review Questions

	Chapter 2 Maintaining the System
	Keeping Users Informed
	Looking at Fluid Messaging
	Looking at Static Messaging

	Backing Up the System
	Developing a Backup Strategy
	Performing Backups

	Installing Programs from Source
	Obtaining the Installation Files
	Unpacking the Installation Files
	Reading Installation Documentation
	Compiling Preparation
	Compiling the Program
	Completing the Installation

	Managing Resource Usage
	Measuring Resource Usage
	Predicting Resource Usage
	Troubleshooting Resource Usage

	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Mastering the Kernel
	What Is the Kernel?
	The Kernel Features
	Parts of the Kernel
	Kernel Versions

	Compiling a Kernel
	Obtaining Source Code
	Creating the Configuration File
	Compiling and Installing the Kernel
	Compiling and Installing Modules
	Creating an Initial RAM Disk
	Booting the New Kernel
	Creating a Kernel Package

	Maintaining the Kernel
	Working with Module Files
	Module Commands
	Working with Hardware
	Automatically Detecting Hardware
	Troubleshooting the Kernel

	Summary
	Exam Essentials
	Review Questions

	Chapter 4 Managing the Filesystem
	Operating the Linux Filesystem
	Understanding Filesystem Structures
	Understanding Filesystem Types
	Making a Filesystem
	Attaching a Filesystem

	Exploring Additional Filesystem Topics
	Looking at Memory-Based Linux Filesystems
	Looking at the Btrfs Filesystem
	Exploring Btrfs Subvolumes
	Exploring Btrfs Snapshots
	Looking at Optical Filesystems
	Looking at Swap Filesystems
	Looking at Network-Based Filesystems
	Understanding Auto-Mounting
	Looking at Encrypted Filesystems

	Maintaining Linux Filesystems
	Adjusting a Filesystem
	Checking and Repairing a Filesystem
	Using SMART

	Summary
	Exam Essentials
	Review Questions

	Chapter 5 Administering Advanced Storage Devices
	Configuring RAID
	Understanding RAID
	Implementing RAID on Linux
	Managing a RAID Array

	Adjusting Storage Devices
	Looking at Drive Interface Concepts
	Testing and Tuning Drives
	Implementing iSCSI

	Managing Logical Volumes
	Understanding LVM
	Creating Logical Volumes
	Supporting Logical Volumes
	Understanding the Device Mapper

	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Navigating Network Services
	Networking Basics
	The Physical Layer
	The Network Layer
	The Transport Layer
	The Application Layer

	Configuring Network Features
	Network Configuration Files
	Graphical Tools
	Command-Line Tools

	Basic Network Troubleshooting
	Checking the Log Files
	Viewing the ARP Cache
	Sending Test Packets
	Testing Network Routes
	Testing Client/Server Connectivity
	Finding Host Information
	Network Security

	Advanced Network Troubleshooting
	Viewing Open Network Connections
	Viewing Network Statistics
	Scanning the Network
	Capturing Network Traffic

	Summary
	Exam Essentials
	Review Questions

	Part II The LPI 202 Exam
	Chapter 7 Organizing Email Services
	The Linux Mail System
	Mail Transfer Agent
	Mail Delivery Agent
	Mail User Agent

	Email Protocols
	Simple Mail Transfer Protocol
	Post Office Protocol
	Internet Message Access Protocol

	Using Email Servers
	Using Sendmail
	Using Postfix

	Local Email Delivery
	Procmail Basics
	Sieve

	Remote Email Delivery
	Using Courier
	Using Dovecot

	Summary
	Exam Essentials
	Review Questions

	Chapter 8 Directing DNS
	Configuring a DNS Server
	Understanding DNS and BIND
	Configuring DNS on Linux
	Starting, Stopping, and Reloading BIND
	Configuring BIND Logging

	Creating and Maintaining DNS Zones
	Exploring BIND Zone Files
	Managing BIND Zones on Linux

	Securing a DNS Server
	Setting Up Basic Security
	Jailing BIND
	Using DNSSEC
	Connecting via TSIG
	Employing DANE

	Summary
	Exam Essentials
	Review Questions

	Chapter 9 Offering Web Services
	What Is a Web Server?
	Web Server Basics
	The HTTP Standard
	Linux Web Servers

	The Apache Web Server
	Installing an Apache Server
	Configuring the Apache Server
	Hosting Dynamic Web Applications
	Creating a Secure Web Server

	Using a Proxy Server
	Installing Squid
	Configuring Squid
	Configuring Clients

	The Nginx Server
	Installing Nginx
	Configuring Nginx

	Summary
	Exam Essentials
	Review Questions

	Chapter 10 Sharing Files
	Looking at Samba
	Understanding Samba
	Configuring Samba
	Troubleshooting Samba

	Looking at NFS
	Understanding NFS
	Configuring NFS
	Securing NFS
	Troubleshooting NFS

	Looking at FTP Servers
	Understanding FTP
	Configuring vsftpd
	Configuring Pure-FTPd

	Summary
	Exam Essentials
	Review Questions

	Chapter 11 Managing Network Clients
	Assigning Network Addresses
	The DHCP Standard
	Linux DHCP Software
	Installing a Linux DHCP Server
	Configuring a DHCP Server
	Configuring Clients

	Authentication Service
	PAM Basics
	Configuring PAM
	Using PAM Application Files

	Network Directories
	LDAP Basics
	The OpenLDAP Server
	Implementing LDAP Clients

	Summary
	Exam Essentials
	Review Questions

	Chapter 12 Setting Up System Security
	Server Network Security
	Port Scanning
	Intrusion Detection Systems
	External Network Security
	Using iptables
	Routing in Linux

	Connecting Securely to a Server
	OpenSSH
	OpenVPN

	Security Resources
	US-CERT
	SANS Institute
	Bugtraq

	Summary
	Exam Essentials
	Review Questions

	Appendix Answers to Review Questions
	Chapter 1: Starting a System
	Chapter 2: Maintaining the System
	Chapter 3: Mastering the Kernel
	Chapter 4: Managing the Filesystem
	Chapter 5: Administering Advanced Storage Devices
	Chapter 6: Navigating Network Services
	Chapter 7: Organizing Email Services
	Chapter 8: Directing DNS
	Chapter 9: Offering Web Services
	Chapter 10: Sharing Files
	Chapter 11: Managing Network Clients
	Chapter 12: Setting Up System Security

	Index
	Advert
	EULA

